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ABSTRACT. By using some generalized Riemann integrals instead of ordinary
sums and multiplication systems of Banach spaces instead of Banach spaces, we
establish some natural generalizations of the most basic facts on Schauder bases
so that Hamel bases, and some other important unconditional bases, could also
be included.
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Introduction

By using some generalized Riemann integrals [11] instead of ordinary sums and
multiplication systems of Banach spaces [14] instead of Banach spaces, we shall
establish some natural generalizations of the following basic facts on Schauder
bases [4], [8].
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Definition 1. Let Z be a Banach space over OC= lR or C. Then a sequence
p, = (P,n) in Z is called a Schauder basis for Z if for each z E Z there exists
a unique sequence i = (in) in OCsuch that

Remark 1. If f and p, are sequences in OCand Z, respectively, then we define

n

Sn(j, p,) = L fiP,i
i=l

00

for all ti E N. Thus, L fnP,n = lim Sn(j, p,) whenever this limit exists.
n=l n..-..+oo

Theorem 1. If p, is a Schauder basis for Z, and moreover

(Sn (j, p,)) converges},

and

Iot all f E £/10' then £/10 is a linear space over OCand I 1/10 is a complete norm
on £/10 such that the mapping z f---+ i is a continuous linear injection of Z onto
£/10 such that Izl::::: lil/1o for all z E Z.

Definition 2. If p, is a Schauder basis for Z, then the number

C/1o = sup l-l,
Izl=l

is called the basis constant of p,. Moreover, for each n E N, the function P/1on
defined by

P/1on(z)= Sn(i, p,)

for all z E Z is called the nth p,-projection of Z.

Theorem 2. If p, is a Schauder basis for Z, then P/1onis a continuous linear
map of Z into itself for all ri E N such that

and
P/1on= r.; 0 P/1om= P/1om0 P/1on

for all n,m E N with n:::::m.
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Remark 2. Note that

IIP/inll = sup IP/in(Z)I
]zl=l

for all n E N.

Theorem 3. If /l is a sequence in Z, then /l is a Schauder basis for Z if and
only if the following three conditions hold:

(1) /In -I- 0 for all n E N;

(2) the linear hull of {/In}~=l is dense in Z;

(3) there exists a nonnegative number C such that

for all n, mEN, with n:S: m, and for all f E OCt'!.

In order to keep this paper as self-contained as possible, the necessary pre-
requisites concerning the generalized Riemann integrals of [ 11 ] will be briefly
laid out in the subsequent preparator sections. However, a familiarity with
some basic facts on nets [ 5 ] will be assumed.

1. Integration systems
Definition 1.1. An ordered pair (n,S) consisting of a set n and a family S
of subsets of n will now be called a pre-measurable space.

Remark 1.2. The family S may usually be assumed to be a semi-ring or a
ring in n [1].

However, for a preliminary consideration, the reader may assume that S is
the family of all finite subsets of n.
Definition 1.3. If (n, S) is a pre-measurable space, then a family

where r is a directed set, rYa = (rYai)iEI" and Ta = (Tai)iEI" are finite families
in Sand n, respectively, will be called a defining net for integration over (n,S).

Remark 1.4. To define powerful defining nets for integration, we must usually
assume that n is equipped with a generalized uniformity which is compatible,
in a certain sense, with the family S [ 12 ].

However, for a preliminary consideration, the reader may assume that IJ1 is
one of the most important particular cases of the following simple defining net
for integration which will actually define summation.
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Example 1.5. Let 0 be a set and S be the family of all finite subsets of O.
Suppose that (AoJaEr is a net in S and, for each O'Er define

and

Then SJ1 = ((iTa, Ta) )aEr is a defining net for integration over (0, S).

Remark 1.6. Note that r may, in particular, be S directed by set inclusion.
And Aa may, in particular, be a for all O'Er.

Moreover, if in particular 0 = N (0 = Z) and r = N, then we may
naturally take Aa = {i}f=l (Aa = {i}f=-a) for all O'Er.

Definition 1.7. An ordered triple (X, Y, Z) of Banach spaces over IK,together
with a bilinear map (x, y) f---7 xy from X x Y into Z such that

Ixyl ~ Ixllyl
for all x E X and y E Y, will be called a multiplication system with respect
to the above bilinear map.

Remark 1.8. Multiplication systems of Banach spaces play an important role
in advanced calculus [ 6, pp. 135,372 and 455J.

However, for a preliminary consideration, the reader may assume (X, Y, Z)
= (IK,Z, Z) with the usual multiplication by scalars.

Definition 1.9. An ordered triple ((0, S), SJ1, (X, Y, Z)), consisting of a pre-
measurable space (0, S), a defining net for integration

over (0, S) and a multiplication system (X, Y, Z) of Banach spaces over IK,will
be called an integration system.

Remark 1.10. The above notations will be kept fixed throughout in the se-
quel. They contain all the fixed data necessary for our subsequent integration
process.

2. Net integrals

Definition 2.1. A function f from 0 into X will be called an integrand and
the family of all integrands will be denoted by F(O, X). Moreover, a function
IJ. from S into Y will be called an integrator. And the family of all integrators
will be denoted by M(S, Y).

Remark 2.2. Note that the families F(O, X) and M(S, Y) are vector spaces
over IKunder the usual pointwise operations.
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Definition 2.3. If f E F(D, X) fJ E M(S, Y) and

SaU, fJ) = L f(Tai)fJ(rJai)

for all a E r , then the limit

r fdfJ = lim SaU, fJ),in aEf'

whenever it exists, will be called the l}l-integral of f with respect to fJ. More-
over, if the above integral exists then we shall say that f is l}l-integrable with
respect to fJ and the family of all such functions f will be denoted by LJ1.(D, X).

Remark 2.4. Note that under the notations of Example 1.5, we simply have

r fdfJ = lim L f(i)fJ({i})in. aEf'iEA"

for all f E F(D, X) and fJ E M(S, Y) with fELl-'"

Theorem 2.5. If I,9 E F(D, X) and fJ, v E M(S, Y) such that t,9 E LJ1.
and f E Lv, and moreover A ElK, then

(1) LU + g)dfJ = L fdfJ +L qdu;

(2) L fd(fJ + v) 0;= L fdfJ +L gdv;

(3) L (Af)dfJ = AL fdfJ = L fd(AfJ)·

Sketch of the proof. Note that the approximating sums Sa U, fJ) are bilinear
functions of f and u: Therefore, by the continuity of the linear operations in
Z, the above assertions are also true.

From Theorem 2.5, we can immediately get the following corollary.

Corollary 2.6. If fJ E M(S, Y), then LJ1.(D, X) is a linear subspace of
F(D, X).

Moreover, in addition to Theorem 2.5, we can also easily establish the following
remark.

Remark 2.7. If f E F(D, lK) and fJ E M (S, Y) such that f E LJ1.' then

(1) LUx)dfJ = x L fdfJ = L fd(xfJ), for all x E X.

Moreover, if f E F(D, X) and fJ E M(S, lK) such that f E LJ1.' then

(2) LUy)dfJ = (L fdfJ)y = L fd(fJy), for all y E Y.



34 I. KOY Acs & A. szAz

3. The supremum f-L-norm

Definition 3.1. If 1 E F(O, X) and p, E M(S, Y), then the extended real
number

will be called the supremum p,-norm of 1 with respect to the net 1)1.

Theorem 3.2. The above u-nottn I IJ.Lis an extended valued seminorm on
F(O, X) such that

for all 1E LJ.L (0, X).

Proof. By the corresponding definitions, it is clear that

for all A E lK and 1 E F(O, X). Hence, by writing 1/ A in place of A, and AI
in place of 1, we can see that the corresponding equality is also true. Moreover,
we can also easily see that

11+gl = suplSa(f+g,p,)1J.L a

~ suP(ISa(f,P,)1 + ISa(g,P,)I) ~ 111J.L+ IglJ.L
a

for all 1, 9 E F(O, X). Therefore, I IJ.Lis an extended valued seminorm.
On the other hand, it is clear that

for all 1 E LJ.L(O, X).

Remark 3.3. Note that if p, E M(S, Y), then we also have

11xlJ.L = IxllllJ.L

for all 1 E F(O, lK) and x E X.
Moreover, it is also worth noticing that if 1 E F(O, X), then the function

I If defined by

for all p, E M(S, Y) is also an extended valued seminorm.

From Theorem 3.2, we can get at once the following corollary.
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Corollary 3.4. The family

.1'1-'(D, X) = {J E .1'(D, X) : If II-' < +oo}

forms a closed linear subspace of the space .1'(D, X).

In addition to this corollary, we can also prove the following result.

Theorem 3.5. The family LI-'(D, X) forms a closed linear subspace of the
space .1'(D, X).

Proof. Note that if (fn) is a sequence in LI-'(D, X) and f E .1'(D, X) , then
we have

lim ISa(f,J1) - S13(f,J1)1(a,13)

::; lim (ISa(f,J1) - Sa(fn,J1)1 + ISa(fn,/L) - S13(fn,J1)1(a,13)

+ IS13(fn,J1) - S13(f,J1)I)

::; lim ISa(f,J1) - Sa(fn,/L)I + lim ISa(fn,J1) - S13(fn,J1)!(a,13) (a,13)

+ lim !S/3(fn, /L) - S/3(f, J1) I(a,/3)
= 2limISa(fn,J1) - Sa(f,J1)1

a

= 2li;nISa(fn - f,J1)1 ::; 2IJn - filL

for all n E N. Hence, if lim Ifn - fll-' = 0 , it follows that
n

Therefore, (Sa(f,J1)) is a Cauchy net in Z. And thus, by the completeness
of Z , we have f E LI-'(D, X).

Now, combining Theorem 3.5 and Corollary 3.4, we can also state

Corollary 3.6. The family

forms a closed linear subspace of the space .1'(D, X).

Remark 3.7. Note that if in particular r = N with its natural order, then
we simply have L~(D,X) = LI-'(D, X).
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4. Admissible integrators

Definition 4.1. An integrator f1 E M(S, Y) will be called S}1-admissible if
there exists a nonnegative c E F(n, lR) such that

1 f (t) I < c( t) I fill

for all tEn and f E F(n, X).

Remark 4.2. If in addition to the notations of Example 1.5 for each tEn
there exist a.t, (3t E r such that {t} = Aat \ A,6t' and moreover Ixyl = Ixllyl
for all x E X and y E Y , then each f1 E M (S, Y) ,with f1({t}) =I- 0 for all
tEn , is S}1-admissible.

In this case, we have

If(t)1 = 1f1({t} )1-
1
If(t)f1( {t})1

= 1f1({t})1-
1

1 L f(i)f1({i}) - L f(i)f1({i})I

iEA"t iEAl3t

= 1f1({t})1-1ISatU,f1) - S,6tU,f1)1

:::; 1f1({t})I-l(ISatU,f1)I+IS,6tU,f1)J)21f1({t})I-llflll

for all tEn and f E rtu, X).

The importance of admissible integrators is apparent from the following'
theorem.

Theorem 4.3. If f1 E M(S, Y) is an S}1-admissible,then the u-iiortn I III is a
complete extended valued norm on F(n, X).

Proof. If f E F(n, X) such that Ifill = 0, then by the above definition we
have

If(t)1 :::;c(t)lflll = 0

for all tEn, and hence f = O. Therefore, by Theorem 3.2, I III is an extended
valued norm.

On the other, if Un) is a Cauchy sequence in F(n, X), then for each E > 0
there exists an no such that

Ifn - fmlll < E for all n, m 2: no·

Hence, by Definition 4.1, it follows that
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for all tEO and n, m 2': no. Therefore, (In(t)) is a Cauchy sequence in
X for all tEO. Thus, by the completeness of X, we may define a function
I E F(O, X) such that

I(t) = limln(t)
n

for all tEO. Now, since

= L I(Tai);.t(Uai) = Sa(J, ;.t),
iEI",

we can also state that

for all 0: E rand n 2': no, and hence lin - III-' :S E for all n 2': no. Therefore,

lim lin - III-' = O.
n

From Theorem 4.3, by Corollaries 3.6 and 3.4, we can get at once the fol-
lowing corollary.

Corollary 4.4. If;.tEM(S,Y) islJt-admissible,thenL:(O,X) andFI-'(O,X)
are Banach spaces.
Remark 4.5. The supremum ;.t-norm I II-' could throughout be replaced by
the limit superior ;.t-norm

However, since we have

for all I E LI-'(O, X), the limit superior ;.t-norm I I: cannot, in general, be an
extended valued norm.

5. Generalized bases

Definition 5.1. An integrator ;.t E M(S, Y) will be called an lJt-basis
(resp. 1Jt* -basis) for the multiplication system (X, Y, Z) if for each z E Z
there exists a unique i E LI-'(0, X) (resp. i E L: (0, X)) such that

z = l id;.t.
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Remark 5.2. Note that if SJ1is as in Example 1.5 and (X, Y, Z) is as in
Remark 1.8, then by Remark 2.4 the above definition already gives a substantial
generalization of the notions of the Schauder and the Hamel bases of Z.

Simple applications of Definition 5.1 and Theorem 2.5 yield the following

Lemma 5.3. An integrator fL E M(S, Y) is an SJ1-basis (resp. SJ1*-basis) for
(X, Y, Z) if and only if

(1) for each z E Z there exists j E c; (0,X) (resp.j E 12:(0, X)) such
that z = J~jdp,;

(2) Jo jdp, = 0 implies i = 0 for all j E Lp.(O, X) (resp.
j E L:(O,X)).

Moreover, by using Theorems 2.5 and 3.2 we can also easily verify the following

Theorem 5.4. If p, is an SJ1-basis (resp. SJ1*-basis) for (X, Y, Z) then the map-
ping z f---> i is a linear injection of Z onto Lp.(O,X) (resp. 12:(0, X)) such
that Izi :s; lilp. for all z E Z.

Sketch o] the proo]. To prove that Z = Lp.(O, X), note that if j E Lp.(O,X),
then z = Jo jdp, is in Z. Therefore, we also have z = Jo idp,. And hence, by
the uniqueness property of i, it follows that j = i E Z.
Remark 5.5. In the sequel, an SJ1-basisor SJ1*-basisfL will usually be said to
have a property P if it has this property as an integrator.

Note that if fL is an admissible SJ1-basisor SJ1*-basis for (X, Y, Z), then by
Definition 4.1 we also have li(t)l:s; c(t)lilp. for all z E Z and tEO.

More ver, in the latter particular case, we can also easily prove the next •
important

Theorem 5.6. If fL is an admissible SJ1*-basis for (X, Y, Z), then there exists
a nonnegative number C such that lilp. :s; C1zl for all z E Z.

Proo]. In this case, by Corollary 4.4, 12:(0, X) is also a Banach space. More-
over, by Theorem 5.4, the mapping i f---> Z is a continuous linear injection of
12:(0, X) onto Z. Therefore, by Banach's isomorphism theorem [ 3, p. 68],
the inverse linear mapping z f---> i is also continuous. And thus, the assertion
of the theorem is also true.

Remark 5.7. Note that if fL is as in Theorem 5.6, then by Remark 5.5 not only
the 'Fourier-transform' z f---> i, but also the 'coefficient functionals' z f---> i(t)
are continuous.

Definition 5.8. If fL is a SJ1-basisor an SJ1*-basis for (X, Y, Z), then the ex-
tended real number

Cp. = sup lilp.
Izl=l

will be called the basis constant of fl.

By Theorems 5.4 and 5.6, we evidently have the following
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Theorem 5.9. If p, is an admissible iJ1*-basis for (X, Y, Z), then lil/L :S G/Lizi
for all z E Z. Moreover 1 :S G/L < +00.

Sketch of the proof. To prove that 1.:S G/L' note that Izl:s lil/L :S G/Lizi for
all z E Z. Moreover, since Z =F {O}, there exists a z E Z such that Izl =F O.
Therefore, the required inequality is also true.

Definition 5.10. If p, is an iJ1-basis or iJ1*-basis for (X, Y, Z), then for each
0' E r the function P/L<J:defined by

for all z E Z will be called the oth p,-pro jection of Z.

Theorem 5.11. If is an admissible iJ1*-basis for (X, Y, Z), chen P/L<J:is a con-
tinuous linear map of Z into itself for all 0' E r such that

GJ.' = sup IIP/Lall·aEr

Sketch of the proof. To prove the latter equality, note that under the notation

IIP/Lall = sup Ip/La(z)I
Izl=l

we have

GJ.' = sup lil/L = sup SupISa(i,P,)1
Izl=l Izl=l aEr

= sup sup IP/La(z)I = sup sup IP/La(z)1 = sup IIP/Lall·
Izl=l aEr aEr Izl=l aEr

Remark 5.12. Later we shall see that, under some natural conditions on p,
and iJ1,the p,-projections P/La are also idempotent.

6. Regular integrators

Definition 6.1. An integrator p, E M(S, Y) will be called finitely additive
if

for any finite disjoint family (AkhEK in S with UkEK Ak E S. And the family
of all such integrators p, will be denoted by Mo(S, Y).
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Remark 6.2. Note that the family Mo(S, Y) forms a linear subspace of
M(S, Y).

Definition 6.3. An integrator J-l E M(S, Y) will be called 91-regular if

J-l(A) = l XAdJ-l

for all A E S. And the family of all such integrators J-l will be denoted by
M'l1(S, Y).

Remark 6.4. Note that by the corresponding definitions we have

r XA dJ-l = lim L J-l(r>ai)in aEr
TaiEA

for all A E S with XA E L,.,..
Simple applications of the above definitions and Theorem 2.5 give

Theorem 6.5. The family M'l1 (S, Y) forms a linear subspace of Mo(S, Y).

Sketch of the proof. Note that if J-l E M'l1 (S, Y) and (AkhEK is as in
Definition 6.1, then

J-l ( U Ak) = r X U Ak dJ-l
kEK in kEK

= r (L XAk)dJ-l = L r XAkdJ-l = L J-l(Ak).in kEK kEK in kEK
Therefore, J-l E Mo(S, Y) is also true.

Remark 6.6. In this respect, it is also worth mentioning that under the no-
tations Example 1.5 the following assertions are equivalent:

(1) D = lim Aa;
aEr

(2) M'l1 (S, Y) = Mo(S, Y).

To prove the implication (2) ==? (1), note that if y E Y and J-l(A) = card(A)y
for all A E S, then we have J-l E Mo(S, Y). Therefore, if the assertion (2)
holds, then we also have J-l E M'J1 (S, Y). Hence, in particular, it follows that
for each tED we have

y = J-l({t}) = r X{t}dJ-l = li~ L X{t}(i)J-l({i}) = li,;nxA"Ct)y.in iEA",

Therefore, if y I: 0, then there exists an a E r such that for each (3::::: a we
have

Iy - XA{J (t)yl < Iy[,
and hence t E AB. Consequently, t E lima Aa, and thus the assertion (1) also
holds.

The importance of regular integrators is apparent from the following theo-
rem.
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Theorem 6.7. If /-l E M')1 (5, Y), and moreover (AkhEf( and (xkhEf( are
finite families in 5 and X, respectively, then

Proof. By Theorem 2.5 and Remark 2.7, we evidently have

L xk/-l(Ak) = L Xk I XAk du.
kEK ie« II

= L 1XAkXkd/-l = 1(L XAkXk)d/-l.
kEf( II II kEK

Remark 6.8. To establish a certain converse to Theorem 6.7, note that if
/-l E M(5, Y) such that III XAxd/-l = x/-l(A) for all A E 5 and x E X, and
there exists a finite family (Xk)kEf( in X such that jyl:'S LkEf( IXkyl for all
y E Y, then we can also state that /-l is lJ1-regular.

Definition 6.9. If f E F(n, X) , then the function

fa = L X"",.!(Tai)
iEI",

will be called the ath lJ1-trace of i-
Now, as an immediate consequence of Theorem 6.7, we can also state

Corollary 6.10. If /-l E M')1 (5, Y), then

for all a E rand f E F(n, X).

7. Normal integrators

Definition 7.1. An integrator /-l E M(5, Y) will be called 5-finite if

for all A E 5. And the family of all such integrators /-l will be denoted by
M*(5, Y).
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Remark 7.2. Note that by the corresponding definitions we have

for all A E S.

Theorem 7.3. The family M*(S, Y) forms a linear subspace of M(S, Y).

Sketch of the proo]. Recall that, by Remark 3.3, the function I IA defined by

for all J..L E M(S, Y) is an extended valued seminorm for every A E S.

Definition 7.4. An integrand f E F(D, X) will be called S-simple if

for some finite families (Ak)kEK and (xkhEK in S and X, respectively. And
the family of all such integrands f will be denoted by Fs(D, X).

Remark 7.5. Note that the family Fs(D, X) is a linear subspace of F(D, X).

The importance of S-finite integrators is apparent from the following theo-
rem.

Theorem 7.6. If J..L E M(S, Y), then the following assertions are equivalent:

(1) J..L E M*(S, Y);

Sketch of the proof. Recall that, by Remark 3.3, we have

for all A E S and x EX.

Therefore, if (AkhEK and (xkhEK are finite families in S and X, respecti-
vely, and the assertion (1) holds, then by Theorem 3.2 we also have

I L XAk Xk I < L IXAk Xk IlL = L IXk IlxAJ,. < +00.
kEK ,. kEK kEK

Consequently, the function LkEK XA
k

Xk is in FIL(D, X), and thus the assertion
(2) also holds.
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Definition 7.7. An integrator p, E M(5, Y) will be called lJ1-normal if it is
lJ1-regular and 5-finite. And the family of all such integrators p, will be denoted
by M~(5, Y).

Remark 7.8. Note that thus we have

M~ (5, Y) = M91 (5, Y) nM*(5, Y).

Therefore, M~(5, Y) is also a linear subspace of M(5, Y).

Now, as a useful consequence of Theorems 6.7 and 7.6, we can also state'

Theorem 7.9. If p, is a regular lJl-basis or a normallJ1*-basis for (X, Y, Z),
and moreover (AkhEK and (xkhEK are finite families in 5 and X, respectively,
then

Proof. If p, E M91 (5, Y), then by Theorem 6.7 we have

While, if P, E M~ (5, Y), then in addition to the above equality, by Theorem
7.6, we also have

L XA
k

Xk E £~(o,X).
kEK

Therefore, by Definition 5.1, the required assertion is also true.

Corollary 7.10. If' p, is a regular lJ1-basis or a normallJ1*-basis for (X, Y, Z),
then

fa = SaU, P,t

for all a E rand f E F(O, X).

Proof. By the corresponding definitions and Theorem 7.9, we evidently have

fa = L X""J(Tai) = (L f(Tai)P,((}ai)) /\ = SaU, p,)/\
iEI" iEI"

for all a E rand f E F(O, X).
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8. Stable defining nets

Definition 8.1. The defining net l)1 will be called lower stable if for each
a E rand i E Ia there exists a unique j E Ia such that Tai E O"aj, and for
this j we have Tai = Taj'

Moreover, the defining net l)1 will be called upper stable if for each a E r
and i E Ia there exists a unique j E Ia such that Taj E O"ai, and for this j
we have O"ai = O"aj'

Remark 8.2. Note that if in particular Tai E O"ai for all 0: E rand i E la'
and the family (0" ai )iEl" is disjoint for all 0: E I', then the defining net l)1 is
already both lower and upper stable.

Definition 8.3. The defining net l)1 will be called lower superstable if for each
a, {3 E I', with a S; {3, and for each i E Ia there exists a unique j E If3 such
that Tai E O"f3j, and for this j we have Tai = Tf3j.

Moreover, the defining net l)1 will be called upper superstable if for each
a, {3 E I', with a S; {3, and for each i E Ia there exists a unique j E If3 such
that Tf3j E O"ai, and for this j we have O"ai = O"f3j.

Remark 8.4. Note that the defining net l)1 given in Example 1.5 is lower or
upper superstable if and only if the net (Aa)aEr is nondecreasing.

The appropriateness of the above definitions is apparent from the following
theorem.

Theorem 8.5. If /-l E M(S, Y) and the defining net l)1 is lower or upper
stable, then

Sa(f,/-l) = Sa(fa,/-l)

for all 0: E rand !E .1'(0, X).
Moreover, if the defining net l)1 is lower, resp. upper superstable, then

Sa(f, /-l) = Sa(ff3, /-l), resp. Sa(f, /-l) = Sf3(fa, /-l)

for all a, {3 E I', with a S; (3, and for all !E .1'(0, X).

Proof. If a, {3 E r are such that for each i E Ia there exists a unique j E If3
such that Tai E O"f3j, and for this j we have Tai = Tf3j, then it is clear that

= L (L XGj3j(Tai)!(Tf3j))/-l(O"ai)
iEI" jElj3

=L ( L. !(Tf3j))/-l(O"ai)
~Ela ToiEal3J

= L !(Tai)/-l(O"ai) = Sa(f, /-l)
iEI"
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for all !E F(D, X).

While if a, /3 E r such that for each i E Ia there exists a unique j E 1(3
such that T(3j E CYai, and for this j we have CYai = CY(3j, then it is clear that

S(3(fa,P,) = L !a(T(3j)p'(CY(3j)
jEI{3

= L (L Xaai (T(3j)!(Tai)) p,(CY(3j)
jEI{3 iEla

= L !(Tai) ( L XaaJT(3j)P,(CY(3j))
iEI", jEI{3

= L !(Tai) ( L p,(CY(3j))
tEla T{3j Euo.1.

= L !(Tai)p'(CYai) = Sa(f,P,)
iEI",

for all !E F(D, X).

Corollary 8.6. If p, is a regular lJt-basis or a normallJt*-basis for (X, Y, Z)
and the defining net IJt is lower or upper stable, then

for all a E rand ! E F(D, X). Moreover, if the defining net IJt is lower, resp.
upper superstable, then

resp.

for all a E r, with a ~ /3, and for all f E F(D, X).

Sketch o] the proof. If the defining net IJt is, for instance, lower superstable, by
Theorem 8.5 and Corollary 7.10, we have

for all a E r, with a ~ /3, and for all !E F(D, X).

Corollary 8.7. If p, is a regular lJt-basis or a normallJt* -besis for (X, Y, Z)
and the defining net IJt is lower or upper stable, then

for all a E r. Moreover, if the defining net IJt is lower, resp. upper superstable,
then

resp.
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for all a E I' with a::; (3.

Sketch of the proof. If the defining net 91 is, for instance, lower superstable, by
the corresponding definitions and Corollary 8.6, we have

for all a E I', with a::; (3, and for all z E Z.

Remark 8.8. Note that if /1 E M(5, Y) and the defining net 91 is upper
superstable, then by Theorem 8.5 we also have

for all a E rand f E F(O, X).

9. Characterization of admissible normal 1)1*-bases

The importance of superstable defining nets is apparent from the following two
theorems which give a natural generalization of Theorem 3.

Theorem 9.1. If /1 is an admissible normal 91*-basis for (X, Y, Z) and the
defining net 91 is lower superstable, then the following two assertions hold:

(1) The set {Scx(f,/1): a E I', f E £~(O,X)} is dense in Z;
(2) I Scx(f, /1) I ::; GiLI Sj3 (f, /1) I for all a E r, with a::; (3, and for all

f E F(O,X).

Proof. By Definitions 5.1 and 2.3, it is clear that the assertion (1) holds. More-
over, by using Corollary 8.6 and Theorem 5.11, we can easily see that

for all a E I', with a::; (3, and for all f E F(O, X).

Remark 9.2. By the above theorem, an admissible normal 91*-basis /1 for
(X, Y, Z) may be called monotone if GiL= 1.

Theorem 9.3. If /1 E M~, (5, Y) is 91-admissible and the defining net 91 is
upper supers table, then /1 is an admissible normal 91*-besis for (X, Y, Z) if the
following two conditions hold:

(1) The set {Scx(f,/1): a E I', f E F(O, X)} is dense in Z;
(2) There exists a nonnegative number G such that

for all a E r, with a::; (J, and for all f E £~(O,X).
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Proof. If z E Z, then by condition (1) there exist sequences (an) and (In) in
I' and F(D, X) respectively, such that

Since the integrator p is l)1-normal, by theorems 6.7 and 7.6, we have

for all n E N. Moreover, if m, n E N, then by condition (2) and Theorem 8.5,
it is clear that

!Sa(fma", - i-«: p)! ::::;e!SI3(fma", - fnan, p)!

= eISI3(fma""p) - SI3(fnan,P)!
= elsa", tI,«, p) - SaJfn, p)1

for all a, {3 E I' with am::::; {3 and an::::; {3. Hence, it follows that

Therefore, (fnaJ is a a Cauchy sequence in .c~(S, Y). Thus, by Corollary 4.4,
there exists an f E .c~(S, Y) such that

Hence, by Corollary 6.10 and Theorem 3.2, it is clear that

z=limSan(fn,p)=lim /fnandP= / [tiu,
n n in in

Now, by Lemma 5.3, it remains to show only that if h E .c~(D, X) is such
that In lulu. = 0, then h = O. For this, note that by condition (2) we have

for all a E I', with a::::; (3. Therefore,

and hence Sa(h, p) = 0 for all a E f. Thus, in particular, we have Ihl/-' = O.
Hence, since the integrator p is now l)1-admissible, it is clear that h = O.

Now, as an immediate consequence of Theorems 9.1 and 9.3, we can also
state

Corollary 9.4. If p E M~ (S, Y) is l)1-admissible and the defining net 1)1 is
both lower and upper superstable, then the conditions (1) and (2) of Theorem
9.3 imply the assertions (1) and (2) of Theorem 9.1.
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