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A model of neck formation
on a rod under tension
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ABSTRACT. Stability of equilibrium of a circular cylinder under homogeneous
axial stretching is investigated in the frame of 3-D nonlinear elasticity. The
axisymmetric buckling modes describing developing of a "neck" on the stretched
rod are studied. The isotropic incompressible material of the rod is described
through the logarithmic strain tensor. The constitutive equations for the rod
correspond to the power-law hardening of elastic-plastic materials. Solving the
linearized stability equations of the stretched cylinder, we find the spectrum
of critical values of longitudinal deformation and buckling eigenmodes of the
rod. The bifurcation modes relating with the neck formation arise when the
elongation of the rod insignificantly exceeds the maximum point on the diagram
of stretching. It is noted that different buckling modes have close eigenvalues.
This accumulation of the eigenvalues describes formation of the neck as a result
of the superposition of many buckling modes. Similar results were established
for a stretched rectangular beam under plane deformation [1].
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1. Axisymmetric deformation of a circular cylinder

Consider an elastic circular cylinder of radius ro and length l in the reference
configuration. As the Lagrangian coordinates we use cylindrical coordinates
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r, <.p,Z, SO the body is described by the inequalities 0 ::::;r ::::;rO, 0::::;<.p::::;21r,
o ::::;Z ::::; l. Assume the finite axisymmetric deformation of the cylinder is
described by relations

R = R(r, z), <P = <.p, Z = Z(r, z), (1.1)

where R, <P, Z are the cylindrical coordinates of body particle (r, <.p,z) after de-
formation. With regard for the notation of the gradient operator in cylindrical
coordinates

8 1 8 8
grad = er -8 + eop- -8 + ez -8 ' (1.2)r r <.p z

and the expression for the position vector of a body particle in the deformed
state

R = s»; + Zez, (1.3)
we find the strain gradient C = grad R corresponding to transformation (1.1),

8R 8Z R 8R 8Z
C = -8 er®er + -8 er®ez + -eop®eop + -8 ez®er + -8 ez®ez· (1.4)r r r z z

In (1.2)-(1.4) er, eop, ez are the unit vectors tangent to the coordinate lines of
the cylindrical frame.

From (1.4) we define the Cauchy-Green's strain measure [2] G = C .CT

G = aer®er + ber®ez + bez®er + cez®ez + deop®eop, (1.5)

a= b = 8R 8R + 8Z 8Z
8r 8z 8r 8z'

,
The equilibrium of an elastic body is described [2]by the equilibrium equations
for Piola's stress tensor D

8D 1 8D 8D
div D == er . - + -e . - + ez . - = 0 (1.6)8r r op 8<.p 8z

and by constitutive equations

D = dII/dC - T/pC-T, (1.7)

where div is the divergence operator in the reference configuration, II is the
specific strain-energy function, p is the pressure in the incompressible body
which cannot be expressed through the strain measure, and C-T == (CT)-l =

(C-1V. Parameter T/ is equal to zero for a compressible material and to 1 for
incompressible one. On the basis of (1.4), (1.5), (1.7) we conclude that for a
homogeneous isotropic material with II being a function of the invariants of
tensor G, tensor D has the form

D = Drr(r, z)er®er + Drz(r, z)er®ez + Dopop(r,z)eop®e<p
+ Dzr(r, z)ez®er + Dzz(r, z)ez®ez.

(1.8)
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Due to (1.7), (1.8), for a compressible material, the vectorial equilibrium equa-
tion (1.6) reduces to two scalar equations with respect to two functions R( r, z)
and Z(r, z).

Let the lateral surface of the cylinder be load-free and the ends be friction-
less, so we suppose the tangent stresses to be zero and an uniform normal
displacement to be given. This brings us the following boundary conditions

(1.9)

(1.10)Dzr(r,O) = Dzr(r, i) = 0, Z(r,O) = 0, Z(r, i) = Ai,
where A is a given positive constant.

Boundary conditions (1.10) mean that at stretching the vertical displace-
ments of the cylinder ends are given, that is when cylinder loading is carried
out with a hard testing machine.

Further we use the model of an incompressible isotropic material for which
the deformation of any part of the body preserves its volume. In accordance
with (1.4), at the axisymmetric deformation the incompressibility condition
detC = 1 imposes the following restriction on R(r,z) and Z(r,z)

!2 (oRoZ _ oRoZ) = 1
r or OZ OZ or . (1.11)

For representation of state equations of an isotropic incompressible
material we apply the method implying application of the logarithmic strain
tensor [2, 3]

1
H = 2"ln G. (1.12)

For an incompressible body tensor H is the deviator since at the constant vol-
ume deformation the trace of H is equal to zero. Denoting its second invariant
by -f2/2 we obtain

r = JtrH2. (1.13)

With use of (1.7), (1.12), for Piola's stress tensor in an isotropic incompressible
body we get the constitutive equations

D = (dII/dH)· C-T - «c:". (1.14)

For a problem of axisymmetric deformation of incompressible body p, is an
unknown function of coordinates r, Z. Its appearance in the system of equilib-
rium is compensated by the additional equation, the incompressibility condition
(1.11).

By the definition of logarithm of a positive definite tensor [2], with regard
to (1.12) we have

(1.15)
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where G, are the eigenvalues and d, are the unit eigenvectors of tensor G.
With use of (1.5) we find

G1 = d, G2,3 = ~ (h ± Jh2 - 4/d) ,
d , ®d1 = ecp®ecp,

d2®d2 = (h - 2G3)-1(aer®er + ber®ez + bez®er
+ cez®ez - G3er®er - G3ez®ez,

d3®d3 = (h - 2G2)-1(aer®er + ber®ez + bez®er
+ cez®ez - G2er®er - G2ez®ez,

(1.16)

(1.17)

h = a + c = (~~) 2 + (~~) 2 + (~~) 2 + (~~) 2

Formulas (1.15)-(1.17) represent explicit expression of the logarithmic strain
tensor through functions Rand Z at axisymmetric deformation.

As a certain model of an isotropic incompressible body we consider the
material with power-law hardening [4, 5] for which the elastic potential has
the form

II = Ar{3, A > 0, {3 > 1, (1.18)
where A, {3 are the constants. According to (1.14) Piola's stress tensor for the
material has representation

D = A{3 (tr H2)f3I2-1 H· C-T - pC-To (1.19)

For material (1.18), the relations between the principal true stresses ai, i.e. the
eigenvalues of Cauchy's stress tensor, and the principal true strains Hi, i.e., the
eigenvalues of the logarithmic strain tensor are given by the formulas

a; = A{3r{3-2 Hi - p (i = 1, 2, 3). (1.20)

The model (1.18) describes satisfactorily [4, 6] the behavior of a number of
elastic-plastic constructional materials at active loading and can serve as the
generalization of the deformation theory of plasticity for large deformation.

2. Homogeneous state of the uniaxial stretching

For an incompressible material with power-law hardening, the boundary value
problem (1.6), (1.9), (1.10) has the following solution

R(1', z) = >,-1/21', Z(1', z) = AZ,

1 (3 )f3I2-1
p = Po = -"2A{3 "2ln2 A InA.

To the solution (2.1) there corresponds a homogeneous stress-strain state of
the cylinder at which all stresses, except the normal stress acting on the area

(2.1)
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elements z = canst, are equal to zero. According to (1.20), (2.1), the magnitude
of the true stretching stress a relates with the relative axial elongation i5 = A-I
by formula

( )

(3!2

a(A) = A,B ~ In{3-1 A. (2.2)

The stretching force applied on the ends of the cylinder is

(2.3)

The dependence (2.3) describes the rod uniaxial stretching diagram; it is not
monotonically increasing in contrast to equation (2.2). Function P(A) given by
(2.3) has a point of a maximum A* = exp(,B - 1). The descending part of the
stretching diagram, where A > A*, can be achieved at stretching of a rod with
a hard testing machine.

3. The linearized boundary value problem of stability of
homogeneous stretching state

From experiments with rod stretching it is well known that the process of ho-
mogeneous deformation becomes unstable when it reaches the maximum on
the loading diagram. The cylindrical shape of the stretched sample is replaced
by an axisymmetric equilibrium shape when a neck appears. Let us investigate
the neck formation as the phenomenon of the loss of stability of a homogeneous
state of the cylinder with use of the exact equations of the three-dimensional
elastic bodies stability theory [2, 7]. Let us consider an axisymmetric equilib-
rium shape of the elastic cylinder that slightly differs from the one described
in Section 2

R=Ro+EW, p(r,z)=po+Ep"(r,z),

Ro = A-1!2rer + Azez, W = u(r, z)er + w(r, z)ez.
(3.1)

Here E is the small parameter, W is the vector of additional displacement.
Linearizing the equilibrium equations (1.6) with respect to the axisymmetric
perturbations we obtain

div De = 0,

De = ~D(Co + Egrad w)! '
de E = 0

Co = grad Ro·

(3.2)

This is derived with regard to relation C = Co + sgrad w.
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By linearization of the constitutive equations (1.14) let us find perturbation
De of Piola's stress tensor

De = (dIIjdHr . CoT - (dIIjdH)o . CoT. (grad wf .COT

C-T C-T ( d )T C-T- p : 0 + Po 0 . gra w . 0 .

The substitution of (3.3) into (3.2) leads to the linearized equilibrium equations

(
3 2)(3/2-1{1282u 3 ),-1/282u

A,8 "2 In ), ), / 8r2 + "2 In), ),2 _ ),-1 8z2 +

+([1_~]),-1+~~) 82W+~),1/28u+),-18w}_8po =0
2 2 ),4 -), 8r8z r 8r r 8z 8r '

(
3 2 )(3/2-1{3 ),-1/282u/8z8r+)'82w/8r2

A,8 "2ln), "2 In), ),2_),-1 +

+ ),-1 (,8 -1- ~ In),) 82w + ~ In), ),-1/28u/8z + )'8wj8r } _ 8p· = O.
2 8z2 2 r ),2_),-1 8z

(3.4)

(3.3)

The linearized incompressibility condition arises from (1.11), it is

\ -3/2 8w 8u u _ 0/\ -+-+--8z 8r r .

According to (1.9), the boundary conditions on the lateral surface of the cylin-
der in the perturbed state are set by the vectorial equality
er . De(ro, z) = O. This imposes the following restrictions on functions u, w,
and P" at r = ro:

{

A,8 (~ln2 ),) (3/2-1 { (1 _ ~) ),-1/2 ~: +), ~~} _ ),1/2p• = 0,

8u ),3/28w_
8z + 8r - O.

Linearizing the boundary conditions (1.10) on the cylinder ends z
z = l we get

w=O,

(3.5)

(3.6)

o and

.De. =A(.I(~)(3/21 (3-1 \ 8u/8z+),-3/28w/8r =0
ez er t-' 2 n /\ ),2_),-1 .

Equations (3.4), (3.5) and the boundary conditions (3.6), (3.7) form the linear
homogeneous boundary value problem which has the trivial solution u = w =
P" = O. According to the equilibrium stability bifurcation criterion [2, 7], the
investigation of stability in small reduces to the determination of the spectrum
of critical values of parameter )" at which the above boundary value problem
has nontrivial solutions and to the determination of eigenfunctions, the buckling
modes.

(3.7)
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Let us note that by virtue of "the concept of continuing loading", the bi-
furcation criterion is also suitable for investigation of the elastic-plastic body
stability [8].

Let us search for a solution of the boundary value problem (3.4)~(3.7) of the
form

u(r,z) = U(r)cos,z, w(r,z) = W(r)sin,z,
mr (3.8)v: (r, z) = AQ(r) cos vz , , = -/' n = 1, 2, 3, ...

This solution form allows us to satisfy the boundary conditions (3.7) on the
cylinder ends. Substitution of (3.8) into (3.4)-(3.6) leads to the ordinary dif-
ferential equations system

(3 (~ln2 ),)!3!2-1 {),3/2 (u" + ~U' ~ ~,2~U)
2 r 2),3 - 1

+,(~~+l-~)W' +:lW}-),Q' =0,
2 ),3 - 1 2/ r

(3 (~ln2 ),)!3!2-1 {~ In), _ (_),~1/2, [u' + ~u] + ),W" + ~w,) (3.9)
2 2 ),2 -), 1 r r

+ ),-1,2 (~ln), - (3 + 1) W} +,Q = 0,

U' + ~U + ),-3/2,W = 0,
r

with the boundary conditions

[ (
3 )!3!2-1 JI(3 "2ln2), {(1_~),-1/2,W+),U'}_),1/2Q =0,

r = "o (3.10)

(,U - ),3/2W') I = O.
\ r = "o

There are two boundary conditions needed at r = 0 besides the conditions
(3.10) to solve the system (3.9). They arise because of the material continuity
and the solution smoothness conditions on the cylinder axis. Their form is

U(O) = W' (0) = O. (3.11)

4. The properties of the critical elongations spectrum and the
forms of the loss of stability

The linear homogeneous boundary value problem (3.9)-(3.11) was numerically
solved by the finite-difference method described in [9]. It is determined that
critical values of parameter), exist only on the descending part of the stretching
diagram, i. e. at ), > ),*. This fact is consistent with the theorem of adjacent
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equilibrium form absence on the ascending part of the rod stretching diagram
proved [1] for an isotropic incompressible material of general type in case of
plane deformation of a rectangular beam.

In Table 1 there are presented the values of critical elongations On ((3) =
An ((3) - 1 which depend on integer parameter of waveformation along the cylin-
der axis n and the hardening parameter (3. It was accepted in these calculations
that l = 20, ro = 1. In Table 2 there are presented the values O. ((3) which cor-
respond to the maximum point on the loading diagram. From comparison
between Table 1 and Table 2 one can see that the first critical elongation 01 is
located very close to the maximum point on the stretching diagram.

TABLE 1

n (3 = 1.01 (3 = 1.1 (3 = 1.5 (3 = 2.0
1 0.Q1008 0.10543 0.64929 1.71870
2 0.01019 0.10621 0.65099 1.71995
3 0.01042 0.10756 0.65385 1.72204
4 0.01085 0.10959 0.65786 1.72495
10 0.02988 0.14594 0.70708 1.75950
30 0.50076 0.59901 1.09411 2.04107
90 0.69308 0.84360 1.59451 2.82390

300 0.76825 0.93500 1.78310 3.26516
500 0.78038 0.94968 1.81428 3.34077
1000 0.78928 0.96045 1.83712 3.39549

TABLE 2,
(3 = 1.01 (3 = 1.1 (3 = 1.5 (3 = 2.0
0.01005 0.10517 0.64872 1.71828

Let us note some properties of the critical elongations On distribution. With
growth of n, values on monotonically grow. With growth of n, since n = 1, the
difference On+1 - On increases initially and then begins to decrease becoming
very small for ti being large enough. Critical values on corresponding to differ-
ent instability modes are close to each other. That is why the real shape of the
neck is formed as a result of the superposition of many sinusoidal instability
modes.

The numerical calculations show that with growth of n, the number of zeros
of eigenfunctions Un(r), Wn(r) of the boundary value problem (3.9)-(3.11) in-
creases. This means that with the increase of the mode number, the oscillation
of solution along the radial coordinate increases. For example at (3 = 1.1 and
n < 10, functions Wn(r) do not change their sign in the interval (0, ro): at
40 < n < 55 they have one zero; at 75 < n < 90 two zeroes and so on. At
n = 300, function Wn(r) has eight zeros.
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Character of solution oscillation depends on the hardening parameter /3.
With growth of /3, the oscillation decreases. It is found that, at stability loss,
for the modes of higher orders deformation at stability loss is localized at the
lateral surface of the cylinder.
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