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Stable minimal cones in JFt8 and JFt9
with constant scalar curvature
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ABSTRACT. In this paper we prove that if M C R", n = 8 or n = 9, is a
n ~ 1 dimensional stable minimal complete cone such that its scalar curvature
varies radially, then 1M must be either a hyperplane or a Clifford minimal cone.
By Gauss' formula, the condition on the scalar curvature is equivalent to the
condition that the function K;1(m)2 + ... + K;n_i(m)2 varies radially. Here the
K;i are the principal curvatures at m EM. Under the same hypothesis, for
M C jRiO we prove that if not only K;1(m)2 + ... + K;n_i(m)2 varies radially
but either K;1(m)3 + ... + K;n_l(m)3 varies radially or K;1(m)4 + ... + K;n_dm)4
varies radially, then M must be either a hyperplane or a Clifford minimal cone.
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operator.
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1. Introduction

Let M be an n-dimensional Riemannian manifold. A natural problem in geom-
etry is that of finding k-dimensional submanifolds N c M with the property
that for any bounded open set U in M, the k-volume of N n U is less than
or equal to the volume of any other submanifold in M with boundary equal
to 8(N n U). The submanifolds of M with the above property are called
area-minimizing. Notice that when k = 1, area-minimizing submanifolds are
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geodesics. Locally, the problem reduces to the one of finding minimal subman-
ifolds, manifolds for which the mean curvature vector vanishes; globally, the
problem of finding complete area-minimizing sub manifolds is a difficult one,
even in the case when M is the Euclidian space R". It is clear that planes
in ]R3 are area-minimizing. In general, hyperplanes in ]Rn are area-minimizing
hypersurfaces.

A family of hypersurface of ]Rn which is important in the study of area-
minimizing hypersurfaces are the cones: N c ]Rn is a cone if for every a > 0,
ap E N any time pEN. The study of cones is important for two reasons, the
first one is that if pEN is a singular point of a area- minimizing hypersurface S,
then there is an area-minimizing tangent cone, which makes the role of tangent
space at p, with the property that pES is a removable singularity if and
only if this tangent cone is a hyperplane. The second reason area-minimizing
cones are important is that if S is a complete area-minimizing hypersurface,
then there is an area-minimizing cone that makes the role of tangent cone at
infinity; this cone is a hyperplane if and only if S is a hyperplane.

A giant step toward this problem of classifying area-minimizing hypersur-
faces in Euclidean spaces was made by James Simons in 1968 [S]. He showed
that the only area-minimizing complete hypersurfaces in ]Rn, with n ~ 7, are
the hyperplanes. On the other hand, Bornbieri-De Giorgi-Guisti showed that
the hypercone

is area-rrnrnrmzmg. They also found a family of complete, smooth, area-
minimizing hypersurfaces in ]R8 (notice that, in general, cones are not smooth
at the origin). These area-minimizing hypersurfaces found in [B-DG-G] con-
verges at infinity to C4,4. An open and important question in this direction
is the one of classifying all area-minimizing hypersurfaces in ]R8. A reasonable
conjecture is the claim that the only complete area-minimizing hypersurfaces
in JR\.8 are the ones found in [B-DG-GJ.

IIi this paper we prove, for n = 8 and n = 9, that if M is an area-minimizing
cone and the scalar curvature of M varies radially, then M is isometric to a
Clifford cone, i.e. a cone of the form

Cl,k = {(x, y) E ]Rk+1 X ]Rl+I : llxl2 = klyl2}

where k and l are positive integers with k + l = n - 1. These cones are called
Clifford minimal cones.

2. Preliminaries

Let M c ]Rn be a smooth hypersurface, i.e. a immersion with codimension
1. For any p E M we will denote by TpM the tangent space of M at p. We
will think of this space as a n - 1 dimensional subspace of ]Rn. Since the
codimension of TpM c ]Rn is one then we can find a unit vector v(p) E ]Rn
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such that v(p) is perpendicular to TpM; it is not difficult to see that there
are just two possibilities for this vector. M is orientable if and only if we can
pick the vector v(p) in a continuous way over all M. In this case, the map
v : M ---7 sn-l C lRn, where Sk = {x E lRk+1 : Ixl = I}, turns out to be not
only continuous but differentiable. Since every manifold is locally orientable,
then we can always define the map v locally. The map v is called the Gauss
map.

Let \7 be the Levi Civita connection in lRn, defined by the directional de-
rivative, i.e. if X, Y : JRn ---7 Ril are vector fields on lRn then \7x Y (p) is the
derivative in the direction X (p) of the function Y at p. Recall that we can
compute this derivative either by multiplying the Jacobian matrix of Y at p
with the vector X(p) or by taking any curve 0: : (-c:,c:) ---7 lRn with 0:(0) = P
and 0:'(0) = X(p) and then computing the derivative at t = 0 of the curve
(3(t) = Y(o:(t)). An important fact about the Levi Civita connection is that
in order to compute \7x Y (p) it is enough to know X (p) and to know Y along
any curve passing through p with velocity X (p) at p.

The shape operator of the manifold M at p is the linear map A : TpM ---7 lRn

defined by A(v) = -\7vv for any v E TpM. Since the norm of v is always 1, it
is not difficult to show that the image of A is a subspace of TpM, therefore A
is actually a map from TpM to itself. The map A turns out to be a symmetry
linear transformation [D], i.e. if ( . , . ) denotes the inner product in lRn then
for any pair of vectors v, W E TpM we have that (A(v), w) = (v, A(w)). By
linear algebra, A has n - 1 real eigenvalues 11:1, ... , I1:n-l. This eigenvalues are
known as the principal curvatures of M at p. We define the functions mean
curvature, H : M ---7 lR, and the norm of the shape operator IAI : M ---7 lR by

H(p) = 11:1 + ... + I1:n-l

n-l

and

IAI(p) = J l1:i + ... + 11:~_1

for any p EM.

Let us denote by Co(M) the set of smooth functions with compact support.
Given any function f : M ---+ lRl we can form the I-parameter variational
family defined by

M; = {p + tf(p)v(p) : p EM}.

Notice that Mo = M and that M, agrees with M outside a compact set.
By using the implicit function theorem we have that there exists e > 0 such
that the sets M; are hypersurfaces for every t E (-c:, e). Let W c M be an
open set with finite n-dimensional area that contains the support of f. Let
Vi : (-c:, c:) ---7 lR be the real function that assigning the n - 1 dimensional
volume of M; n W to any t E (-c:,c:). It is well known (see e.g. [S]) that the



100 OSCAR PERDOMO

function V satisfies:
~ dVf I = - r f H (1)
2 dt t=O 1M .

Notice that the mean curvature function H of a manifold M vanishes at every
point if and only if Vf has a critical point at t = 0 for every f E Co' Subman-
ifolds whose mean curvature function vanishes identically are called minimal
submanifolds. Equation (1) tell us that minimal submanifold are critical points
of the area functional. Notice that if M is an area-minimizing hypersurface
then for any f E Co(M) the volume of Mt is greater than or equal to the
volume of M = M«, i.e., Vf(t) 2: Vf(O). Therefore, if M is area-minimizing we
have that:

(i) V;(O) = 0 for any function f i.e M is minimal.
(ii) VI'(O) 2: 0 for any function [,

Minimal submanifolds satisfying condition (ii) above are called minimal stable
submanifolds. The formula for VI' (0) is given by the following equation; its
proof can be found in [S].

d~~f (0) = 1M J(f)f (second variation formula) (2)

where J is the stability operator on M, given by

J = -~ - IIAI12
.

The operator ~ is the Laplacian of M, which can be defined as follows: Let
Po E M be a point in M and let f : M ---4 jR be a smooth function. Let
{el, ... , en-I} be vector fields defined in an open neighborhood U in jRn of Po
such that (ei' ej) = 6ij for every point in U and such that {el (p), ... , en-I (p)}
form a base for TpM for every point P E M n U.

The gradient of f at Po is given by

\7f(po) = el(f)(po)el(po) + ... + en-I(f)(PO). (3)

Here, e, (f) (p) is the directional derivative of f at p in the direction e; (p).
Notice that \7f defines a vector field on M n U.

The Laplacian of f is given by

~(f) (Po) = (\7 e i \7 f, el)(po) + ... + (\7 en-l \7 l.en-I) (Po). (4)
From now on we will assume that M is a cone in jRn such that M is a smooth
minimal hypersurface without boundary and MU{O} is topologically complete.
We will refer to these sets just as minimal complete cones with codimension 1.
We will state some facts about M. Notice that we can build back M just by
knowing the set M n sn-I = N. Let P E M be any point in M, since M is
a cone, we have that TpM is equal to T ..l'..-M;recall that we are viewing these

Ipl
tangent spaces as vector subspaces of jRn.

The following lemma gives a relation between the shape operator at P E M
and the shape operator at ap for any a > O.
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Lemma 2.1. If M is smooth hypersurface which is a cone, then for any p E M
we have that

2 1 2 pIAI (ap) = a21A1 (1PI) for any a> O.

Proof. Let v be the Gauss map defined in a neighborhood of I~I' If {el, ... ,en-d
is an orthonormal bases ofT.E_M then A(ei)(.1!....[I) = 13'(0), where j3(t) = v(a(t))

Ipl p
and a(t) is a curve on M with a(O) = I~I and a'(O) = e., Since M is a cone then
the curve a(t) = aa(t) is a curve on M. Notice that a(O) = p and a'(O) = ae..
This fact gives us what we have pointed out before: TpM = T.'L M, hence

Ipl
v(p) = v( I~I) and,

A(p)(aei) = dv(a(t)) I = dv(a(t)) I = A(!!"-) (e.).
dt I t=O dt t=O Ipl

Using the above equation we get

n-l n-l 1 2 1
IAI

2
(p) = 8!A(ei)(p)!2 = 8a2IA(ei)(I:I)1 = a2IAI2(1:1)'

This completes the proof of the lemma. ~

Given a complete minimal cone M, let us define N = sn-l n M. Under the
conditions we have imposed on M we can deduce that N is a complete smooth
manifold on s»:>. The following lemma gives us a formula for the integral of
a function over M in terms of integrals over N.

Lemma 2.2. Let N c sn-l be a smooth manifold of dimension n - 2. For
any 0 < e < 1, let us define ME = {tp : pEN and t E [c, 1]}. If f : ME ----+ jR

is a smooth function then

r f = 11r tn-2ft(p)JM, E IN

where ft : N ----+ jR is defined by ft(p) = f(tp).

Proof. Without loss of generality (otherwise consider a partition of the unit
of N) we may assume that N = ¢(U) where U is an open set of jRn-2 and
¢ : U ----+ jRn is a parametrization of N that induces coordinates Yl,·· . ,Yn-2

onN. Let us define n., = (g:,g~) fori,] E {l, ...,n-2}. Since¢isa
parametrization, we have that the matrix B = {bij} is a symmetric positive
defined matrix. Moreover,

L 9 = L g(¢(y))jdet (B) dy, for any g: N ----+ R

Now, if we define p : (c,l) x U ----+ ME; by p(t, y) = t¢(y), then it is clear
that p defines a parametrization on ME;' We define Cij = (~, -i:;) where
i,] E {O, 1, ... , ti - 2}; here we are identifying the Yo coordinate with the t
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coordinate. Since N c sv:», coo(t¢(y)) = (¢(y),¢(y)) = 1 and for any j -=I- 0,
COj(t¢(y)) = CjO(t¢(y)) = 0; moreover, if i, j E {I, ... ,n- 2}, C;j (t¢(y)) = tZb;j.

Therefore, if C = {c;j} we get

det (C)(t¢(y)) = tZ(n-Z) det (B)(y).

Using the above equation, we have that

{ f = {Ii f(p(t, Y))Vdet Cdydt = (Ii rr:? ftVdet BdydtJM€ t; u Jo u
= 11L tn-Z ftdydt.

This equation completes the proof of the lemma.

Lemma 2.3. Under the same hypothesis of the previous lemma we have that
if f : ME ----;~ satisfies that f(tp) = h(t) for every t E [E,l] and pEN, then

(n - 2)
6.f(tp) = h"(t) + t h'(t), for every t E (E, 1) and pEN.

Proof. Let {eo,el, ... ,en-z} be an orthonormal frame defined in a neighbor-
hood of tp such that eo(x) = 1:1 and e;(tp) = e;(p) for every PEN, t E [E,l]
and i = 1, ... ,n - 2. We have that

\7 f(x) = {eo(j)eo + el (j) + ... + en-l (j)en-d Ix'
If we take a(8) = Ixll:1 +81:1, then a(O) = x and a'(0) = eo(x). Therefore
eo(j)(x) = (3'(0) where (3(8) = f(a(8)) = h(lxl +8) and eo(j)(x) = h'(lxl)· On
the other hand, since the frame is orthonormal, for every i = 1, ... ,n - 2 we
may choose curves a;(t) such that a;(O) = x, a~(O) = e;(x) and la;(t)! = Ixl
for all t. Under this choice of curves, we have, by using the hypothesis on the
function I, that ei(j)(x) = 0 for i ::::1. Therefore,

\7f(x) = h'(lxl)I:I' (5)

We will use the same curves a;'s to compute \7ei (\7 1). Notice that \7 ei eo(x) =

M for every i E {I, ... ,n - 2}. If we make tp = Po then,

6.(j) (Po) = (\7 eo \7 f, eo)(po) + ... + (\7 en-2 \7 I, en-l)(po)

= (\7 eo (hi (Ixl)eo (x)), eo)(po) + ... + (\7 en-2 (hi (Ixl)eo(x)), en-l)(po)

= eo(h' (Ixl)) + hi (t) (\7 eoeo, eo)(po) + el (hi (Ixl)) + hi (t) (\7 e i eo, el)(po)

+ ... + en-z(h'(lxl)) + h'(t)(\7 en_2eO, en-z)(po)
1 1 (n - 2)= h"(t) + -h'(t) + ... + -h'(t) = h"(t) + h'(t). ~
t t t

We will also need the following results.
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Theorem 2.1. Let M c JRn be a complete minimal cone and let N = M n
sn-1.

(a) ([C-D-K), [L}) IAI2(p) = n-2 for anyp E N if and only if M is isometric
to a Clifford minimal cone.

(b) [Y-C} If the function IAI2 (p) is constant for all pEN and this constant
is smaller than 4(n3-2) on N, then M is either part of a hyperplane or
M is a Clifford cone.

(c) [Y-C} Let {"'1 (m), ... , "'n--1 (m) be the principal curvatures at m EM,
i.e. they are the eigenvalues of the shape operator A(m) : TmM --+

TmM. 1£ (i) the function IAI2(p) is constant for all pEN and this
constant is smaller than 5(n3-2) on Nand (ii) "'1(m)3 + ... + "'n_1(m)3
is constant for all mEN or "'1 (m)4 + ...+ "'n-1 (m)4 is constant for all
mEN, then M is either part of a hyperplane or M is a Clifford cone.

3. Main result

In this section we will state and prove the main results of this paper. The idea
in the proof of these theorems is the one used by James Simons in [S].

Theorem 3.1. Let M c JRn, with n = 8 or n = 9, be a complete minimal
cone with codimension 1. If (i) the norm of the shape operator is constant on
the points of M with norm 1, i.e IAI2(m) = c for every m E M n sn-1 = N;
and (ii) M is stable, then M must be either a hyperplane or a Clifford minimal
cone.

Proof. Let us assume that M is not a hyperplane or a Clifford minimal cone;
we will show that M can not be stable. We will do this by showing a function
with compact support such that VJ'(O) < O. Let us define j : M --+ JR by

{
o if Ixl < e or Ixl 2' 1,

j(x) = h'(x) , I Ifor e < x < 1,

where h : [c,l] --+ JR is a smooth function such that h(c) = h(l) = O. We will
define the function h later on. By using Lemma 2.1 we get that the stability
operator J is given by

1
J(f)(tp) = -(6.J)(tp) - t2cj(tP), for every t E (0,1) and pEN.

By using equation (2), Lemma 2.3 and Lemma 2.2, we obtain that:
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d~~f (0) = j~J(1)j

= r (-(~f)(tp) - ~cj(tP))j(tP)JM te

= r (-h"(t) _ (n - 2) h'(t) - ~ch(t))h(t)JMc t t

= -11L tn-4(t2h"(t) + t(n - 2)h'(t) + ch(t))h(t).

(6)

Since we are assuming that M is neither an equator nor a Clifford hypersurface,
Theorem 2.1 part (b) gives us that c > 4 (n~I). For ti = 8 let us take d =
4(c - ~) - 25 and E = exp -Ji. Notice that d> 0 because c > 8. Let us also

define h(t) = t -,5 sin (- v:: In (t)). Notice that h(E) = 0 = h(l) and h(t) > 0
for every t E (E, 1). A direct verification shows that

1
t2h"(t) + 6th'(t) + ch(t) = 3h(t).

Replacing the above equation in (6) we obtain:

dd2~f(0) = r J(1)j = -1 r 11

t4h(t)2 < O.
t JM 3 IN e

Therefore M is not stable. For n = 9 we define d = 4(c - ~) - 36 and
E = exp'~' Notice that d > 0 because c > 238. Let us also define h(t) =

C3 sin (- v:: In (t)). Notice that h(E) = 0 = h(l) and h(t) > 0 for every
t E (E, 1). A direct verification shows that

1
t2h"(t) + 7th'(t) + ch(t) = 3h(t).

Replacing the above equation in (6) results in

d~~f (0) = 11J(1)j = ~1 L11

t5h(t)2 < O.

Therefore M is not stable.

Corollary 3.1. Let M c lRn, with ri = 8 or ti = 9, be a complete minimal
cone with codimension 1. If

(i) The scalar curvature R is constant on the points of M with norm 1, i.e
R(m) = Ro for every mE M n 5n-1 = N, and

(ii) M is stable.
Then M must be either a hyperplane or a Clifford minimal cone.
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Proof. Let m E M and let {e1, ... , en-I} be an orthonormal base of TmM such
that A(m)(ei) = "'iei. By Gauss' Theorem, the sectional curvature K(ei' ej)
of the plane spanned by the vectors ei, ej is the product "'i"'j for every i -=I j.
We have that,

n-1
(n - l)(n - 2)R(m) = L K(ei, ej)

i,i=l,i#}

n-1

L "'i"'j
i,i=l,iof'j
n-l n-1

= L "'i"'j - L "'T
i,i=l i=l

(7)

= ("'1 + ... + "'n_r)2 - IAI2
= -IAI2.

In the last equality we have used that 0 = (n - l)H = "'1 + ... + "'n-l because
M is minimal. By equation (7), R is constant on M n sn-l if and only if IAI2
is constant on M nsr', The corollary now follows from Theorem 2.1. [!'f

For the next theorem we will consider stable minimal cones in ]RIO with
co dimension 1. '¥e wili get the same result but with the additional condition
that either the function "'1 (m)3 + ... + "'n-l (m)3 varies radially or the function
"'1 (m)4 + ... + "'n-l (m)4 varies radially, namely we will prove:

Theorem 3.2. Let M C ]RIO be a complete minimal cone with codimension
1. If

(i) The norm of the shape operator is constant on the points of AI with
norm 1, i.e IAI2(m) = "'1(m)2 + ... + "'n_l(m)2 = c for every m E
MnSn-1 =N;

(ii) Either "'1 (m)3+ .. '+"'n-l (m)3 varies radially or "'1 (m)4+ . +"'n-l (m)4
varies radially, and

(iii) M is stable.
Then M must be either a hyperplane or a Clifford minimal cone.

Proof. Let us take d = 4(c-~)-49 and e = exp -J!i. Notice that d > 0 because

c> ~o by Theorem 2.1 part (c). Let us also define h(t) = t -./ sin (- ~ In (t)).
Notice that h(€) = 0 = h(l) and h(t) > 0 for every t E (€,1). A direct
verification shows that

1
t2h"(t) + 6th'(t) + ch(t) = "3h(t).

Replacing the above equation in (6) we get

d2~f (0) = r J(1)j = -1 r 11

t4h(t)2 < O.
dt JM 3 IN E
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Therefore M is not stable.

Remarks.
(a) The isoperimetric hypercone in ]R13 with 3 non zero principal curvatures

gives an example of a stable complete minimal cone with codimension
1 which scalar curvature varies radially.

(b) Chern's conjecture states that if M c ]Rn is a n - 1 dimensional com-
plete minimal cone and IAI2(m) = C, with C a constant less than 2(n-1),
for every m E M n sn-l = N, then M must be either a hyperplane
or a Clifford minimal cone. Using the same technique we used in the
proof of our theorems we have that the veracity of Chern's conjecture
implies the veracity of Theorem 2.1 for n = 10 and n = 11.
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