On Power-Associative Nilalgebras of Nilindex and Dimension n

Sobre nilálgebras de potencia asociativa de nilíndice y dimensión n

JUAN C. GUTIERREZ FERNANDEZ1,a,s, CLAUDIA I. GARCIA1

MARTY L. R. MONTOYA2

1Universidade de São Paulo, São Paulo, Brazil
2Universidad de Antioquia, Antioquia, Colombia

Abstract. We investigate the structure of commutative power-associative nilalgebras of dimension and nilindex n.

Key words and phrases. Commutative, Power-associative, Nilalgebra.

2010 Mathematics Subject Classification. 17A05, 17A30.

Resumen. Investigamos la estructura de nilálgebras conmutativas de potencia asociativa de dimensión y nilíndice n.

Palabras y frases clave. Conmutatividad, potencia asociativa, nilálgebra.

1. Introduction

Commutative power-associative algebras are a natural generalization of associative, alternative and Jordan algebras. An algebra is said to be power-associative if the subalgebra generated by any element is associative. We refer the reader to the paper [1] for more information. In [2] the authors classify Jordan power-associative nilalgebras of nilindex n and dimension $n \geq 4$. In this paper we give the structure constants for power-associative nilalgebras of nilindex n and dimension $n \geq 5$.

Throughout this paper, \mathfrak{A} will be a commutative power-associative nilalgebra of dimension n over a field F of characteristic $\neq 2,3$ and 5. For every $a \in \mathfrak{A}$ we will denote by \mathfrak{A}_a the subalgebra of \mathfrak{A} generated by a. We define inductively
the powers of $a \in \mathfrak{A}$ by $a^1 = a$ and $a^k = aa^{k-1}$ for $k > 1$. In a commutative power-associative algebra \mathfrak{A}, we have that $a^i a^j = a^{i+j}$ for every $a \in \mathfrak{A}$ and all positive integers i, j and hence \mathfrak{A}_n is spanned, as a vector space, by all the powers a^k with k a positive integer. We remember that in a commutative power-associative algebra, the algebra generated by all right multiplications $R_a : \mathfrak{A} \to \mathfrak{A}$, with $x \in \mathfrak{A}_a$, is in fact generated by R_a and R_{a^2}. A commutative algebra is called Engel if every right multiplication of \mathfrak{A} is nilpotent. We will use the process of linearization of identities, which is an important tool in our investigation. Thus, $p(x, y, z, t) = 0$ will be the complete linearization of the fourth power-associative identity $x^4 - (x^2 x^2) = 0$. Next, linearizing the identities $x^2 x^3 = x(x^2 x^2)$ and $x^3 x^3 = (x^2)^3$ we get the following new identities

\[x^4 y = 2x^3(xy) + x^2(x^2 y) + 2x^2(x(xy)) - 4x(x^2(xy)), \] (1)
\[x^3(x^2y) + 2x^3(x(xy)) = 2x^2(x^2(xy)) + x^4(xy). \] (2)

For every positive integer $r \geq 3$, the identity $p(a^{r-2}, a, a, b) = 0$ implies the well known multiplication identity

\[R_{a^r} = \frac{1}{3} (8R_{a^{r-1}}R_a - 2R_a R_{a^{r-1}} + 4R_{a^2}R_{a^{r-2}} - 2R_{a^3}R_{a^{r-2}}) - \]
\[R_{a^{r-1}}R_{a^2} - 2R_a R_{a^{r-2}}R_a - 2R_{a^r}R_a^2. \] (3)

We observe that each product in a commutative power-associative algebra \mathfrak{A} with b, one time, and a, s times, can be written as $a^{i_1} (a^{i_2} (\cdots (a^{i_k} b) \cdots))$, where i_1, \ldots, i_k are positive integers and $i_1 + \cdots + i_k = s$. We get the following relevant facts about the structure of a commutative power-associative algebra \mathfrak{A}.

Lemma 1. Let $a, b \in \mathfrak{A}$ such that $ba \in \mathfrak{A}_a$. Then

\[ba^3 = -a(ba^2) + 2a^2(ba), \]
\[ba^4 = a^2(ba^2), \]
\[a^3(ba^2) = a^4(ba). \] (4)

Furthermore,

(i) If $ba^2 \in \mathfrak{A}_a$, then $b\mathfrak{A}_a \subset \mathfrak{A}_a$ and $a^{i_1} (a^{i_2} (\cdots (a^{i_k} b) \cdots)) = a^{s-1}(ba)$ for all positive integers k, i_1, \ldots, i_k where $s = i_1 + \cdots + i_k \geq 5$.

(ii) If $ba = 0$ and $b\mathfrak{A}_a^1 \subset \mathfrak{A}_a$, then
\[ba^3 = -a(ba^2), \]
\[a^3(ba^2) = 0, \]
\[ba^5 = -a(ba^4) = 2a^2(ba^3), \]
\[ba^6 = -a(ba^5) = a^4(ba^2) = a^2(ba^4), \]
for all positive integers \(k, i_1, \ldots, i_k \) where \(i_1 + \cdots + i_k \geq 7 \).

Proof. Let \(a, b \in \mathfrak{A} \) such that \(ab \in \mathfrak{A}_a \). From identity \(p(a, a, a, b) = 0 \) we get immediately \(ba^3 = -a(ba^2) + 2a^2(ba) \). Setting \(x = a \) and \(y = b \) in (1) immediately yields relation \(ba^4 = a^2(ba^2) \). Replacing \(x \) by \(a \) and \(y \) by \(b \) in (2) we get \(a^3(ba^2) = a^4(ba) \).

Now we will prove (i). If \(ba^2 \in \mathfrak{A}_a \), then using (3) we can prove inductively on \(r \geq 3 \) that there exist \(\lambda_r, \mu_r \in F \) such that \(\lambda_r + \mu_r = 1 \) and
\[a^r b = \lambda_r a^{r-2}(ba^2) + \mu_r a^{r-1}(ba). \] (5)

The cases \(r = 3, 4 \) are proved above. For \(r > 4 \), we obtain from (3) and the induction hypothesis that \(ba^r = (1/3)(4a^{r-1}(ba) - a^{r-2}(ba^2) + 2a^2(ba^2) - 2a(ba^2-1)) = (1/3)(4a^{r-1}(ba) - a^{r-2}(ba^2) + 2a^2(ba^2) - 2a(ba^2-1)) \)
\[= \lambda_r a^{r-3}(ba^2) + \mu_r a^{r-2}(ba) \]
now using (3) we get inductively \(ba^k \in \mathfrak{A}_a \) for all positive integers \(k \geq 3 \). Using (4) we get \(ba^3 = -a(ba^2) \) and \(a^3(ba^2) = 0 \). Now
\[0 = p(a, a, a, ba^2)/6 = \]
\[a^3(ba^2) + a^2(a(ba^2)) + 2a(a(a(ba^2))) = 4a^2(a(ba^2)) = \]
\[a(ba^4) - 2a(a(ba^3)) + 4a^2(ba^3) = a(ba^4) + 2a^2(ba^3) \]
so that $a(ba^4) = -2a^2(ba^3)$. Next, relation (3) for $r = 5$ forces $ba^5 = (1/3)(-2a(ba^4) + 4a^2(ba^3) - 2a(a(ba^3))) = (1/3)(-2a(ba^4) + 2a^2(ba^3)) = (1/3)(-3a(ba^4)) = -a(ba^4)$. Setting $x = a$ and $y = ba^2$ in (1) immediately yields relation $a^2(ba^2) = a^2(a^2(ba^3))$ and now using second identity of (4) we get $a^4(ba^4) = a^2(ba^4)$. Thus,

$$0 = p(a^2, a^2, a^2, b)/6 = ba^6 + a^2(ba^4) + 2a^2(a^2(ba^3)) - 4a^4(ba^2) = ba^6 - a^4(ba^2).$$

Now, $a(ba^5) = -a(a(ba^4)) = -a^2(ba^4) = -ba^6$.

Taking $x = a$ and $y = ba^2$ in identity (2) we get

$$0 = a^3(ba^4) + 2a^3(a(a(ba^3))) - 2a^2(a^2(a(ba^3))) - a^4(a(ba^2)) = a^3(ba^4) - a^4(a(ba^2)) = a^2(ba^4) + a^4(ba^2) = a(ba^6) + a(a^2(ba^3)) = a(ba^6) + a(a(ba^5))/2 = a(ba^6) - (ba^6)/2 = a(ba^6)/2.$$

Finally, we will prove that $x = a^{i_1}(a^{i_2}(\cdots(a^{i_k}b)\cdots))$ vanishes for all i_1, i_2, \ldots, i_k positive integers with $s = \sum_{l=1}^{k} i_l \geq 7$. Using (3), we can prove, by induction on s, that the element $a^{i_1}(a^{i_2}(\cdots(a^{i_k}b)\cdots))$ is spanned by the set of all elements $a^{i_1}(a^{i_2}(\cdots(a^{i_k}b)\cdots))$ with $j_1, \ldots, j_k \in \{1, 2\}$ and $j_1 + \cdots + j_k = s$. Thus, we can assume, without loss of generality, that $i_1, \ldots, i_k \in \{1, 2\}$. If $i_k = 1$, then $x = 0$ since $ba = 0$. If $i_k = 2$ and $i_{k-1} = 1$, then $x = -a^{i_1}(a^{i_2}(\cdots(a^{i_{k-2}}(ba^3)\cdots))) = -a^{s-7}(a(a^2(ba^3))) = a^{k-7}(a(ba^6))/2 = 0$ since $ba^3 \in A$. If $i_k = i_{k-1} = 2$, then $x = a^{i_1}(a^{i_2}(\cdots(a^{i_{k-2}}(ba^3)\cdots))) = a^{s-7}(a(a^2(ba^3))) = a^{s-7}(a(ba^6))/2 = 0$. This complete the proof of the lemma.

2. Nilindex n

Throughout this section, A will be a commutative power-associative nilalgebra of dimension and nilindex n. Let a be an element in A with maximal nilindex. It is well known that $A^k = A^n$, for all $k \geq 2$ (see [2]). Hence

$$A^j_a \subset A^{j+1}_a,$$

for all $j \geq 1$. Furthermore, $A^n = A^n_0 = 0$ and for each $x \in A$, the power x^{n-1} is in the annihilator of A.

For a finite list $S = \{a_1, \ldots, a_n\}$ we write (a_1, \ldots, a_n) for the subspace consisting of all the linear combinations of elements of S.

Lemma 2. Let a be an element in A with maximal nilindex and k an integer with $1 \leq k \leq n - 1$. Then there exists $b_k \in A \setminus A_a$ such that $b_k a^k = 0$. The annihilator of a^k in A is $\langle b_k, a^{n-k}, a^{n-k+1}, \ldots, a^{n-1} \rangle$.
Proof. Take \(b \in \mathfrak{A} \setminus \mathfrak{A}_a \). Then \(\{ b, a, a^2, \ldots, a^{n-1} \} \) is a basis of \(\mathfrak{A} \). By the above lemma, \(ba^k \in \mathfrak{A}^{k+1}_a \), so that \(ba^k = \lambda_{k+1}a^{k+1} + \cdots + \lambda_{n-1}a^{n-1} \), for \(\lambda_{k+1}, \ldots, \lambda_{n-1} \in F \). Then \(ba^k = 0 \) for \(k = b - \lambda_{k+1}a - \cdots - \lambda_{n-1}a^{n-k-1} \).

Finally, let \(x = \xi_0b_k + \xi_1a + \xi_2a^2 + \cdots + \xi_{n-1}a^{n-1} \) be an arbitrary element in \(\mathfrak{A} \). Then \(x a^k = \xi_0b_k a^k + \xi_1a^{k+1} + \xi_2a^{k+2} + \cdots + \xi_{n-k-1}a^{n-1} = \xi_1a^{k+1} + \xi_2a^{k+2} + \cdots + \xi_{n-k-1}a^{n-1} \). This proves the lemma.

\(\square \)

Corollary 3. Let \(a \in \mathfrak{A} \) be an element in \(\mathfrak{A} \) with maximal nilindex. Then there exists \(b \in \mathfrak{A} \setminus \mathfrak{A}_a \) such that \(ba \in (a^2) \) and \(a^{n-2}b = 0 \). Furthermore, an element \(c \in \mathfrak{A} \) satisfies \(ca \in (a^2) \) and \(ca^{n-2} = 0 \) if and only if \(c \in (b, a^{n-1}) \).

We will denote by \(\mathcal{P}(\mathfrak{A}) \) the set of ordered pairs \((a, b) \) of elements in \(\mathfrak{A} \) where \(a \) has maximal nilindex, and \(b \in \mathfrak{A} \setminus \mathfrak{A}_a \) with \(ba \in (a^2) \) and \(ba^{n-2} = 0 \). By definition and relation (6), we have that

\[
\begin{align*}
b^2 & \in \mathfrak{A}^2, \\
ba & = \lambda a^2, \\
ba^k & \in (a^{k+1}, \ldots, a^{n-1}) = \mathfrak{A}_a^{k+1} \text{ for } k = 2, \ldots, n-3, \\
ba^{n-2} & = ba^{n-1} = 0,
\end{align*}
\]

for any \((a, b) \in \mathcal{P}(\mathfrak{A}) \).

For commutative power-associative nilalgebras of dimension 3 and nilindex 3, we have one family of algebras \(A(\alpha) = (b, a, a^2) \), with \(b^2 = \alpha a^2 \), \(ba = 0 \), parametrized by \(F/(F^*)^2 \), that is \(A(\alpha) \) is isomorphic to \(A(\alpha') \) if and only if \(\alpha' = \gamma^2 \alpha \). We denote \(F \sim \{0\} \) by \(F^* \).

M. Gerstenhaber and H. C. Myung [4] showed that commutative, power-associative nilalgebras of dimension 4 over fields of characteristic \(\neq 2 \) are nilpotent and determined the isomorphic classes. They found one family of algebras parametrized by \(F/(F^*)^2 \) and four individual algebras.

Theorem 4. If \(\mathfrak{A} \) is a commutative power-associative nilalgebra over \(F \) with dimension and nilindex 4, then \(\mathfrak{A} \) has a pair \((a, b) \in \mathcal{P}(\mathfrak{A}) \) where the nontrivial and nonzero product belong to one and only one of the list below:

\[
\begin{align*}
A_1(\alpha) : b^2 & = \alpha a^2 \quad (\alpha \in F) \\
A_2 : b^2 & = a^3 \\
A_3 : \quad ba & = a^2 \\
A_4 : b^2 & = a^3 \quad ba = a^2 \\
A_5 : b^2 & = a^2 \quad ba = a^2
\end{align*}
\]

where \(A_1(\alpha) \) is isomorphic to \(A_1(\alpha') \) if and only if there exists \(\gamma \in F^* \) such that \(\alpha' = \gamma^2 \alpha \).
A description of commutative power-associative nilalgebras of dimension 5 was given by I. Correa and A. Suazo in [2] in the Jordan case, and by L. Elgueta and A. Suazo in [3] for algebras that are not Jordan.

Lemma 5. If \mathfrak{A} is a commutative power-associative nilalgebra over the field F with dimension and nilindex 5 and $(a, b) \in \mathcal{P}(\mathfrak{A})$, then $b^2 \in \mathfrak{A}^3$ and $ba^2 - 2a(ba) \in \mathfrak{A}^4$.

In Theorem 6, we will show a classification of such algebras without proof.

Theorem 6. If \mathfrak{A} is a commutative power-associative nilalgebra of dimension and nilindex 5, then \mathfrak{A} has a basis $\{b, a, a^2, a^3, a^4\}$ with $(a, b) \in \mathcal{P}(\mathfrak{A})$, and the other nonzero products belong to one and only one of the types listed below.

- $A_1(\alpha) : b^2 = a^3 + \alpha a^4$, $ba = a^2$, $ba^2 = 2a^3$, $(\alpha \in F)$,
- $A_2(\alpha) : b^2 = \alpha a^4$, $ba = a^2$, $ba^2 = 2a^3$, $(\alpha \in F)$,
- $A_3(\alpha) : b^2 = \alpha a^4$, $ba^2 = a^4$, $(\alpha \in F)$,
- $A_4(\alpha) : b^2 = \alpha a^4$, $ba^2 = a^4$, $(\alpha \in F)$,
- $A_5 : b^2 = a^3$, $ba^2 = a^4$,
- $A_6 : b^2 = a^3$.

Furthermore, we have the following conditions for two algebras in such a class to be isomorphic. For $i \in \{2, 4\}$ we have that $A_i(\alpha) \cong A_i(\alpha')$ if and only if there exists $\gamma \in F^* \text{ such that } \alpha' = \gamma^2 \alpha$. Next, $A_3(\alpha) \cong A_3(\alpha')$ if and only if $\alpha = \alpha'$. Finally, we have that $A_1(\alpha) \cong A_1(\alpha')$ if and only if there exists $\gamma \in F^*$ such that

$$\alpha' = \frac{16\alpha - \gamma^4 + 1}{16\gamma^4}.$$

We observe that the algebras $A_4(\alpha)$ are associative. The algebras $A_3(\alpha)$, A_5 and A_6 are Jordan and are not associative. On the other hand, the algebras $A_1(\alpha)$ and $A_2(\alpha)$ are not Jordan.

Lemma 7. Let \mathfrak{A} be a commutative power-associative nilalgebra over the field F with dimension and nilindex 6. Take $(a, b) \in \mathcal{P}(\mathfrak{A})$. Then there exist scalars $\alpha, \beta, \lambda, \lambda_1, \lambda_2 \in F$ such that

\begin{align*}
 b^2 &= \alpha a^4 + \beta a^5, \\
 ba &= \lambda a^2, \\
 ba^2 &= \lambda_1 a^4 + \lambda_2 a^5, \\
 ba^3 &= 2\lambda a^4 - \lambda_1 a^5.
\end{align*}

\((7) \)

Reciprocally, if $\alpha, \beta, \lambda, \lambda_1$ and λ_2 are scalars and \mathfrak{A} is a commutative algebra with basis $\{b, a, a^2, a^3, a^4, a^5\}$ and products $ba^4 = ba^5 = a^6 = 0$, $a'a^j = a^{i+j}$ for
all \(k \geq 6 \) and for all positive integers \(i, j \) and (7), then \(\mathfrak{B} \) is a power-associative nilalgebra of dimension and nilindex 6. Furthermore, \(\mathfrak{A} \) is Jordan if and only if \(\lambda = 0 = \lambda_1 \).

Proof. By (6), we know that \(b^2 \in \mathfrak{A}^2 = \mathfrak{A}_2^2 \) and \(ba^k \in \mathfrak{A}^{k+1} = \mathfrak{A}_a^{k+1} \) for \(k = 2, 3 \).

Because \((a, b) \in \mathcal{P}(\mathcal{A}) \), we have that \(ba = \lambda a^2 \). By (4) we have that \(a^2(ba^2) = ba^4 = 0 \) so that \(ba^2 \in \mathfrak{A}_a^4 \). Let \(\lambda_1, \lambda_2 \in F \) such that \(ba^2 = \lambda_1 a^4 + \lambda_2 a^5 \). Now Lemma 1 forces \(ba^3 = -a(ba^2) + 2a^2(ba) = -a(ba^2) + 2\lambda a^4 \) and hence \(ba^3 = 2\lambda a^4 - \lambda_1 a^5 \). Next, \(0 = p(a, a, b, b)/4 = a(ab^2) + b(b^2) + 2a(b(ba)) + 2b(a(ba)) - 4(ba)^2 - 2a^2b^2 = -a^2b^2 \) so that \(b^2 \in \mathfrak{A}_a^4 \). This completes the proof of the first part of the lemma.

Reciprocally, let \(x = \xi b + y \) be an element in \(\mathfrak{B} \), where \(y = \sum_{i=1}^5 \xi_i a^i \). Then

\[
\begin{align*}
x^2 &\equiv y^2 + 2\xi_1 \lambda a^2 \mod (a^4, a^5), \\
x^3 &\equiv y^3 + 2\xi_1 \lambda \lambda^3 + \xi_1 (\xi_1 \lambda + 2\xi_2 \lambda_1 + 6\xi_3 \lambda) a^4 \mod (a^5), \\
x^4 &\equiv (x^2)^2 = y^4 + 4\xi_1 \lambda (\xi_1 + \xi \lambda) a^4 + (8\xi_2 \lambda^2) a^5, \\
x^5 &\equiv \xi_1 (\xi_1 + 2\xi \lambda) a^5,
\end{align*}
\]

and hence \(\mathfrak{B} \) is a power-associative nilalgebra of nilindex 6.

Finally, we observe that \((a^2b)a - a^2(ba) = \lambda_1 a^5 - \lambda a^4 \) and hence \(\lambda = 0 = \lambda_1 \) if \(\mathfrak{A} \) is Jordan. Reciprocally, if \(\lambda = 0 = \lambda_1 \), then \((b - \lambda_2 a^3)A^2 = 0 \) and Theorem 2.1 of [3] implies that \(\mathfrak{A} \) is Jordan. This completes the proof of the lemma. \(\Box \)

Lemma 8. Let \(\mathfrak{A} \) be a commutative power-associative nilalgebra over the field \(F \) with dimension and nilindex 7. Take \((a, b) \in \mathcal{P}(\mathcal{A}) \). Then \(ba = 0 \) and there exist scalars \(\alpha, \beta, \lambda, \lambda_1, \lambda_2 \in F \) such that

\[
\begin{align*}
b^2 &= \lambda_2 a^4 + \alpha a^5 + \beta a^6, \\
ba^2 &= \lambda a^4 + \lambda_1 a^5 + \lambda_2 a^6, \\
ba^3 &= -\lambda a^5 - \lambda_1 a^6, \\
ba^4 &= \lambda a^6.
\end{align*}
\]

Reciprocally, if \(\alpha, \beta, \lambda, \lambda_1 \) and \(\lambda_2 \) are scalars and \(\mathfrak{B} \) is a commutative algebra with basis \(\{b, a, a^2, a^3, a^4, a^5, a^6\} \) and products \(ab = 0 = ba^5 = ba^6 = a^6, a^k a^j = a^{k+j} \) for all \(k \geq 7 \) and for all positive integers \(i, j \) and (9), then \(\mathfrak{B} \) is a power-associative nilalgebra of dimension and nilindex 7.

Furthermore, \(\mathfrak{A} \) is Jordan if and only if \(\lambda = 0 = \lambda_1 \).

Proof. Because \((a, b) \in \mathcal{P}(\mathcal{A}) \) and (6), we know that \(b^2 \in \mathfrak{A}^2 = \mathfrak{A}_a^2, ba = \lambda_0 a^2, ba^k \in \mathfrak{A}^{k+1} = \mathfrak{A}_a^{k+1} \) for \(k = 2, 3, 4, ba^5 = 0 \) and \(ba^6 = 0 \).
Combining the above relations and (i) of Lemma 1 we have that \(\lambda_0 a^6 = a^4 (ba) = ba^5 = 0 \) so that \(\lambda_0 = 0 \) and hence \(ba = 0 \). Also, by (i) of Lemma 1 we have \(a^3 (ba^2) = ba^5 = 0 \) and hence \(ba^2 \in \mathbb{F}_2 \). Thus, we have \(ba^2 = \lambda a^4 + \lambda_1 a^5 + \lambda_2 a^6 \), for \(\lambda, \lambda_1, \lambda_2 \in \mathbb{F} \). Using (4) we have that \(ba^3 = -a (ba^2) + a^2 (ba) = -a (ba^2) = -\lambda a^5 - \lambda_1 a^6 \) and \(ba^4 = a^2 (ba^2) = \lambda a^6 \). Now

\[
0 = p(a, a, b, b)/4 = \\
a(ab^2) + b(ba^2) + 2a(b(ba)) + 2b(a(ba)) - 2a^2 b^2 - 4(ab)^2 = \\
a(ab^2) + b(ba^2) - 2a^2 b^2 = -a(ab^2) + b(ba^2) = -a(ab^2) + \lambda^2 a^6,
\]
since \(a(ab^2) = a^2 b^2 \) and \(b(ba^2) = b(\lambda a^4 + \lambda_1 a^5 + \lambda_2 a^6) = \lambda^2 a^6 \). Thus, we have proved that \(a(ab^2) = \lambda^2 a^6 \). This completes the proof of the first part of the lemma.

Reciprocally, let \(x = \xi b + y \) be an element in \(\mathfrak{B} \), where \(y = \sum_{i=1}^6 \xi_i a^i \). Then

\[
x^2 \equiv y^2 + \xi \lambda (\xi \lambda + 2\xi_2) a^4 \mod \langle a^5, a^6 \rangle, \\
x^3 \equiv y^3 + \xi \xi_1^2 \lambda a^4 + \xi \xi_1 (\xi \lambda^2 + \xi_1 \lambda_1) a^5 \mod \langle a^6 \rangle, \\
x^4 = (x^2)^2 = y^4 + 2\xi \xi_1^3 \lambda (\xi \lambda + 2\xi_2) a^6, \\
x^5 = y^5 + \xi \xi_1^2 \lambda a^6, \\
x^6 = y^6 = \xi^6 a^6,
\]
so that \(\mathfrak{B} \) is a power-associative nilalgebra of nilindex 7.

Finally, if \(\mathfrak{A} \) is Jordan, then \(0 = (a^2 b)a - a^2 (ba) = (a^2 b)a = \lambda a^5 + \lambda_1 a^6 \), so that \(\lambda = 0 = \lambda_1 \). Reciprocally, if \(\lambda = 0 = \lambda_1 \), then \((b - \lambda_2 a^4) \mathfrak{A}^2 = 0 \) and Theorem 2.1 of [3] implies that \(\mathfrak{A} \) is Jordan. This proves the lemma.

Theorem 9. Let \(\mathfrak{A} \) be a commutative power-associative nilalgebra over the field \(\mathbb{F} \) with dimension and nilindex \(n \) and \(n \geq 8 \). Take \((a, b) \in \mathcal{P}(\mathfrak{A}) \). Then

\[
ba = 0, \\
a^2 b^2 = 0, \\
a^3 (ba^2) = 0, \\
b a^3 = -a (ba^2), \\
b a^4 = a^2 (ba^2), \\
b a^k = 0,
\]
for all \(k \geq 5 \).

Reciprocally, if \(\alpha, \beta, \lambda, \lambda_1 \) and \(\lambda_2 \) are scalars in \(\mathbb{F} \) and \(\mathfrak{B} \) is a commutative algebra with basis \(\{ b, a, a^2, a^3, \ldots, a^{n-1} \} \) and products \(ba = 0, a^6 = 0, a^i a^j = a^{i+j} \), for all positive integers \(i, j \), and
\[b^2 = \alpha a^{n-2} + \beta a^{n-1}, \]
\[ba^2 = \lambda a^{n-3} + \lambda_1 a^{n-2} + \lambda_2 a^{n-1}, \]
\[ba^3 = -\lambda a^{n-2} - \lambda_1 a^{n-1}, \]
\[ba^4 = \lambda a^{n-1}, \]
\[ba^k = 0, \quad \forall k \geq 5, \]

then \(\mathfrak{B} \) is a power-associative nilalgebra of dimension and nilindex \(n \).

Furthermore, \(\mathfrak{B} \) is Jordan if and only if \(\lambda = 0 = \lambda_1 \).

Proof. Because \((a, b) \in \mathcal{P}(\mathfrak{A})\), we know that \(\mathfrak{A}^2 \subset \mathfrak{A}^2, \) \(ba = \lambda_0 a^2, \) \(ba^k \subset \mathfrak{A}^{k+1} \) for \(k = 2, \ldots, n - 3, \) \(ba^{n-2} = 0 \) and \(ba^{n-1} = 0 \). By (i) of Lemma 1 we have that \(\lambda_0 a^{n-1} = a^{n-3}(ba) = ba^{n-2} = 0 \) so that \(\lambda_0 = 0 \) and hence \(ba = 0 \). Also, by (i) of Lemma 1 we have

\[
a^3(ba^2) = a^4(ba) = 0, \]
\[
ba^k = a^{k-1}(ba) = 0 \quad \text{for} \quad k \geq 5. \]

Using identities of (4) we have that \(ba^3 = -a(ba^2) + a^2(ba) = -a(ba^2) \) and \(a^2(ba^2) = ba^4 \). Now

\[
0 = p(a, a, b, b)/4 = a(ab^2) + b(b(a^2)) + 2a(b(ba)) + 2b(a(ba)) - 2a^2b^2 - 4(ab^2) = a(ab^2) - 2a^2b^2 = -a(ab^2) \]

so that \(a(ab^2) = 0 \). This completes the proof of the first part of the lemma.

Reciprocally, let \(x = \xi b + y \) be an elements in \(\mathfrak{B} \), where \(y = \sum_{i=1}^{n-1} \xi_i a^i \).

Then

\[
x^2 \equiv y^2 + 2 \xi_2 \lambda a^{n-3} \mod \langle a^{n-2}, a^{n-1} \rangle, \]
\[
x^3 \equiv y^3 + \xi_1 (\lambda a^{n-3} + \lambda_1 a^{n-2}) \mod \langle a^{n-1} \rangle, \]
\[
x^4 = (x^2)^2 = y^4 + 4 \xi_2 \lambda a^{n-1}, \]
\[
x^5 = y^5 + \xi_1 \lambda a^{n-1}, \]
\[
x^k = y^k \quad \text{for all} \; \; k > 5, \]
\[
x^{n-1} = y^{n-1} = \xi_1 a^{n-1}, \]

so that \(\mathfrak{B} \) is a power-associative nilalgebra of nilindex \(n - 1 \).

Finally, if \(\mathfrak{B} \) is Jordan, then \(0 = (a^2b)a - a^2(ba) = (a^2b)a = \lambda a^{n-1} + \lambda_1 a^{n-1}, \)

so that \(\lambda = 0 = \lambda_1 \). Reciprocally, if \(\lambda = 0 = \lambda_1 \), then \((b - \lambda_2 a^{n-3}) \mathfrak{B}^2 = \{0\} \) and Theorem 2.1 of [3] implies that \(\mathfrak{B} \) is Jordan. This completes the proof of the theorem. \[\square \]
We therefore have the following result.

Remark 10. Let \mathfrak{A} be a commutative nilalgebra of dimension and nilindex n. Take $(a, b) \in \mathcal{P}(\mathfrak{A})$ and $\lambda \in F$ such that $ab = \lambda a^2$. If $x = \xi b + \sum_{i=1}^{n-1} \xi_i a^i$ is an element of \mathfrak{A}, then:

(i) for $n = 5, 6$ we have that x has nilindex n if and only if $\xi_1(\xi_1 + 2\xi \lambda) \neq 0$;

(ii) for $n \geq 7$, we have that x has nilindex n if and only if $\xi_1 \neq 0$.

References

(Recibido en junio de 2011. Aceptado en diciembre de 2012)