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Existence and analyticity of lump
solutions for generalized
Benney-Luke equations
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ABsTrACT. We prove the existence and analyticity of lump solutions (finite-
energy solitary waves) for generalized Benney-Luke equations that arise in the
study of the evolution of small amplitude, three-dimensional water waves. The
family of generalized Benney-Luke equations reduce formally to the general-
ized Korteweg-de Vries (GKdV) equation and to the generalized Kadomtsev-
Petviashvili (GKP-I or GKP-II) equation in the appropriate limits. Existence
lumps is proved via the concentration-compactness method. When surface ten-
sion is sufficiently strong (Bond number larger thanl/3), we prove that a suit-
able family of generalized Benney-Luke lump solutions converges to a nontrivial
lump solution for the GKP-I equation.
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1. Introduction

The Benney-Luke equation is a model to describe dispersive and weakly non-
linear long water waves with small amplitude (see [1],[4], [5]). For a general
nonlinearity F(u,Q1,Q2,v) where u,v € R and @1, Q2 € R?, the Benney-Luke
equation has the form:
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q)tt — AP . u(aA2<I> = bAq)tt) - €F((I)t, V‘I>, V‘Dt, A‘I’) = 0, (1)
where ¢, u, a and b are positive numbers.

For three dimensional water waves, € is the amplitude parameter (nonlin-
earity coefficient) and u = (ho/L)? is the long-wave parameter (dispersion
coefficient) when L is long compared with ho, where L represents the horizon-
tal length of motion and hg is the depth at infinity. The parameters a and
b should be positive and satisfy a — b = 0 — % where o is called the Bond
number and is defined by T' = hipgo with T being the coefficient of surface
tension, p being the density (assumed constant) and g being the gravitational

acceleration. In this particular case the nonlinearity is given by
Fy (8, V®, V®,, AD) = &,AD + (V)2 (2)

and the variable ® is the nondimensional velocity potential on the bottom
z = 0, satisfying

where ¢ is the velocity potential and the space-time variables are scaled via

(:vyzt):h()(—?——g—,é ! )

vl VI VB Vigho

For three-dimensional water waves, Pego and Quintero derived (1) in the pres-
ence of surface tension or Bond number o # 0 ([5]), Benney and Luke ([1])
derived (1) with € = p, a = &, b= 1 in the absence of surface tension (o = 0).
Related work without the long-wave assumption has recently been done by
Mileswki and Keller for e = p and o = 0 ([4]).

Iz this paper we are interested in considering equation (1) when F contains
some powers. More exactly, let p € N or p = my/mg > 1, where m;, mao are
relative prime odd numbers, so that we can define w? and w" for any w € R.
Now we consider a generalized gradient and a generalized Laplacian

VP = ((0:9]",[0,¢]") and Dpé=V-(VP9) =0, [0:0]" + 0, [0,¢]"-

Note that V? and A, are the usual gradient and Laplacian operators for p = 1.

We will consider therein nonlinearities containing some powers of the follow-

ing type

Fy = F(21, V79, Ve, A,®) = A, + (1%) VR (9

where for p € N, |[V*5 &2 = (&,)P+! + (9,)P+1. Clearly for p = 1 we obtain
the usual Benney-Luke equation (see [5]).
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We note that for p > 1 the generalization of the Benney-Luke equation
obtained by using F, defined by (3) in equation (1)
2
(I)u —A<I>+,u(aA2‘I> _bAQQt) +€ (q)tqu) -+ (m) ‘V%—lq)lf) = 07 (GBL)
reduces formally to the generalized Kadomtsev-Petviashvili (GKP) equation
when we seek waveforms propagating predominantly in one direction, slowly
evolving in time and having weak transverse variation. More precisely, when
we seek a solution of (1) in the form

q)(zvyvt) 311 ’7f(X7 b T)

e i -
where 7 = 5"2“ t, X=x—-t, Y = Ev_iTy and 7”5% = 1. If we substitute
s 74T and n=fx-+ O(E”%) then, after neglecting O(sﬁ) terms, we find
that n satisfies the generalized Kadomtsev-Petviashvili (GKP) equation

1
(nr = (Cf g 3‘) nxxx + P+ 2)77p77x> +nyy =0. (GKP)
X

Pego and Quintero in [5] proved the existence of solitary waves

QE,M,C(tv z, y) == us,p,c(ﬁlf =% Ct, y)

for the Benney-Luke equation, whenever p = 1, £ > 0, u > 0 and the wave speed
¢ > 0 satisfies ¢ < min{1,a/b}. When the Bond number o > %, They also
showed that physically meaningful finite-energy (lumps) solutions, apparently,
corresponds to waves with speed close to one and having weak dependence on
y . To obtain this result they proved that in a suitable limit of a renormalized
family of the Benney-Luke lump solutions (¢ = y and ¢® = 1 — ¢), one obtains
lump solutions for the KP-I equation as ¢ — 0.

The paper is organized as follows. In section 2, using the Hamiltonian
structure of the generalized Benney-Luke equation we determine the natural
finite-energy space for solitary waves solutions. In this space, finite-energy
solitary waves (lumps) correspond to critical points of an action functional.
Then to prove the existence of solitary waves for the generalized Benney-Luke
equation we use the concentration-compactness method, whenever the wave
speed ¢ > 0 satisfies ¢*> < min{1,a/b} and p € N or p = my/ma > 1 (my,
my relative prime odd numbers). In section 3 we prove the analyticity of the
solitary wave solutions for p € N. In section 4, when 1 < p < 2 and o > 1/3,
we show that it is possible to obtain GKP lump solutions through a suitable
limit of a renormalized family of the generalized Benney-Luke lump solutions
found in section 2.
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2. Existence of solitary waves

In this section we are going to prove the existence of a finite-energy solitary
wave for the generalized Benney-Luke equation (1) for fixed positive values of
the parameters a, b, €, 4 and p € N or p = my/ma > 1 (m1, mo relative prime
odd numbers), when the non dimensional speed c is small enough, satisfying
0 < ¢? < min{1,a/b}. We will characterize the solitary wave variationally, as
a minimizer of a functional, and apply the concentration-compactness method
to prove that the minimum is attained.

To determine such functional we will use the fact that the generalized Ben-
ney-Luke equation has a Hamiltonian structure. In fact, first note that equation
(1) arises as the Euler-Lagrange equation for the action functional

ty

S= [ L(®®,)dt, (4)

to

where the Lagrangian L is given by

L(®,7) =
1 2 1
—/ (xlﬂ’ + bV — VB2 — pa| A2 + —= WJV%QP) dedy. (5)

To find a Hamiltonian form for (1), we follow a standard procedure. Introduce
the conjugate momentum variable

Q = D L(®, ®;) = ; — ubA®, + —— |V 3|2,
p+1

Then

,=B1(Q- =—|vHap
=57 (Q- v ep),

where B denotes the linear operator B = I — ubA. The Hamiltonian is given

via the Legendre transform as

R2

(6)
1
= 5/ @2 + pb| V| + |VOI? + pa|A®|? d dy,
]R2
or in terms of (®,Q) as
1 E pt1 2) _1( & ptl 2)
H(®,Q) == - V% e?)B - Aol
@0 [ (- 75 er) 5 (0 SSqw¥ar)

+ |V®|? + pa|AD|? dz dy.
We find that

i T | i 24t e
Ho(®.Q) =57 (Q- IV Fap) = &, ®)
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Hy(®,Q) = —A® + palA?® + ¢V - (B—l (Q or- fr ; \%ea <1>|2) v%)

1 1
=—-Ad + uaA2<I> € (qu)q)t i (m) |V'%<I>|f)

q)tt‘*—/.l/bA(I’tt p+llv 2 cblt
& p+1
=— | ®; — ubA®, + ——|V' 'z 3|
( t— M t+p+1| |>t
=—'Qt~

Thus the generalized Benney-Luke equation (1) is equivalent to the system
(8)-(9), which is in canonical Hamiltonian form:

(3) 0 <_01 (1)) VH(®,Q).

The Hamiltonian in (6) or (7) is formally conserved in time for solutions of (1).
Moreover, the Hamiltonian is translation-invariant, so by Noether’s theorem
there is an associated momentum functional N which is also conserved in time.
In fact, consider the functional given by

P, — ubAP Lv”—“(bzq)zdd
N(QaQ):/ QV@d_’I)dy:/ ( ¢ e t+p+1| pjl '2) T ay
R2 R2 (@t—ubA®t+p%|VTq>| )@, dx dy

Before we continue our discussion about the functional and the space, we will
unscale the amplitude and the space variables to eliminate p and ¢ from the
problem. Thus, we look for traveling-wave solutions in the form

The traveling-wave profile u should satisfy

(S = Duge + (@ — ) Urzzz — Uyy + Qltyyyy + (20 — b )tizzy, (1)
+ ¢ (P + 2)uBuzs + pusul  uy, + 20ugy) = 0.
We look for traveling-wave solutions with finite energy. In terms of the profile
2
u, the energy from (6) takes the form H = (u/c?)E(u), where

1 5 : ; :
E(u) = 5/ (1+c2)ui+u§+(a+bc2)ufw+(2a+bcz)uzy+aujydxdy. (12)
R2

Hereafter p € N or p = my/my > 1 where m; and my are relative prime odd
numbers.

Theorem 2.1. Let a and b be fixed positive numbers. If ¢ > 0 and 0 <

¢? < min{1,a/b}, then equation (11) has a nontrivial weak solution whose
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derivatives of positive order are all square-integrable. Moreover, If p € N, then
any weak solution of equation (11) is already analytic.

It is natural first to look for a weak solution u in the “finite-energy” space
V defined below. We use the following standard notation for function spaces.
Let Q C R™ be an open set, a = (ai,...,an) € N” be a multi-index , £ > 0 be
an integer and r be a positive number with 1 < p < co. Then
C>®(Q) = {f:9Q— R| D*f is continuous on 2 for any a},
Cye(Q) ={f € C(Q)| supp f is compact},
where D : 912 /9z%1 9252 ... 922~ with |a| = /=7 ;. D'(R) is the space of
distributions on , the continuous linear functionals on C§°(£2).
The Sobolev space W7 () is defined as the closure of C*°(£2) with respect

to the norm

o =§ 3 [ 1Dl da
|| <k
We also denote WO7(Q) = L"(Q). For r = 2, Wk2(Q) is a Hilbert space with
respect to the inner product
(u, v)wr2(q) = Z / D%u - D*vdx.
|| <k
In the inequalities below, C' denotes a generic constant whose value may change
from instance to instance.
Definition 2.1. Let V denote the closure of C§°(R?) with respect to the norm
given by
[l i= [ w22+ vk + 20, + 03, dod.
R
Note that (V,|.||) is a Hilbert space with inner product
(u,v)v = (8xu,azv)wl.2(R2) + (Byu, 8yv)wl,2(R2),
Equation (11) can be considered in weak form on the space V, by defining
A(u,v) =(1 — ¢*)(uz, vz )o + (uy, vy)o + (a — bc?) (Uzz, Vaz)o+

(2a — bcz)(uzy» VUzy)o + atyy, vyy)o,
C(p + 2) p+1 p p+1
i (uf™, vz)o + c(uzul, vy)o + e 1(u ,Vz)0
for all u,v € V, where (u,v)o denotes the inner product in L?(R?). We say
that u € V is a weak solution of (11) if

A(u,v) + B(u,v) =0 Yo e V. (13)

B(u,v) =
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Note that a weak solution satisfies (11) in the sense of distributions. Conversely,
a distributional solution that lies in V is a weak solution.

Our goal now is to establish the existence of a weak solution of (11) which
will be characterized as a minimizer of a suitable minimization problem. To do
this we observe that a variational principle for the traveling wave profile u can
be obtained by substituting the form (10) into the action functional in (4) and
requiring the resulting functional to be stationary. We find that this means
that I(u) + G p(u) should be stationary, where the functionals I and G, are
defined by

I(u) = 1R2{(1 — )l +ul + (a—bP)uZ, + (2a — be®)u2, + au?, }dV,

Geplw) =c [ {uZ"+u*us)av.

where dV = dx dy. We note that the functionals I and G, , are smooth maps
from V to R. To show that G.p(u) is well-defined for all u € V, note that
Uz, uy € WH2(R?) C L9(R?) for all ¢ > 2, therefore by applying Young’s
inequality to the second member of G(u) we obtain

|Gep(u)] < c/ <|u |P+2 4 il (luelP™* + (p+ l)Iuy|p+2)> A%
R?2

2
Bt (14)
< (p+3)c p+2
R A
p+2
So it is natural to look for functions ug € V that are characterized as follows:
I(uo) = T, € inf{I(u) : u €V with Gep(u)=1}. (15)

Note that there exists v € V such that G ,(v) # 0, so G, ,(tv) =1 for some ¢.
Thus the set in (15) is nonempty, and since I > 0, the infimum is nonnegative
and finite. Moreover, Z, > 0. In fact, the assumptions on c¢,a and b imply
that I(u) > 0 for all w € V. On the other hand, the inequality (14) and the
definition of the functional I imply that
+2
Gep(w)| < Ci(a,b,e,p)I(u)=
So, if Gep(u) =1 then (Cl)v%l(u) > 1. Therefore Z, > 0.
Note that Theorem 2.1 will follow as a direct consequence of Lemma 3.1,

which will be proved at the end of this section, Lemma 2.1 and Proposition 2.1
below.

Lemma 2.1. If ug is a minimizer for problem (15), then u = —\"/Puq is a
weak solution of (11), where A = (p+2> s> 0,
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Proof. Since ug is characterized as the minimizer for Z,, by the Lagrange
theorem there is a Lagrange multiplier A such that

I'(ug)(w) — MG, ,(ug)(w) =0  Vw e V.
But, we know that
I'(uo)(w) = 2A(u, w) and G, (uo)(w) = (p+1)Bluo, w)-
That is, for all w € V, A(ug,w) — AB(ug,w) = 0. If we put w = ug and use the
following facts

I'(uo)(uo) = 2I(ug) and G, ,(uo)(uo) = (p+ 2)Gep(uo) =p +2,

we conclude that A\ = (z%) Z, > 0. Then u = —\/Pyq is a nontrivial weak

solution of (11). o]

Proposition 2.1. Assume a,b,c > 0 and ¢* < min{1,a/b}. If {um}m>1 C
C5°(R?) is a minimizing sequence for (15), then there is a subsequence (denoted
the same), a sequence of points (Tm, ym) € R?, and a minimizer ug € V of (15),
such that the translated functions vy, = Um(- + Tm,- + Ym) converge strongly

inV to uyg.
Before beginning the proof, we want to discuss the main tool used in order
to prove our theorem.

Let {u,} C C§°(R?) be a minimizing sequence for Z,,. Define

pm(z,y) = (1 — Cz)(um)i &+ (um)z +(a— bc2)(um)2z

+ @0 b))y +alumlly

Then we have

lim I(um) :/ pm(z,y)dV =1, and  Gep(um)=1.
R2

m— o0

Consider the positive measures v, = pm(z,y)dV given by (16). By the
concentration-compactness lemma [7, Lemma 4.3, p 37] there exists a sub-
sequence of {v,,} (which we denote the same) such that one of the following

three conditions holds:
(i) (Vanishing) For all R > 0 there holds

lim sup / dvim | = 0.
m=0 \ (z,y)€R? J Br(z,y)

(ii) (Dichotomy) There exists & € (0,Z,) such that for any v > 0, there
exist a positive number R and a sequence {(z,,,ym)} C R? with the
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following property: Given R’ > R there are nonnegative measures
v: V2 such that

(@) 0< vl +v2 <vm,
(b) supp(vy) C Br(Tm,ym), supp(vZ) C R?\ Br/(Tm, ym),
() T mn Al Lol o o ) 5l 1) S

(iii) (Compactness) There exists a sequence {(Zm,¥ym)} C R? such that for
any 7y > 0, there is a radius R > 0 with the property that

/ dvm > 1, — 7, for all m.
BR(I"lvym)

The general strategy is to show that Vanishing (i) and Dichotomy (ii) are
impossible. Then we have Compactness (iii) to prove the proposition, in which
case convergence will follow in a fashion typical for the direct minimization
method. The basic result needed to rule out (i) and (ii) are to use the scaling
properties of the functionals I and G, , and the Sobolev inequality.

Proposition 2.2 (A Sobolev inequality). There exists a positive constant Cy
such that for all u € C*°(R"™) and q > 2

1/q
(/ |u(z) — a(R, zo)|? dV) <
A(R,z0)

1/2
o R™(i-3)+1 (/ |Vu(z)[? dV) )
A(R.IU)

where

1
(R, 20) = 7 TAR, z0)) (/A(R..ru) WMV) '

and A(R,xg) = B(2R, o)\ B(R, xo) with B(R, z¢) denoting the R-ball around
xo € R™.

We will first establish some basic results.
Lemma 2.2. Vanishing (i) is not possible.

Proof. Suppose that we have vanishing (i). Let (z,y) be any point in R?* and
let B; denote the ball of radius 1 around the point (z,y). Since W%(By) is
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continuously embedded into L9(By) for ¢ > 2, we have
[ e+ [y frav
Bi(z,y)

%
< Ca (Il um)alliynz ey + | wm)y sy )

-2
p)

< G (IGum)alis o0y + N amluliraay) ([, omtz)av)

We can cover R? by balls of radius 1 such that any point of R? is contained
in at most 3 balls. Summing up, using the inequality above and the fact that
IVullf1.2g2y < CI(u), we find that

/ [(m)z|? + |(m)y|?dV
R2

g%?_
<340, Clun) | s [ puay)av
(I,y)G]R2 Bl (Ivy)
Taking ¢ = p + 2 and using the inequality (14), it follows
+3)c
1=Gep(um) < (ﬁ—)—/ [(um)z[P+2 + |(um)y [PT2 dV
p+2 R2
' 2
3 3
< 2Dty ( s [ pmlz)av
p+2 (z,y)€R? J B, (z,y)
Then using the vanishing condition, we get the contradiction
1= lim Gcp(um)=0.
This rules out vanishing. o]

To rule out dichotomy (ii), we shall obtain a contradiction by a standard
sub-additivity argument, after showing that a minimizing sequence u,, splits
appropriately into two sequences ul, and u2, with gradients having disjoint
supports. Because of the nature of the finite-energy space V, the construction
of this splitting is non-standard. First note that if dichotomy (ii) holds, we can
choose a sequence v,, — 0 and corresponding sequence R,, — oo, such that,
passing to a subsequence if necessary, we can assume

(d) supp(u,ln) C Br,,(Tm,Ym), SuPp(VEn) Cc R? \ Bag,, (Tm,Ym),
(e) limsup,, o (10 = [z dvy,| + [(Zp — 0) — [po dvZ]) = 0.



EXISTENCE AND ANALYTICITY OF LUMP SOLUTIONS 81

Note that in particular, conditions (d) and (e) imply that

lim sup (/ pm(z,y) dV) =0,
m—oco \ JA(m)

where A(m) is the annulus

A(m) 5 B2Rm (:L‘m, ym) \ BRm (xmv ym)'

In fact,

/ P2, 4) AV = {/ —/ —/ }pm(z,y)dv
A(m) R? Br,, (Tm ym) R2\B2g,,, (ZTm Ym)
< (/ pm(:v,y)dV—Ip> + )9—/ dv,,
R2 R2

o ‘(Ip——e) —/ dv?,
R2

In consequence,
/ 105 ttm|? + By tm ? + |Osatim|? + 20Beytml? + [Byyuml?dV — 0
A(m)

as m — 00.
Next, we will prove a result which is a generalization of the Splitting Theorem

proved by Pego and Quintero in [5].

Lemma 2.3. (Splitting of a minimizing sequence). Fix ¢ € C3°(R? RT) such
that supp(¢) C B2(0,0) and ¢ = 1 in B;(0,0), and let

1 [T Tm Y — Ym
i 5= e ndV, oW =0\—"—]-
? VOl(Am) /A(m) ¢ ? (I y) ¢ ( Ry R, )
Define
urln = (um ™ am)¢m» u?n, = (um v am)(l aci Cbm) + Gy, .

Then as m — oo we have

(1) I(um) = I(uy,) + I(up,) +o(1),
(2) Geplum) = GC»P(u}n) T Gc,p(“?n) + o(1).

Proof. We use the notation 0y = 0., d2 = 0y, etc. The first part is already
proved in the Splitting result by Pego and Quintero [5]. To prove part (2) note
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that the Holder’s inequality and an estimate as in (14) imply that
|G(um) — G(um) — G(up,)|

/ (Ot |Vt [P = (Dt )|Vt [P — (B[ Vi [P AV
A(m)

< cw/(wxum[ + [tm — am||020m|) (|Vum[Pt! + [Um — am|P+} |V [PT) dV

A(m)
#
+2 , |um — am[PH2
<Cis Vel ™+ — @V S pm(x,y)dV -0
Rh A(m)
A(m)
as m — oo. This proves part (2), finishing the proof of the Lemma. o

We can now rule out dichotomy using a standard sub-additivity argument.
Lemma 2.4. Dichotomy is not possible.

Proof. Let A1 = Ge p(uy,) and A2 = Gep(u?,). Suppose that lim,, oo Am.1

= 0. Then limy, oo A2 = 1. So, for m sufficiently large, A\, 2 > 0. Define
1

W = A% "uZ,. Then w,, € V and G p(w,) = 1. So by Lemma 2.3,

I(um) = I(up,) + I(up,) + 6m

> / Pm(2,9) AV + (An,2)3 T, + 6
BRm (I7n Ym)

> / VL, + O 2) 3T, + 6
R2
(because (um — @Gm)Pm = Um — am in Bg, (Tm,ym)). Then as m — oo, it
follows Z,, > 6 4 Z,,. This is a contradiction.

Hence we may assume lim,, oo [Am.i| = |[Ni| > 0, 7 = 1,2 . Then for m
sufficiently large, [Am i| > 0. Now, we define functions w,, 1 and wy, 2 by

1 1
L YT o¥3_1 — N.Ph3 2
Wm,1 = /\m,ll Uy Wm2 = /\m,pQ U -

Then wy,; € V and G, p(wm,i) = 1. So,
I(um) = At |72 1(wm,1) + [Am,2| 72 L(wim,2) + o(1)
2 T, (Al 7 + mal 72 ) +0(1).
Taking the limit as m — oo, we conclude that
12 A7 4 Dol 757 > (M| + o)) 77 > 1.

Thus [A1| + [X2] = 1. Since we have A\; + Ay = 1 then \; > 0. So by the first
case we have to have \; > 0. Since the function f(t) = t7i7 is strictly concave
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for t > 0, then the inequality above gives us again a contradiction. In other
words, we have ruled out dichotomy. o]

Proof of Proposition 2.2. By the previous results, we have compactness (iii).
Le., there exists a sequence {(Z,Ym)} C R? such that for any v > 0, there is
a radius R > 0 with the property

/ dvm > I, —y Vm.
BR(Im,ym)

Define pm(z,y) = pm(T + Tm, ¥ + Ym) and vm(z,y) = Um(T + Tm, Yy + Ym)-
Then we have
Gep(vm) =1, lim I(vy) =1,

m—0o0

and
/ @) dV > T, — v, Vm. (17)
Br(0,0)

In particular, |||y is bounded. Since (vm)z, (vm)y € W2(Br(0,0)) and this
space is compactly embedded in LY(Bg(0,0) for ¢ > 2, we conclude that there
exist a subsequence of {v,,} (denoted the same) and vo € V such that

Um — o in V,
6,-vm i 81'1)0 in Lz(R2), 4= 122
6ijvm ST 8“-110 in L2(R2), i,j =1, 2
Oivm — Bivg i LIRS, 7=1,2,

loc
divm — Oivg ae inR2 i=1,2.

We claim that actually for some further subsequence (denoted the same),
Bivm — Bivo in L2(R?), i=1,2. (18)

By the compactness condition (17) we have that given any v > 0, there exists
R > 0 such that for m large enough,

/ Byvm AV > / 1Bstm 2V — 2.
Br((0,0)) R2

Since the inclusion W12(Bg(0,0)) C LY(Bgr(0,0)) for ¢ > 2 is compact, this
inequality implies the strong convergence of 9;vy, to divp in L*(R?). In fact,

/ |0;v0|2dV < lim inf / |0ivm|?dV < liminf / |0ivm|?dV + 2
R2 e JR3 Br(0,0)

m—0oo

=/ l8w0|2dV+27 < / la,-volde—i-%.
Br((0,0)) R?

Consequently,
/ |Bivo|2dV = liminf/ |0ivm |2dV,
R2 m—0o0 JRr2
and the claim (18) follows.
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Now we want to prove that
Gep(v) = 1. (19)
First, note that Holder’s inequality and the inclusion W2(R?) c L*P+1)(R?)
give us that
[ 101(0m — )2V < 10,om — o) < [04Cem = w0

< C1all8(wm — vo)llz2wss - L(vm) + I(@0)] T = o(1)

since I(vy,) is bounded. Hence [g2(0i(vm — 0))PT2dV = o(1), and using
Holder’s inequality we find that

B (vm — v0)(8y (vm — v0))PHLdV | = o(1),

R‘l
thus Ge p(vm — v9) = 0(1). On the other hand, it is not hard to show that

Gc,p(vm — ) = Gc,p(vm) o Gc,p(vo) 7k 0(1)'

Then we conclude that G ,(v9) = liMpm—oo Ge,p(vm) = 1.
In particular, (19) implies vy # 0 and I(vg) > Z,,. Now a direct computation
using weak convergence gives us that

(v —v0) = I(vm) — I(vo) +0(1) = I, — I(vo) + o(1) < o(1).

This implies
lim I(vy) = I(vo) =Zp.

m—00
In other words, vy is a minimizer for Z,. Moreover, this also proves that
the subsequence {v,,} converges to v in V. This finishes the proof of the

f

proposition.

3. Analyticity

In this section we will establish that weak solutions of (11) are analytic for any
p € N. The proof of this result is based on a Proposition (3.1) below?.

Proposition 3.1. (1) If f : R — R is a C°(R) and ¢ € W*?(R?) for all
k > 1, then
la (k)
a! :
9% (f(9)) = Z f__@ Z LRI, UYL S, LY
4 ]! g a1!02!~--aj!
J=1 A(a,j)
IThe author wants to thank professor F. Soriano for pointing out about this result, which
was used to prove analyticity of solitary wave solutions for a K.P.-Boussinesq type sys-

tem ([6]).
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where A(a, j) = {(a1, o) g +ag+ - +aoj=a, |a| > 1, 1<

i < j}-
(2) For each (ny,na,- -+, n;) € N7 we have
allag|!az|! - - - |ay!
al|l = .
o Z alag! - - - oyl

A(a,j)|ai|=n;
(3) There exists Cy such that for all j, k € N,

1 u O
(k1 +1)2+ (ko +1)%--- +(k; +1)2 ~ (k+1)2

ki+ko+kj=k
Lemma 3.1. Ifp € N, then any weak solutionu € V of (11) is already analytic.

Proof. First we will establish that for any weak solution u € V of (11) we have
that ugz,u, € W*2(R?) for any k > 1. Note that uz, u, € W"?(R?) — LI(R?)
for ¢ > 2. Let

- p+2up+1 4 1 up+1

= X g gD
91 p+1 T p+1 y g2 u:l:uyv
P(¢,n) =1 - A+ + (a—b)C* + (2a - b0 +an’. (20)
Then g1, g2 € L?>(R?), and by taking the Fourier transform of (11) we find
P Cc 2% =
#3(¢,m) = —5— (¢®1 + (ng2) ,
P(¢m) (21)
g c o~ A
Uy (¢,n) = —5— (¢ +n*) -
Wit =~ gy WAL E)

Since the coefficients in (20) are all positive, it is evident that for some constant
M > 0 we have

P(¢,n) = M(CC+ 1)1+ +n%)
for all real ¢, 7. From (21) it follows that ug, u, € W??(R?). A simple

bootstrapping argument then yields that u,, u, € W*?(R?) for all k > 1. In
other words, u is smooth.

The main step to prove the analyticity of u is the following result:
Claim 1. There exists R > 0 such that for all a € N?, with |a| > 1,
a (la‘ N 1)' |la]—1
||8 UHW-z,z(]RQ) = CwR . (22)

Proof of Claim 1. Case |a| = 1 follows since u,,u, € W*?(R?) for all k > 1.
Now suppose that (22) holds for |a| = 1,2,---n and R (which will be choosen
later). First we obtain an estimate for ||0%u||y1.2(z2). To do this, we apply
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operator % to equation (11) and compute the L% inner product with 9%u.
Then we get
(1= ¢*)[|0%0zull2 + 10°0yull2 + (a — be?)||0*0Zull2
+ (2a — bc?)||9~0? yull2 + a||6“82u||2

g’: 2) (99 (urt), 070uu) + ¢ (0% (war), °0yu)

+5:T@%%Lm&my (23)

Using the formula given below in the right hand side of (23)

|| —1
0% (uzub) = 0% (ua)ul + Y (";') 8P (uz)0P (ub) + ug 0™ (ul)

[Bl=k>1
and applying the Holder inequality, we conclude that there exists a positive
constant C3 such that
10°Vullwi2ge) < Cs (|IUZI|2+||3Q(U§+1)||2+llaa(u§+l)||2+Huz||2||30(uﬁ)||2

|| —1
0 D () o CRTAT AT D

|B|l=k>1

Now in Proposition (3.1), we consider f(t) = t? for ¢ = p+ 1 and ¢ = u, or
¢ =uy (or ¢ =p and ¢ = u,). We then get

a < (o5} e aj '
16 f(@)l]2 < 022 > al,ag oy A A L
7=1 A(a,j)
But
[|0%1 0026 - - - 0% |2 < |0 @||2;]10*2 @ll2; - - - ||0% |25
We also know that for any 3 € N2,
110%¢]|2; < C(H)10°|lwr2rey < C3l|0Pd||lwr.2(m2)s
where C3 = max{C(j) : 1 < j < q}. In consequence, for i = 1,2
||6"‘81-u6°‘26iu s » Baiaiullg
S C’;{Ha"‘(’),»u[lwl.z(Rz)||6°‘28iu||W1,2(R2) o 1hn ||6“J'8,—u||wl‘z(mz)
S C‘%”aalu”W2,2(R2)”aazunwz,z(mz) ke ”aajuuwz,zmz).

Since |ag| + 1 < |a| for 1 < k < j, we use the induction hypothesis to get

; (laa| = D¥(laa| = 1)! - - - (| = D! pjag—j
||8%1 8;ud*?dyu - - - B% dyul| < C4CY ? Rlel=I
I < 30 o T D a1l 7T
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This implies that,
10%f(#)ll2

£ Czicgcj Z al( |a1| — D)!(Jag| — 1)!- - - (Jay| — 1)!RIelI=

=y A(d) (11!012! o ad aj!(|a1| o 1)('0(2‘ 2 1) oo (|aj| + 1)

Z Z (C3CC4)ja' |al|'|a2I! <o |aj|!R|°‘|‘j

! 2., ) 2
1= e et arlag! - -a;l(jea] +1)%(laz| + 1) - (laj| +1)

(CsCC )'|a|' b
<C Rlel 3“4 R
A Z Z , (raf + D2(na| + 12 - (Ins| +1)2

7=1 B(a
< @R'ML Y ciciciT\cir,
(lof +2)? &

where B(a, j) = {(n1,+,+,-,n5) : n1 + ,-,- + n; = |a|,n; > 1} and Cx does not
depend on «a for 1 < k < 4. Thus for R large enough,

q
C;) Cici~tci'CiRT <1,
j=1
which proves that
|o!
(laf +2)*
On the other hand, observing that |a|—|3| < |a| and using previous inequality,

10°£(9)ll2 < CRI* (25)

|| -1

> () to-2uoilios
1Bl=k>1
Ial_l Ial
< ¥ (1) 1o 2ulbwrscen el
IBl=k>1
|a|—1
e N Ly | 1 R
sC ;§ (k) Tal—k+ Dk + 2"
o T ] | k!
< C2Rlal-1 |o]! (la| =k —1)! &
CRE D Tal— TR lal — k+ Dk + 27
3 || =1
< 2 plal—1 !
< CRl ), Ty

| lov
SC2CRIaI 1||1k1_CR|a|||la_|+_2CCCSR (1 l+2>.
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As above, for R large enough,

CCsCsR™ (%f—f) < 4CCsCsR™! < 1.
Thus, we have proved that for R large enough,
= (lel al!
> (1) lee-twnulio gyt < cre 2
Bl=k>1
Finally,
af, p & T L f B |a|
lluzll2]|0%(u))ll2 < C1CR PETA
In other words,
8%V <ol _plal
Yiwram = 2 Il pr ¢

Now we have to estimate terms of the form:
||3“(')Jku||2 for 0<4,75,k<3,i+j+k=3.
To do this, we apply operator %9, (0%0,) to equation (11) and compute

the L2 inner product with 9*9,u (0*dyu). Then we get, after doing similar
calculations as above, that

||6°‘61Vu||wx,z(R2) + ||8“8qu||W1.z(Rz) <
C'3(||U§||2 +[10%(uE ) l2 + 110% (uh )2 + luz] 21107 (W) ]]2

|| -1

+ Y (el wlk)

|Bl=k>1
Putting previous estimates together, we conclude that for R large enough

|a!
|} 4 2

]

”aavu”WQ,2(R2) <C

Claim 2. Given (zg,y0) € R?, there exists r > 0 such that for all (z,y) €

B((z0,v0),7)
Z 0%u(xo, yo)

al (x—-TO»y_yO)a-

u(z,y) =

[e3

Proof of Claim 2. By Taylor’s Theorem

A6,y S 3. L YRl s 59 & Rivtall),

|
(5 4]
k=0 |a|=k,0eN?
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where

RN(x’y) = Z

|a|=N,aeN?

0%u(zo + t(x — o), 90 +t(y — yo))(
a!

T =0, Y~ Yo)*-

Since 2% = (1 + 1)k = 2 ihadan J%!-!, we conclude that JZ—!’ < 2lel, On the other
hand, for |a| > 1

- 1!

9% : < ||« y < CR|a|—1 (|Ot| )

[0%u(z, y)| < [|0%ullw2.2(r2) < —lal 1

In consequence if we take 7 > 0 such that 2372R < 1, then

N —1)!Rlal-1
IRn(z,9)| <C ) %a'—(lx—zolly—yol)'“‘
|a|=N,aecN?2 Y
N 3l RN
< C%_TQN < C2N2N(RT2)N

<C@2*Rr*)N <Cc27N -0,as N> 0.

In other words, the Taylor’s series converges in B((zo, o), 7). o]

4. From Benney-Luke lumps to a KP-I lump

As it was shown by Pego and Quintero in [5], solitary wave with some sort of
physical sense can be obatined when the wave speed c is not taken fixed. To see
this, let p = eHT suppose for € small the existence of a traveling-wave solution
®(z,y,t) = p(x — ct,y) with order one derivatives, as given by Theorem 2.1,
so that 0 < ¢? < min{1,a/b}. Then ¢ should satisfy

- S )pas + Pyy = 0(5‘ﬁ)

If 1 — ¢ remains bounded away from zero, we expect that no solutions with
order-one derivatives will exist. This suggests that if 1 — ¢ = O(e?/P*1),
then ¢, = O(*/P*1), so the waves should travel with speed close to 1 and
have weak dependence on y. This further suggests introducing scaled variables
similar to those used to derive the GKP equation in section 2. Namely, we let
Y =eitiy, X = x — ct where 1 — ¢ = ¢2/P*1 and look for a solution of GBL
of the form ®(z,y,t) = yv(X,Y), where APe¥3T = 1. Then v should satisfy

2 2/p+1 g dfpil
—vxx —vyy + (a—bP)vxxxx +€¥/P(2a - b )uxxyy +¢ P vy yyy

—c((p+2Quxxvh +¢ (P} toyyux + 2uxyrd ) ) =0. (26)
X ) Y
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Formally this means
1
—UxXx —Vyy + (0’ - 5) UXXXX — (p+ 2)’U§(UXX s O(Cz/p_H). (27)

If we differentiate with respect to z and neglected the O(¢%/P*1), then w = vx
satisfies
1
(wx-— (0’-—§> wxxx+(p+2)’wpwx) +wyy =0. (28)
X
This is the equation for a traveling wave solution of the generalized GKP equa-
tion.

This remark shows us that appropriate order one solutions can be con-
structed for arbitrarily small values of the parameters, if the wave speed c
is chosen in an appropriate way, mainly close to 1. We will prove that it is
possible to obtain a GKP-I lump solution as a limit in V of a sequence of GBL
lum solutions when the wave speed c is not taken fixed but close to 1.

The scaling leading to (26) is related to that of the previous section as
follows. Let I. , and G., be the functionals defined in V by

Ia,p(u) =

& (/P12 w2 + (a— b+ be?PH )2, + (20 — b+ be*/ P )ud, + aul, }dV,

Geplu) =c /R {(uB*? + uult1}av.

Since a —b = 0 — 3 > 0, I., and G, are just the functionals I and G
from section 2 with wave speed satisfying ¢ =1 — £2/P+1, Given an arbitrary
function u in V, let v be the function defined by

1—
u(z,y) = eTFIGT (e /PH g, e2/PHy).

Then
Ly(u) = e 067 J, ,(v) and Gep(u) = Ko p(v).
where
Je,p(U) ==

/ {02 + 02 + (a— b+ be¥/Pt)2, +e¥/PH(2a — b+ be?/PH1)2
R2

+e'/PHa2 Ydv,

K. s(v)= c/ {v2 + evzv;’“}dV.
]R2
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In particular, we have that
T, = 7.
where
oo = f{h () : €V, Geplu)=1},
Tep=inf{J.p(v):veEV, K,,(v)=1}
Now by Theorem 2.1, we know the existence of a family {u°}.>0 C V such that
Lpo(v)=T,p and Gep(u®)=1.
This implies that the members of the cérresponding family {v°} defined by
’ us(z,y) = 6Wﬁ+_2>v6(el/p+lx,s2/p“y).
satisfy
Jep(V?)=Tep and K p(v°) =1.

/p
In particular, v = — (p e p) v° is a solution of equation (26) in the sense
of distributions.

Now we are in position to state the main theorem of this section.

Theorem 4.1. Assume o > % and 1 < p < 2. For any sequence ; — 0, there
is a subsequence (denoted the same) and there exists a nontrivial distribution
vo € D'(R?) with 9,vp, Ozzvo and 9yvy belonging to L?(R?) such that, as
J—

0,0 — Opvg, OpgV™ — Oggvo, Oy — Oyvy in L*(R?).
1
Moreover, w = — £ +2J0,,,) O,vg Is a nontrivial lump solution of the GKP
traveling wave equation (28) in the sense of distributions, where
—-{J()p ’UEVKOP —1}

In order to prove this result, we are going to discuss first an important
property of the family {v®}.

Lemma 4.1. Let 1 < p < 2. Then

lim Jep=Jo,p and lim Kop(v®) =1.
e—01 +

e—0

T
In particular, for any sequence £; — 0, the sequence {Kop(v®7)” ##20v%} is a
minimizing sequence for Jy p.
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Proof. Let v € V be such that [, v2*2dV = 1. Then for & small enough, we
get

Keplv) & c/ {v2*? + evgvPt1}dV # 0.
RQ
Thus
Je (Kep0) 720) = Kep(0) P20 (0) > .

But, we note that J. ,(v) — Jop(v) and K. ,(v) — 1 as € — 0. Thus, we
conclude that Jo,,(v) > limsup,_ o+ Je p for all v € V with [, (vz)P+2dV = 1.
In consequence,

Jo,p 2 limsup J; .
e—0t

In particular, for € small enough,
R o, Sl
PO L p = Tep <2 Jop-

3p
This fact implies that £ 2¥0@+2) v is uniformly bounded in W1?(R?) c L9(R?),
p—4
g 2 2 and £¥F 0@ 47 is uniformly bounded in W2(R?) — L2(P+1)(R?),
Hence, we have the estimate

s
lugllL2w+n(®ey < Crllugliws gy < CaeTwF0GF

where (3 is a constant independent of . Now, by Hélder’s inequality,

/Rz u;(u;)l’“dv' < (/R (u§)2dV)% . (/R (u;)z(”“)dV)%

AL
< CPHlenim lluzllL2®2)

< C§’+152<2p—+1)2) ||52(p+i3>l;p+2> us || L2 (r2)-
Thus, as € — 07 we have
/ ug (ug)PHdv = 5/ v (v5)PTdV — 0.
R2 IR2
This implies that Ko, (v°) = [5,(v5)P*2dV — 1.
Hence for £ small enough, K ,(v°) # 0 and we have

&€ 13
Ko,

(v5)747 | Ko, (v%) 7

But note that J. ,(v) > Jy ,(v) for all v € V. It follows that

Jelus v
—E’—p(—)z ki esmanrais will) WY,
K'O,p(vs)"“‘2 K'O,p('us)"+2
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Since lim,_,o+ Ko p(v®) = 1, we conclude that

lim(i)r+1f$ > Jo,p 2 limsup J; p.
£—

e—0t
This implies that lim. g+ Jz p = Jo,p, finishing the proof. o]
In addittion to the last result, we have to use a de Bouard and Saut result in

(2, 3] which is related with solitary waves for a generalized KP equation GKP
or simply with the case ¢ = 0.

Theorem 4.2. [2, 3] Let 1 < p < 4 be a rational number with odd denimom-
inator and o > % If {vy }m>1 Is a minimizing sequence for Jy p, then there
exists a subsequence (denoted the same) and there exists a nonzero vy € D' (R?)
such that 0,;vo, Oyvo Ozzv0 € L?(R?) and

Jop(vo) = Jo,p > 0,
and there exists a sequence of points {(y }m>1 in R? such that
B2Um(- + Cm) — Ozvo in  LA(R),
OyVm (- +¢m) — Oyvo in  L*(R),
Oz2Vm(- + Cm) — Ozzvo in  L*(R).

Moreover, vg is a solution in the sense of distributions of ihe equacion

1 )
—uxx — Vyy + (a - 5) vxxxx + @+ 1)Jop(vx)Fexx =0. (29)

Ifp=1,20r3 andi = 1,2, 8;v9 € [,en H"(R?), where H"(R?) denotes the
Sobolev space of distributions whose derivatives up to order n are in L*(R?).

Proof of Theorem 4.1. First note that v¢ satisfies in the sense of distributions
the following equation,

_2/p+1 _2/p+1y,, 4/p+1 .,
—Ugg —Vyy+(a—b—be /p+ Vzzze +E(2a—b—be™PT ) vgqyy +€ /p AVyyyy

4 1/p
i A i L
+ (h ~,p> ¢ ((p+ 2)vhves + EUI,l‘g lvyy + 2€7JIyl’Z) 1),
Since 0 < Jz,p < 2J0,p for € small enough, the family {svi‘ v®} is bounded in V.
We also have that {v5}, {v}, {v5,} are bounded families in L?(R?) for & small
enough. Then for any sequence ; — 0 as j — oo, there exists a subsequence

(denoted the same) and functions W, Z € L?(R?) with W, € L*(R?) such that

€5 7 € Py Byl vy : 2 2
v W, v W, v’—Z in L%R%).

But from Lemma 4.1 we have that

lim Jop(v*) = Jo,p-
j—oo
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Then from Theorem 4.2, there exists a nontrivial distribution vo € D’ (R?) such
that O,vo = W, 9yvo = Z and

€7 €4 €4 : > 2
VS — Oz, Vzh — OzazVo, Uy’ — dyvo, in L*(R )

and

/ (Bav0)PT2dV = 1.
RQ

In particular, we have that 9,vo # 0. On the other hand, (8,v%)P*! is bounded

in L% (R?). In consequence, as j — 00
/ (O v )pde B / (a:ch)p+1wa
R? R?
for all v» € L?(R?). This implies that
(Bzvef )paz;,;’l)ej s (azUO)pazx'UO'

Now for any test function ¥ € C§°(R?), if we denote evaluation in D' (R?) by
(-,+), as j — oo we have

|€§/p+1 (pv ( EJ)P 1 51 +2'UEJ( ;;)p’w)l

£2/P+ (p(viJ (v )P, y) + g (v ol wﬁ)l
2/p+1 j (yEi ]

< /7 (plog (5 Pl + e I5EE ) - 199l

” ; ; 1
< &5 (1o o 105 15 pir + 105 I E320) - 1 VllLe — 0.

We also have that
2/p+1 4/p+1
(2 e, 1 aPlye )=

/P (055 )22/ 7 (2a—b—be?/ ) (03, Yyy) 0y P (0 ) = 0

+&2/P* (20 — b+ b}/ P Yoy,

Furthermore we have
li g5 gj 1 £j
J_I»I{.lo —Uzz — Uyy # 1o = g Vezza Y

& <-(v0), — (vo)y + (0 - %) (Uo)zzzx,w> .

Since o > 3, the nonzero distribution vg is a nontrivial solution of the equation

1 1 1/p
—vxx —Vyy + (0 o 5) vxxxx + (iizjﬂ,p) (Bvxvxx) = 0.

1/p
In particular, w = — (p 3 Jo p) O,vp is a nontrivial lump solution for the

GKP traveling wave equation (28) in the sense of distributions. o
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