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Existence and analyticity of lump
solutions for generalized
Benney-Luke equations
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ABSTRACT. We prove the existence and analyticity of lump solutions (finite-
energy solitary waves) for generalized Benney-Luke equations that arise in the
study of the evolution of small amplitude, three-dimensional water waves. The
family of generalized Benney-Luke equations reduce formally to the general-
ized Korteweg-de Vries (GKdV) equation and to the generalized Kadomtsev-
Petviashvili (GKP-I or GKP-II) equation in the appropriate limits. Existence
lumps is proved via the concentration-compactness method. When surface ten-
sion is sufficiently strong (Bond number larger thanlj3), we prove that a suit-
able family of generalized Benney-Luke lump solutions converges to a nontrivial
lump solution for the GKP-I equation.
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1. Introduction

The Benney-Luke equation is a model to describe dispersive and weakly non-
linear long water waves with small amplitude (see [1],[4], [5]). For a general
nonlinearity F(U,Q1,Q2,V) where u,V E IRand Q1,Q2 E 1R2, the Benney-Luke
equation has the form:
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1'tt - 61' + f-L(a621' - b61'tt) + cF(1't, \71', \71't, 61') = 0, (1)
where c, u; a and b are positive numbers.

For three dimensional water waves, c is the amplitude parameter (nonlin-
earity coefficient) and f-L = (ha/L)2 is the long-wave parameter (dispersion
coefficient) when L is long compared with ha, where L represents the horizon-
tal length of motion and ha is the depth at infinity. The parameters a and
b should be positive and satisfy a - b = o - ~ where a is called the Bond
number and is defined by T = h6Pgu with T being the coefficient of surface
tension, P being the density (assumed constant) and 9 being the gravitational
acceleration. In this particular case the nonlinearity is given by

(2)

and the variable l' is the nondimensional velocity potential on the bottom
Z = 0, satisfying

cha .,;ghf; ~ ~ ~
¢(x, y, Z = 0, t) = ,;p, 1'(x, y, t),

where ¢ is the velocity potential and the space-time variables are scaled via

( ) h (x iJ ~ i )x,Y,z,t = a ,;p,' ,;p,'z, Jf-Lgha .

For three-dimensional water waves, Pego and Quintero derived (1) in the pres-
ence of surface tension or Bond number a -=I- 0 ([5]), Benney and Luke ([1])
derived (1) with e = u; a = t, b = ~ in the absence of surface tension (u = 0).
Related work without the long-wave assumption has recently been done by
Mileswki and Keller for e = f-Land o = 0 ([4]).

In this paper we are interested in considering equation (1) when F contains
some· powers. More exactly, let pEN or p = ml/m2 2: 1, where mI, m2 are
relative prime odd numbers, so that we can define wP and w P~l for any w E 1Ft
Now we consider a generalized gradient and a generalized Laplacian

Note that \7P and 6p are the usual gradient and Laplacian operators for p = 1.

We will consider therein nonlinearities containing some powers of the follow-
ing type

Fp = F(1't, \7P1', \71't, 6p1') = 1't6p1' + (_2_) 1\7£.:}!1'I;, (3)
p+l

where for pEN, 1\7£.:}!1'12 = (1'x)P+l + (1'x)p+I. Clearly for p = 1 we obtain
the usual Benney-Luke equation (see [5]).
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We note that for p 2': 1 the generalization of the Benney-Luke equation
obtained by using Fp defined by (3) in equation (1)

<Ptt-~<p+J1(a~2<p-b~<Ptt)+c (<pt~p<p+ (P~l) I\7V!l<p!;) =0, (GBL)

reduces formally to the generalized Kadomtsev-Petviashvili (GKP) equation
when we seek waveforms propagating predominantly in one direction, slowly
evolving in time and having weak transverse variation. More precisely, when
we seek a solution of (1) in the form

<p(x, y, t) = ,!(X, Y,T)
_2_ 1 p-l

where T = "V;' t, X = x - t, Y = Cv+l y and ,Pc V+l = 1. If we substitute
2 2 2

J1 = cV+1 and 7) = !x + O(cv+1 ) then, after neglecting O(cv+1 ) term, we find
that 7) satisfies the generalized Kadomtsev-Petviashvili (GKP) equation

(GKP)

Pego and Quintero in [5] proved the existence of solitary waves

<pq"c(t, x, y) = u",j.L,c(x - et, y)

for the Benney-Luke equation, whenever p = 1, e > 0, J1 > 0 and the wave speed
e > 0 satisfies e2 < min{l, alb}. When the Bond number (J" > ~, They also
showed that physically meaningful finite-energy (lumps) solutions, apparently,
corresponds to waves with speed close to one and having weak dependence on
y . To obtain this result they proved that in a suitable limit of a renormalized
family of the Benney-Luke lump solutions (c = J1 and e2 = 1 - c), one obtains
lump solutions for the KP-I equation as e ~ 0+.

The paper is organized as follows. In section 2, using the Hamiltonian
structure of the generalized Benney-Luke equation we determine the natural
finite-energy space for solitary waves solutions. In this space, finite-energy
solitary waves (lumps) correspond to critical points of an action functional.
Then to prove the existence of solitary waves for the generalized Benney-Luke
equation we use the concentration-compactness method, whenever the wave
speed c > 0 satisfies c2 < min{l, alb} and pEN or p = mI/m2 2': 1 (mI'
m2 relative prime odd numbers). In section 3 we prove the analyticity of the
solitary wave solutions for pEN. In section 4, when 1 :::;p < 2 and (J" > 1/3,
we show that it is possible to obtain GKP lump solutions through a suitable
limit of a renormalized family of the generalized Benney-Luke lump solutions
found in section 2.
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2. Existence of solitary waves

In this section we are going to prove the existence of a finite-energy solitary
wave for the generalized Benney-Luke equation (1) for fixed positive values of
the parameters a, b, E, P, and pEN or p = ml/ m2 :::::1 (m1, m2 relative prime
odd numbers), when the non dimensional speed c is small enough, satisfying
0< c2 < min{l,a/b}. We will characterize the solitary wave variationally, as
a minimizer of a functional, and apply the concentration-compactness method
to prove that the minimum is attained.

To determine such functional we will use the fact that the generalized Ben-
ney-Luke equation has a Hamiltonian structure. In fact, first note that equation
(1) arises as the Euler-Lagrange equation for the action functional

it

l

S= L(ip,ipt)dt,
to

where the Lagrangian L is given by

(4)

us, 1Jt)=

-21 r (1Jt2+ p,bl\71Jt12-1\7ipI2 - p,al~ipI2 + ~1Jt1\7~ipI2) dxdy. (5)k. p+1

To find a Hamiltonian form for (1), we follow a standard procedure. Introduce
the conjugate momentum variable

Then

e, = B-1 (Q - P: 11\7~ipI2),
where B denotes the linear operator B = I - p,b~. The Hamiltonian is given
via the Legendre transform as

H = r Qipt dx dy - L( e, ipt)
Jf*.'

= ~1.ip; + p,bl\7iptI2 + l\7ipl2 + p,al~ipI2 dxdy,

or in terms of (ip, Q) as

H(ip, Q) =~ r (Q __ E_I\7~ipI2) B-1 (Q __ E_I\7~ipI2)
2 Jf*.' P + 1 p + 1
+ l\7ipl2 + p,al~ipI2 dx dy.

(6)

(7)

We find that

(8)
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H.p(if>, Q) = -~if> + p,a~2if> + -v (B-1 ( Q - p: 11V'''t' if>12) V'Pif>)

= -~if> + p,a~ 2if>+ E ( ~pif>if>t + (p ~ 1) IV'E¥ if>I;)
c ,,+' 2= -if>tt + p,b~if>tt - --IV' 2 if>lt

p+1

= - (if>t - p,b~if>t + _C_IV'''t' if>12)
p+ 1 t

= -Qt.

Thus the generalized Benney-Luke equation (1) is equivalent to the system
(8)-(9), which is in canonical Hamiltonian form:

(9)

(if>t) = (0 01)V' H(if>, Q).
Qt -1

The Hamiltonian in (6) or (7) is formally conserved in time for solutions of (1).
Moreover, the Hamiltonian is translation-invariant, so by Noether's theorem
there is an associated momentum functional N which is also conserved in time.
In fact, consider the functional given by

( ) 1 1((if>t-P,b~if>t+ ~11V'''t1if>12)if>xdXdY)
N if>, Q = QV'if> dx dy = P ,,+1

~2 ~2 (if>t - p,b~if>t + p~11V''''''if>12)if>y dx dy

Before we continue our discussion about the functional and the space, we will
unscale the amplitude and the space variables to eliminate p, and e from the
problem. Thus, we look for traveling-wave solutions in the form

if>(x, y, t)= (::) u ( x ;;t ,~) . (10)

The traveling-wave profile u should satisfy

(c2 - l)uxx + (a - bc2)uxxxx - Uyy + auyyyy + (2a - bC2)uxxyy
(11)

+ c ((p + 2)u~uxx + puXUE-1Uyy + 2uEuxy) = O.

We look for traveling-wave solutions with finite energy. In terms of the profile
2

u, the energy from (6) takes the form H = (p,16)E(u), where

E(u) = ~ r (1+c2)u;+u;+(a+bc2)u;x+(2a+bc2)u;y+au;ydxdy. (12)
2 J~2

Hereafter pEN or p = ml/m2 :::::1 where m1 and m2 are relative prime odd
numbers.

Theorem 2.1. Let a and b be fixed positive numbers. If c > 0 and 0 <
c2 < min{l, alb}, then equation (11) has a nontrivial weak solution whose
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derivatives of positive order are all square-integrable. Moreover, If pEN, then
any weak solution of equation (11) is already analytic.

It is natural first to look for a weak solution u in the "finite-energy" space
V defined below. We use the following standard notation for function spaces.
Let D c IRn be an open set, a = (aI, ..., an) E Nn be a multi-index, k 2': 0 be
an integer and r be a positive number with 1 ::; p < 00. Then

COO(D) = U :D --7 IRI DOl f is continuous on D for any a},

Co(D) = U E COO(D) I suppf is compact},

where DOl : 81011/8xr'8x~2 ... 8x~n with lal = l:~:~ai. V'(D) is the space of
distributions on D, the continuous linear functionals on Co(D).

The Sobolev space Wk,r(D) is defined as the closure of COO(D) with respect
to the norm

1

IluIIWk,r(fl) = { L IIDOIulT dX} r
100!Sk fl

We also denote WO,T(D) = U(D). For r = 2, Wk,2(D) is a Hilbert space with
respect to the inner product

(u, V)Wk,2(fl) = L 1DOIu· DOIv dx.
!OIISk fl

In the inequalities below, C denotes a generic constant whose value may change
from instance to instance.

Definition 2.1. Let V denote the closure of Co (IR2) with respect to the norm
given by

111,I;11~:= r 1,1;; + 1,1;~ + 1,I;;x + 21,1;;y + 1,I;~y dxdy.
JJR2

Note that (V, 11.11) is a Hilbert space with inner product

(u, v)v = (oxu, 8XV)Wl,2(IlF) + (8yu, 8yV)Wl,2(JR2),

Equation (11) can be considered in weak form on the space V, by defining

A(u, v) =(1 - c2)(ux, vx)o + (uy, vy)o + (a - bc2)(uxx, vxx)o+

(2a - bc2
)( uxy, vxy)o + a( Uyy, Vyy)o,

B( ) c(p + 2) (p+l ) ( p) c (p+l )U,V 1 Ux ,Vx 0 +c UxUy,Vy 0 + -- uy ,Vx 0
p+ p+1

for all U,V E V, where (u,v)o denotes the inner product in L2(IR2). We say
that u E V is a weak solution of (11) if

A(u, v) + B(u, v) = 0 'Vv E V. (13)
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Note that a weak solution satisfies (11) in the sense of distributions. Conversely,
a distributional solution that lies in V is a weak solution.

Our goal now is to establish the existence of a weak solution of (11) which
will be characterized as a minimizer of a suitable minimization problem. To do
this we observe that a variational principle for the traveling wave profile u can
be obtained by substituting the form (10) into the action functional in (4) and
requiring the resulting functional to be stationary. We find that this means
that I(u) + Gc,p(u) should be stationary, where the functionals I and Gc,p are
defined by

I(u) = r {(l- c2)u; + u~ + (a- bc2)u;x + (2a - bc2)u;y + aU~y}dV,J,~.2
G (u) = c1{up+2 + up+Iu }dVc,p x y x ,

1R2

where dV = dx dy. We note that the functionals I and Gc,p are smooth maps
from V to lit To show that Gc,p(u) is well-defined for all u E V, note that
ux, uy E WI,2(lR2) C Lq(lR2) for all q :::::2, therefore by applying Young's
inequality to the second member of G(u) we obtain

IGc,p(u)1 < c ~2 (luxIP+2 + P ~ 2 (luxjP+2 + (p + 1)luyIP+2)) dV

::::;(~:3jcllull~+2.
(14)

So it is natural to look for functions Uo E V that are characterized as follows:

I(uo) = Ip ~ inf{I(u) : u E V with Gc,p(u) = I}. (15)

Note that there exists v E V such that Gc,p (v) =1= 0, so Gc,p (tv) = 1 for some t.
Thus the set in (15) is nonempty, and since I :::::0, the infimum is nonnegative
and finite. Moreover, Ip > O. In fact, the assumptions on c, a and b imply
that I(u) :::::0 for all u E V. On the other hand, the inequality (14) and the
definition of the functional I imply that

p+2

IGc,p(u)1 ::::;CI(a,b,c,p)I(u)-2 .
2

So, if Gc,p(u) = 1 then (Cr)p+2I(u) :::::1. Therefore t; > O.

Note that Theorem 2.1 will follow as a direct consequence of Lemma 3.1,
which will be proved at the end of this section, Lemma 2.1 and Proposition 2.1
below.

Lemma 2.1. If Uo is a minimizer for problem (15), then u = -AI/PUO is a

weak solution of (11), where A = (P;2) Ip > O.
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Proof. Since Uo is characterized as the minimizer for Ip, by the Lagrange
theorem there is a Lagrange multiplier>. such that

r (uo) (w) - x G~,p (uo) (w) = 0 'VwE V.

But, we know that

I'(uo)(w) = 2A(uo,w) and G~,p(uo)(w) = (p+ l)B(uo,w).

That is, for all wE V, A(uo,w) - >.B(uo,w) = O. If we put w = Uo and use the
following facts

I'(uo)(uo) = 2I(uo) and G~,p(uo)(uo) = (p + 2)Gc,p(uo) = p + 2,

we conclude that>' = (P~2) Ip > O. Then u = ->.l/puO is a nontrivial weak

solution of (11). ~

Proposition 2.1. Assume a,b,c > 0 and c2 < min{1,a/b}. If {Um}m>l C
CO'(IR2) is a minimizing sequence for (15), then there is a subsequence (denoted
the same), a sequence of points (xm, Ym) E IR2, and a minimizer Uo E V of (15),
such that the translated functions Vm = um(- + Xm,· + Ym) converge strongly
in V to uo.

Before beginning the proof, we want to discuss the main tool used in order
to prove our theorem.

Let {um} C CO' (IR2) be a minimizing sequence for Ip. Define

Pm(X, y) = (1 - C2)(Um)~ + (Um)~ + (a - bC2)(Um)~x

+ (2a - bc2) (Um)~y + a( Um)~y.
(16)

Then we have

lim I(um) = r Pm(x, y) dV = Ip and Gc,p(um) = l.
m-HXJ lfR.2

Consider the positive measures Um = Pm(x, y) dV given by (16). By the
concentration-compactness lemma [7, Lemma 4.3, p 37] there exists a sub-
sequence of {um} (which we denote the same) such that one of the following
three conditions holds:

(i) (Vanishing) For all R > 0 there holds

rl~oo (X~y~~~2 ~H(X'Y) dum) = O.

(ii) (Dichotomy) There exists () E (O,Ip) such that for any, > 0, there
exist a positive number R and a sequence {(xm, Ym)} C IR2 with the
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following property: Given R' > R there are nonnegative measures
v;,.,v~ such that

(iii) (Compactness) There exists a sequence {(xm,Ym)} C]R2 such that for
any I > 0, there is a radius R > 0 with the property that

r dVm ~ t; - I,
} BR(Xm,Ym)

for all m.

The general strategy is to show that Vanishing (i) and Dichotomy (ii) are
impossible. Then we have Compactness (iii) to prove the proposition, in which
case convergence will follow in a fashion typical for the direct minimization
method. The basic result needed to rule out (i) and (ii) are to use the scaling
properties of the functionals I and Gc,p and the Sobolev inequality.

Proposition 2.2 (A Sobolev inequality). There exists a positive constant C1

such that for all U E coo(]Rn) and q ~ 2

( )

1/g

J Iu(x) - a(R, xoW dV <
A(R,xo)

( )

1/2

C1Rn(i-~)+l J l\7u(x)12 dV ,
A(R,xo)

where

a(R, xo) = V (A(R )) (J u(x) dV) .ol , Xo A(R,xo)

and A(R, xo) = B(2R, xo) \B(R, xo) with B(R, xo) denoting the R-ball around
Xo E]Rn.

We will first establish some basic results.

Lemma 2.2. Vanishing (i) is not possible.

PTOOf. Suppose that we have vanishing (i). Let (x, y) be any point in ]R2 and
let B1 denote the ball of radius 1 around the point (x, y). Since W1,2(B1) is
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continuously embedded into Lq(Bd for q 2: 2, we have

r I(um)xlq + l(um)ylqdV
JB1(X,y)

( 2 2) ~::::;C2 II(um)xIIW1,2(BJl + II(um)YIIW1,2(B,)
q-2

::::;C3 (11(Um)xll~(1'2(B,) + II(Um)yll~1l'2(B,») (L, Pm(X, y) dV)-2

We can cover ]R2 by balls of radius 1 such that any point of ]R2 is contained
in at most 3 balls, Summing up, using the inequality above and the fact that
II\7ull~,,2(IR2) ::::;CI(u), we find that

Taking q = p + 2 and using the inequality (14), it follows

( ) (P+3)Cll( ) IP+2 I( ) IP+21 = G c.p Um ::::; Um x + Um y dV
p+ 2 R2

~
3c(p + 3) (j' ) 2::::; C4I(um) sup Pm(x,y)dV

p + 2 (X,y)EIR2 B,(x,y)

Then using the vanishing condition, we get the contradiction

This rules out vanishing.

To rule out dichotomy (ii), we shall obtain a contradiction by a standard
sub-additivity argument, after showing that a minimizing sequence Um splits
appropriately into two sequencesuc, and u;' with gradients having disjoint
supports. Because of the nature of the finite-energy space V, the construction
of this splitting is non-standard. First note that if dichotomy (ii) holds, we can
choose a sequence "[m. ---4 0 and corresponding sequence Rm ---4 00, such that,
passing to a subsequence if necessary, we can assume

(d) supp(v;;,) C BRrn (xm, Ym), supp(v~) C ]R2 \ B2Rm (xm, Ym),

(e) limsuPm---->oo(Ie - JR2 dv;;,1 + I(Ip - e) - JIR2 dv~1) = O.
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Note that in particular, conditions (d) and (e) imply that

lim sup ( r Pm(x, y) dV) = 0,
m--->oo JA(m)

where A(m) is the annulus

In fact,

< (~2Pm(x,Y)dV-Ip)+IB- ~2dv;,,1

+ I(Ip - B) ~ ~2 dv?nl·

In consequence,

as m ----700.

Next, we will prove a result which is a generalization of the Splitting Theorem
proved by Pego and Quintero in [5].

Lemma 2.3. (Splitting of a minimizing sequence). Fix ¢ E CO'(JR2, JR+) such
that supp(¢) C B2(0,0) and ¢ == 1 in B1(0,0), and let

am = l(~) r Um dV,
vo m JA(m)

(
X - Xm Y - Ym)

¢m(x,y) = ¢ R.m' ~ .

Define

Then as m ----7 00 we have

(1) I(um) = I(u~) + I(u;"') + 0(1),
(2) Gc,p(um) = Gc,p(u~) + Gc,p(u:n) + 0(1).

Proof. We use the notation 01 = ax, 02 = ay, etc. The first part is already
proved in the Splitting result by Pego and Quintero [5]. To prove part (2) note
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that the Holder's inequality and an estimate as in (14) imply that

IG(um) - G(u;,J - G(u~)1

= I r (oxumWlumIP+l - (oxu;-"JIV'u;"lp+1 - (oxu~)IV'u~IP+l -:
JA(m)

S C12 iloxumi + IUm - amllox¢ml) (lV'umIP+1 + IUm - amIP+11V'¢mIP+1) dV
A(m)

v+2

S C13 J lV'umlp+2 + IUm - p:,;IP+2 dV S C ( r Pm(X, y) dV) -2- --+ 0
te; JA(m)

A(m)

as m --+ 00. This proves part (2), finishing the proof of the Lemma. 0
We can now rule out dichotomy using a standard sub-additivi y argument.

Lemma 2.4. Dichotomy is not possible.

Proof. Let Am,l = Gc,p(u;,J and Am,2 = Gc,p(u~). Suppose that limm->oo Am,l
= O. Then limm--+oo Am,2 = 1. So, for m sufficiently large, Am,2 > O. Define

I

Wm = \~~2+2U;;'. Then Wm E V and Gc,p(wm) = 1. So by Lemma 2.3,

I(um) = I(u;,,) + I(u~) + 6m

::::1 Pm(X, y) dV + (Am,2)~Ip + s;
BR=(X=,y=)

::::r dV;" + (A171,2)~Ip + 6mJIR2
(because (um - am)¢m = Um - a171in BRr,.(xm, Ym)). Then as m --+ 00, it
follows Ip :::: e + Ip. This is a contradiction.

Hence we may assume limm--+oo IAm,il = IAil > 0, i = 1,2. Then for m
sufficiently large, [Am,il > O. Now, we define functions Wm,l and Wm,2 by

f

1\ - v+2 2Wm,2 = /\m,2 um·
Then Wm,i E V and Gc,p(Wm,i) = 1. So,

2 2
I(um) = IAm,llv+2I(wm,d + IAm,21p+2I(wm,2) + 0(1)

::::t; (IAm,1Iv~2 + IAm,2Iv~2) +0(1).

Taking the limit as m --+ 00, we conclude that
2 2 21:::: IA11p+2+ IA21p+2 ::::(IA11+ IA21)p+2 ::::1.

Thus IA11+ IA21= 1. Since we have Al + A2 = 1 then Ai ::::O. So by the first
2

case we have to have Ai > O. Since the function f(t) = tp+2 is strictly concave
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for t > 0, then the inequality above gives us again a contradiction. In other
words, we have ruled out dichotomy. ~

Proof of Proposition 2.2. By the previous results, we have compactness (iii).
I.e., there exists a sequence {(xm, Ym)} C ]R2 such that for any, > 0, there is
a radius R > ° with the property

1 dVm :2': t; -, \/m.
BR(Xm,Ym)

Define Pm(x, y) = Pm(x + Xm, Y + Ym) and vm(x, y) = um(x + Xm, Y + Ym).
Then we have

and
( Pm(x, y) dV :2': i; -" \/m. (17)JBR(O,O)

In particular, Ilvmllv is bounded. Since (vm)x, (vm)y E W1,2(BR(0, 0)) and this
space is compactly embedded in Lq(BR(O, 0) for q :2': 2, we conclude that there
exist a subsequence of {vm} (denoted the same) and Vo E V such that

Vm ->. Vo in V,
aiVm ->. aivO in L2(]R2), i = 1,2,

aijVm ->. aijVO in L2 (]R2), i,j=I,2,
aiVm .-.., aivO in Lroc(]R2), i = 1,2,

aiVm .-.., aivO a.e. in ]R2, i = 1,2 .

We claim that actually for some further subsequence (denoted the same),

aiVm .-.., aivO in L2(]R2), i = 1,2. (18)

By the compactness condition (17) we have that given any, > 0, there exists
R > ° such that for m large enough,

{ laiVml2dV:2': ( !aivml2dV - 2,.
J BR«O,O)) Jffi.2

Since the inclusion W1,2(BR(O, 0)) C Lq(BR(O, 0)) for q :2': 2 is compact, this
inequality implies the strong convergence of aiVm to aivO in L2 (]R2). In fact,

{ laivol2dV < liminf { laiVm[2dV < liminf ( laiVml2dV + 21'JJR2 m---+oo JJR2 m---+oo J BR(O,O)

= r laivol2dV + 21' < ( laivol2dV + 2,.
J BR«O,O)) JJR2

Consequently,

{ laivol2dV = liminf r laiVml2dV,JJR2 m---+oo JJR2
and the claim (18) follows.
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Now we want to prove that

(19)

First, note that Holder's inequality and the inclusion W1,2(lR2) C L2(P+lJ(lR2)
give us that

~2 IOi(Vm - va)IP+2dV :::;Iloi(Vm - va)ll£2 ·lloi(Vm - va)lli,tc;+l)

v+1

:::;C1411oi(Vm - va)IIL2(p+l) . [I(vm) + I(va)]-2 = 0(1)

since I(vm) is bounded. Hence fJR2(Oi(Vm - va))p+2dV = 0(1), and using
Holder's inequality we find that

1~2ox(vm - va)(Oy(vm - Va))P+ldV! = 0(1),

thus Gc,p(vm - va) = 0(1). On the other hand, it is not hard to show that

Gc,p(vm - va) = Gc,p(vm) - Gc,p(va) + 0(1).

Then we conclude that Gc,p(va) = limm->ooGc,p(vm) = l.

In particular, (19) implies Va -I- 0 and I(va) 2: Ip. Now a direct computation
using weak convergence gives us that

I(vm - vo) = I(vm) - I(va) + 0(1) = Ip - I(va) + 0(1) :::;0(1).

This implies

, lim I(vm) = I(va) = Ip.
m->oo

In other words, Va is a minimizer for Ip. Moreover, this also proves that
the subsequence {vm} converges to Va in V. This finishes the proof of the
~~~. ~

3. Analyticity

In this section we will establish that weak solutions of (11) are analytic for any
pEN. The proof of this result is based on a Proposition (3.1) below".

Proposition 3.1.
k 2: 1, then

IThe author wants to thank professor F. Soriano for pointing out about this result, which
was used to prove analyticity of solitary wave solutions for a K.P.-Boussinesq type sys-

tem ([6]).
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where A(a,j) = {(al,' . " aj) : al + a2 + ... + aj = a, lail ~ 1, 1 :::;
i < j}.

(2) For each (nl,n2," ·,nj) E Nj we have

la!!= l:
A(a,j),!ai!=ni

a!lall!Ja2!!" ·Iaj!!
al!a2! .. ' aj!

(3) There exists C1 such that for all j, kEN,

1 ct:'l: < I
k

1
+k

2
,+kj=k (kl + 1)2 + (k2 + 1)2··· +(kj + 1)2 - (k + 1)2

Lemma 3.1. lfp E N, then any weak solution U E V of (11) is already analytic.

Proof. First we will establish that for any weak solution U E V of (11) we have
that ux, uy E Wk,2(lR2) for any k ~ 1. Note that ux, uy E W1,2(lR2) '-+ Lq(lR2)
for q ~ 2. Let

P((,7]) = (1 - c2)(2 + 7]2+ (a - bc2)(. + (2a - bc2)(27]2 + a7]4. (20)

Then gl, g2 E L2(lR2), and by taking the Fourier transform of (11) we find

U;((, 11) = - P(~,7]) ((2.91 + (7]92),

77;;((,7]) = - P(~, 7]) (7](.91 + 7]292).
(21)

Since the coefficients in (20) are all positive, it is evident that for some constant
M > 0 we have

P((, 7]) ~ M((2 + 7]2)(1+ (2 + 7]2)

for all real (, 7]. From (21) it follows that Ux, uy E W2,2(lR2). A simple
bootstrapping argument then yields that ux, uy E Wk,2(lR2) for all k ~ 1. In
other words, U is smooth.

The main step to prove the analyticity of u is the following result:

Claim 1. There exists R > 0 such that for all a E N2, with lal ~ 1,

Jlaaull 0 < C(lal- I)! Rial-I.
W2,2(1R-) - lal + 1 (22)

Proof of Claim 1. Case lal = 1 follows since ux, uy E Wk,2(lR2) for all k ~ 1.
Now suppose that (22) holds for laJ = 1,2,' . ·n and R (which will be choosen
later). First we obtain an estimate for Ilaaullwl,2(]R2). To do this, we apply
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operator 8'" to equation (11) and compute the £2_ inner product with 8"'u.
Then we get

(1 - c2)118"'8xuI12 + I18"'8yul 12+ (a ~ bc2)118"'8;uI12

+ (2a - bc2)118"'8;yuI12 + aI18"'8;uI12

= c(p + 2) (8"'(uP+1) 8"'8 u) + c (8"'(u uP) 8"'8 u)p+1 x' x Xy' y

+ _c_ (8"'(u~), 8"'8xu). (23)
p+1

Using the formula given below in the right hand side of (23)

1"'1-1
8"'(uxu~) = 8"'(ux)u~ + L C~I)8"'-f3(ux)8f3(u~) + ux8"'(u~)

1f3I=k2:1
and applying the Holder inequality, we conclude that there exists a positive
constant C3 such that

118"'\7uIIW1,2(]R2)S C3 (1Iu~112+118"'(u~+l) 112+118"'(u~+l) 112+lluxI12118"'(u~)112

1"'1-1 .
+ L C~I)118"'-f3(ux)112118f3(u~)112) (24)

1f3I=k2:1

Now in Proposition (3.1), we consider f(t) = tq for q = p + 1 and ¢ = ux or
¢ = uy (or q = p and ¢ = uy). We then get

f
q ,

118'"f(¢)112 S C2 L L a1!a2~" .. a! /18"'1¢8"'2 ¢ ... 8"'j¢112.
j=l A(""j) J

But
118""¢8"'2¢ ... 8"'j¢112 S 118""¢112jI18"'2¢1I2j" ·118"'j¢112j.

We also know that for any /3 E N2,

118f3¢112jS C(j)118f3¢llw1,2(]R2) S C3118f3¢llw1,2(]R2),

where C3 = max{ C(j) : 1 S j S q}. In consequence, for i = 1,2

118""8iu8"'28iu· .. 8"'j 8iul12

S qI18"'18iUllwl,2(]R2)118"'28iUllwl.2(]R2) .. ·118"'j8iUllw1,2(]R2)

S QI18"'lullw2,2(]R2)118"'2ullw2,2(]R2) .. ·118"'jullw2,2(]R2).

Since lak I+ 1 sial for 1 S k S j, we use the induction hypothesis to get

118"'18iu8"'28iu ... 8"'j8iu112 S qcj (la11- 1)!(la21- I)!··· (Iajl ~ I)! RI"'I-j
(la11 + 1)(la21 + 1)··· (Iajl + 1)
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This implies that,

118aj(¢)112

< C
2
t cic! L a!( lall- 1)!(la21- I)!··· (lajl-l)!R1al-j

- j=1 A(a,j) al!a2!'" aj!(lall + 1)(la21 + 1)··· (Iajl + 1)

C ~ '" '" (C3CC4)ja! lall!la21!·· 'lajl!Rlal-j

:S 2 ~ LJ,LJ _ al!a2!' .aj!(lall + 1)2(la21 + 1)2 .. (Iajl + 1)2
J-l B(a,J) A(a,J),lail-ni

< C Rial ~ '" (C3CC4)jlal! R-j
- 2 LJ LJ (Inll + 1)2(ln21+ 1)2 ... (Inl + 1)2J=1 B(a,J) J

< C Rial lal! ~ cic-cr 'c:R-j
- 2 (jo] + 2)2 LJ 3 1 4 ,

J=1

where Bio; j) = {(nl,"',', nj) : nl + ',',' + nj = lal, ti; ::::I} and Ck does not
depend on a for 1 :S k :S 4. Thus for R large enough,

q

C2 L qCj-lq-lCiR-j < 1,
j=1

which proves that

118aj(¢)112 :s CRlal (la:~!2)2 (25)

On the other hand, observing that lal-I,81 < lal and using previous inequality,

lal-l
L C~I) 118a-fJ(ux)112118(3(u~)112

IfJI=k~1

lal-l (I I)< L ~ 118a-(3ullwl,2(IR2)118(3(u~)112
IfJI=k~ 1

< c2 l'fl (Ial) (Ial - k - I)! k! Rlal-l
- k (Ial - k + l)(k + 2)2

k~1

< C2 lal-l 1~1 lal! (Ial- k - I)! k!
- R LJ (Ial - k)! k! (Ial - k + 1)(k + 2)2

k~1

lal-l
< C2Rial-II I' '" 1
- a. LJ (Ial - k)2(k + 2)2

k~1

< C2C5Rlal-l~ < CRlal~CC5C6R-l (Ial + 2).
- lal - 1 - lal + 2 lal - 1
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As above, for R large enough,

CC C R-1 (Ial + 2) < 4CC C R-1 < 1.
5 6 lal _ 1 - 5 6

Thus, we have proved that for R large enough,

1~1 C~I) Iloa-f3(ux)112110f3(u~)112 < CRlall~~~ 2'
1f3I=k::::1

Finally,

In other words,

II!:>'" II C lal! [o]
u Vu W1,2(]R2)::; lal + 2R .

Now we have to estimate terms of the form:

IIoaoljkul12 for 0::; i,j, k ::; 3, i+ j + k = 3.

To do this, we apply operator oaox (oaOy) to equation (11) and compute
the £2_ inner product with oaoxu (o"'Oyu). Then we get, after doing similar
calculations as above, that

IloaoxVuIIWl,2(]R2) + Ilo"'oyVullwl,2(]K2) <

C'3 (1Iu~112+ 110'" (u~+l )112+ 110"'(u~+l) 112+ IluxI12110a(u~) 112
1"'1-1

+ L C~I) Iloa-f3(ux)1121Iof3(uDI12)'
1131=k::::1

Putting previous estimates together, we conclude that for R large enough

II !:>a'17II C lal! [o]
U VUW2,2(]R2)::; -1-'-2R .al+

Claim 2. Given (xo, YO) E jR2, there exists r > 0 such that for all (x, y) E

B((xo, Yo), r)
" oau(xo, Yo) '"u(x,y)=6 , (x-xO,y-yo).

a.
a

Proof of Claim 2. By Taylor's Theorem

N-1
" " oau(xo, Yo) au(x,y)= 6 6 I (x-xo,y-Yo) +RN(X,y),

a.
k=O lal=k,aEl\l2
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where

R ( )_ " 8au(xo+t(x-xo),yo+t(y-yo))( _ _)a
N X, Y - L...J , x XO, Y Yo .a.

IQI=N,QEN2

Since 2k = (1 + l)k = 2:lal=k ~f,we conclude that ~ :::;21Q1. On the other
hand, for lal 2': 1

18Qu(x, y)1 :::; 118Qullw2,2(IlF) < CRlal-l (11:1
1
~ ~)!.

In consequence if we take r > 0 such that 23r2 R < 1, then

IRN(X, y)1 :::; C L
lal=N,aEf\P

(N - 1)'R1al-l
~--'-'--(Ix - xollY- Yol)lal

(N + l)a!

< C2N (N - l)!R
N

r2N < C2N2N(Rr2)N
- (N+1)a! -

:::;C(22Rr2)N :::;CTN -----0, as N -----00 .

In other words, the Taylor's series converges in B((xo,Yo),r).

4. From Benney-Luke lumps to a KP-I lump

As it was shown by Pego and Quintero in [5], solitary wave with some sort of
physical sense can be obatined when the wave speed c is not taken fixed. To see
this, let fL = cP~, suppose for E: small the existence of a traveling-wave solution
c1?(x, Y, t) = cp(x - ct, y) with order one derivatives, as given by Theorem 2.1,
so that 0 < c2 < min {I, a/ b }. Then sp should satisfy

2 _2_

(1 - c )CPxx + cpyy = O(cP+l ).

If 1 - c2 remains bounded away from zero, we expect that no solutions with
order-one derivatives will exist, This suggests that if 1 - c2 = O(E:2/

p+1
),

then cpyy = O(E:2/p+l), so the waves should travel with speed close to 1 and
have weak dependence on y. This further suggests introducing scaled variables
similar to those used to derive the GKP equation in section 2. Namely, we let
y = cPt, Y, X = x - ct where 1 - c2 = E:2/p+1 and look for a solution of GBL

E.=.!.
of the form c1? (x, y, t) = "tV (X, Y), where "(P E: ,,+ I = 1. Then v should satisfy

- v x x - Vyy + (a - bc2)vxxxx + E:2/p+l(2a - bc2)vxxyy + E:4/
p+lavyyyy

- c ((p + 2)vxxv>c + E: (pV~-lVYYVX + 2VXYV~?)) = O. (26)
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Formally this means

-vxx - Vyy + (0- -~) vx x x x - (p+ 2)v~vxx = O(c2
/
p+1

). (27)

If we differentiate with respect to x and neglected the O(c2
/
p+l), then w = vx

satisfies

(WX-(0--~)WXXX+(P+2)WPWX)X +wyy=O. (28)

This is the equation for a traveling wave solution of the generalized GKP equa-
tion.

This remark shows us that appropriate order one solutions can be con-
structed for arbitrarily small values of the parameters, if the wave speed c
is chosen in an appropriate way, mainly close to 1. We will prove that it is
possible to obtain a GKP-I lump solution as a limit in V of a sequence of GBL
lum solutions when the wave speed c is not taken fixed but close to 1.

The scaling leading to (26) is related to that of the previous section as
follows. Let IE,p and GE,p be the functionals defined in V by

IE,p(u) =

1{c2/P+1U2 + u2 + (a - b + bc2/
p+l)U2 + (2a - b + bc2

/
p+l)u2 + au2 }dVx y xx xy yy ,

1R2

G (u) = cl {up+2 + u up+1}dV£,p x x y .
, IR

Since a - b = 0- - ~ > 0, IE,p and GE,p are just the functionals I and G
from section 2 with wave speed satisfying c2 = 1 - c2/p+1. Given an arbitrary
function u in V, let v be the function defined by

u(x, y) = e (p+i)(~+2) v(c1/p+1X, c2/p+ly).

Then

where

JE,p(v) =

r {v; + v~ + (a - b + bc2/p+1 )v;x + c2/p+1 (2a - b + bc2/p+1 )v;y
JIR2

+ c4/p+lav2 }dVyy ,



EXISTENCE AND ANALYTICITY OF LUMP SOLUTIONS 91

In particular, we have that

where

LE,p = inf{IE,p(u) : U E V,

.JE,P = inf{JE,p(v) : v E V,

GE,p(U) = I},

KE,p(v) = I}.

Now by Theorem 2.1, we know the existence of a family {uE}c>o ~ V such that

IE,p(uE) = LE,p and GE,p(UE) = 1.

This implies that the members of the· corresponding family {vE
} defined by

satisfy

JE,p(VE) = .JE,p and KE,p(VE) = 1.

( )

lip
In particular, v = - ~~~.JE,P vE is a solution of equation (26) in the sense
of distributions.

Now we are in position to state the main theorem of this section.

Theorem 4.1. Assume (T > ~ and 1 ::; p < 2. For any sequence Cj ----> 0, there
is a subsequence (denoted the same) and there exists a nontrivial distribution
Vo E V'(lR2) with oxvo, oxxvo and OyVO belonging to L2(lR2

) such that, as
j ----> 00

,::> Ej'::> ,::> Ej'::> ,::> Ej ,::> in L2 (1!ll 2) .uxv ----> uxvo, uxxv ----> uxxvo, uyv ----> uyVO Jl'l.

I

Moreover, W = - (~~~.Jo,p) P oxvo is a nontrivial lump solution of the GKP
traveling wave equation (28) in the sense of distributions, where

.Jo,p := {Jo,p : v E V, Ko,p(v) = I}.

In order to prove this result, we are going to discuss first an important
property of the family {vE

}.

Lemma 4.1. Let 1 < p < 2. Then

lim .JE p = .Jo p and lim KO,p(vE) = 1.
c------+O+' , c:--+O+

In particular, for any sequence Cj ----> 0, the sequence {KO,p(VEj)-P~2VEj} is a
minimizing sequence for lo,p.
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Proof. Let v E V be such that fIR vf+2 dV = 1. Then for e small enough, we
get

Thus

i., (Kc,p(v)- P~2 v) = Kc,p( v)- P~2 Jc,p(v) :2: a.;
But, we note that Jc,p(v) ----7 Jo,p(v) and Kc,p(v) ----7 1 as e ----7 o. Thus, we
conclude that Jo,p( v) :2: lim sUPc->o+ Jc,p for all v E V with fIR2 (vx)p+2 dV = l.
In consequence,

JO,p :2: lim sup Jc,p.
c->O+

In particular, for e small enough,

3p

Ilu~IIL2(p+1)(IR2) :S Clllu~llw1,2(1R2) :S C2c2(P+1)(P+2),

where C2 is a constant independent of c. Now, by Holder's inequality,

4-p

1 11~2U~(U~)P+ldvl :S (~2(u~)2dV) 2 . (~2 (U~)2(P+l)dV) 2

+1 4-p:S C~ c2(p+2) Ilu~IIL2(IR2)

+1 ~ 3p:S C~ e 2(p+2) lie 2(p+1)(p+2) U~ IIL2(IR2).

Thus, as e ----7 0+ we have

f u~(u~)P+ldV = e r v~(v~)P+ldV ----7 O.
JIR2 JIR2

This implies that Ko,p( vc) = fIR2 (v~)P+2dV ----7 1.

Hence for e small enough, Ko,p(vc) =I- 0 and we have
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Since limE--->o+KO,p(vE) = 1, we conclude that

liminf:7E 2: :7o,p 2: limsup:7E,p.
E--->O+ E--->O+

This implies that limE--->o+:7E,P = :7o,p, finishing the proof.

In addittion to the last result, we have to use a de Bouard and Saut result in
[2, 3] which is related with solitary waves for a generalized KP equation GKP
or simply with the case E = O.

Theorem 4.2. [2, 3] Let 1 ~ P < 4 be a rational number with odd denimom-
ina tor and IJ > ~. If {Vm}m2:1 is a minimizing sequence for :7o,p, then there
exists a subsequence (denoted the same) and there exists a nonzero Vo E V' (JR2)
such that oxvo, OyVO oxxvo E L2(JR2) and

Jo,p(vo) = :7o,p > 0,

and there exists a sequence of points {(m}m2:1 in JR2 such that

OxVm (- + (m) ----7 oxvo

OyVm(' + (m) ----7 OyVO

oxx Vm (- + (m) ----7 oxx vo

in L2(JR),

in L2 (JR),

in L2 (JR).

Moreover, Vo is a solution in the sense of distributions of he 2YiJPoi.ion

r ux x - Vyy + (IJ - ~) vx x x x + (p + l):7o,p(~jX )P'uxx = O. (29)

Ifp = 1,2 or3 andi = 1,2, OiVO E nnENHn(JR2), whel'eHn(JR2
) denotes the

Sobolev space of distributions whose derivatives up to order n are in L2(JR2).

Proof of Theorem 4,1. First note that vE satisfies in the sense of distributions
the following equation,

- Vxx - Vyy + (a - b - bE2/p+l )vxxxx + €(2a - b - b€2/p+1 )vxxyy + €4/p+ 1avyyyy

(

_ ) l/p
P + J. , « 2\ P p-1 2 P) - 0+ p + 2:7z,P 'C P + )vxVXX + EVxVy "vv + €VxyVy - ,

2

Since 0 < :7E,P ~ 2:70,p for E small enough, the family {f:P+1 vE} is bounded in V.
We also have that {v~}, {v~}, {v~x} are bounded families in L2(JR2) for E small
enough. Then for any sequence Ej ----70 as j ----700, there exists a subsequence
(denoted the same) and functions W, Z E L2(JR2) with Wx E L2(JR2) such that

v~j ---'- W, v~~ ---'- Wx, v~j ---'- Z in L2(JR2).

But from Lemma 4.1 we have that

lim Jo,p(vEj) = :7o,p·
J--->OO
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Then from Theorem 4.2, there exists a nontrivial distribution Vo E V'(JR.2) such

that oxvo = W, OyVO = Z and

and r (oxvo)P+2dV = 1.
Jw.2

In particular, we have that oxvo =I- O. On the other hand, (oxvCj )P+l is bounded
E±3.in LV+l (JR.2). In consequence, as j --+ 00

r (oxvEj)P+l'l/J --+ r (oxVO)p+I'l/J,
Jw.2 Jw.2

for all 'l/JE L2(JR.2). This implies that

(oxvEj)PoxxvEj --+ (oxvo)poxxvo·

Now for any test function 'l/J E Co (JR.2) , if we denote evaluation in V'(JR.2) by

(-, '), as j --+ 00 we have

lc:~/P+l (pv~j (v~j )p-IV~y + 2v~y( v~j)P, 'l/J) I

= Ic:~/P+I (p(V~j(V~j)P,'l/JY) + P: 1((v~j)P+l,'l/Jx)) I

< c:~/P+I (pllv~j (v~j )PIILI + Ilv~j Ili~1:1) . 11\7'l/JII£'>o
< C:j(llv~j IILv+lllv~j Iliv+l + Ilv~j Ili~1:1) . 11\7'l/JII£'>o--+ O.

We also h-ave that

(c:2/P+lbvEj + c:2/p+I(2a _ b + bc:2/P+l)VEj + ac:4/P+lvEj .1,) =
J xxxx J J xXYY J YYYY' 0/

c:2/p+l b(vEj .1, )+c:2/P+l (2a-b-bc:2/P+l) (vEj .1, ) -ac: 4/p+1 (vEj
.1, ) --+ 0J xx' o/xx J . xx' o/yy J Y ,o/yyy .

Furthermore we have

j~ (-v~:x - v~~ + ((J -~) v~~xx,'l/J)

= (-(vo)x - (vo)y + ((J -~) (vo)xxxx,'l/J).

Since (J > ~, the nonzero distribution Vo is a nontrivial solution of the equation

( 1) (p + 1 ) lip
-VXX-vyy+ (J-"3 VXXXX+ p+2JO,P (3vxvxx) =0.

( )

lip
In particular, W = - ~JO,P oxvo is a nontrivial lump solution for the

GKP traveling wave equation (28) in the sense of distributions. ~
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