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1. Introduction

Commutative power-associative algebras are a natural generalization of associa-
tive, alternative and Jordan algebras. An algebra is said to be power-associative
if the subalgebra generated by any element is associative. We refer the reader
to the paper [1] for more information. In [2] the authors classify Jordan power-
associative nilalgebras of nilindex n and dimension n > 4. In this paper we
give the structure constants for power-associative nilalgebras of nilindex n and
dimension n > 5.

Throughout this paper, 2 will be a commutative power-associative nilalge-
bra of dimension n over a field F of characteristic # 2,3 and 5. For every a € 2
we will denote by 2, the subalgebra of 2 generated by a. We define inductively
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the powers of a € 2 by a' = a and a* = aa*~! for k > 1. In a commutative
power-associative algebra 2, we have that a’a’ = a’*7 for every a of 2 and
all positive integers ¢, and hence 2, is spanned, as a vector space, by all
the powers a* with k a positive integer. We remember that in a commutative
power-associative algebra, the algebra generated by all right multiplications
R, : A — 2, with z € 2,, is in fact generated by R, and R,2. A commuta-
tive algebra is called Engel if every right multiplication of 2 is nilpotent. We
will use the process of linearization of identities, which is an important tool
in our investigation. Thus, p(z,y, z,t) = 0 will be the complete linearization
of the fourth power-associative identity x* — (222?) = 0. Next, linearizing the
identities 2223 = z(z22?) and 2323 = (22)% we get the following new identities

oy = 223 (2y) + 22 (2%y) + 222 (:E(xy)) — 4z (x2 (xy)), (1)
P(a%y) + 20 (a(oy) = 20° (3 ay)) + " (o). @)

For every positive integer > 3, the identity p(a”~2,a, a,b) = 0 implies the
well known multiplication identity

Ror = = (8Ryr-1Rq — 2RqRyr—1 + 4Ry2Ryr-2 — 2R2R yr-2—

Q| =

Ryr-2R,2 — 2RaRyr-2Ry — 2R,—2R2).  (3)

We observe that each product in a commutative power-associative algebra
A with b, one time, and a, s times, can be written as a™ (ai2 ( o (a*b)- - )),
where i1, ..., are positive integers and i; +- - - + i = s. We get the following
relevant facts about the structure of a commutative power-associative algebra
2A.

Lemma 1. Let a,b € A such that ba € A,. Then

ba® = —a(ba®) + 2a*(ba),
ba* = a®(ba?), (4)
a®(ba?) = a*(ba).

Furthermore,

(i) If ba? € Ay, then bA, C A, and a® (ai2(~-~(ai’°b) . ))

= a*"L(ba) for
all positive integers k,i1,...,1, where s =141 + -+ + i > 5.

(i) If ba =0 and bA3 C A,, then
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ba® = —a(ba?),
a®(ba®) =0,
ba® = —a(ba*) = 2a*(ba®),
ba® = —a(ba®) = a*(ba®) = a*(ba*), and
ah (aiZ(-~-(ai’“b) . )) =0,
for all positive integers k,iy, ... i where iy + -+ i > 7.

Proof. Let a,b € 2 such that ab € 2,. From identity p(a,a,a,b) = 0 we
get immediately ba® = —a(ba?) + 2a?(ba). Setting = a and y = b in (1)
immediately yields relation ba* = a?(ba?). Replacing = by a and y by b in (2)
we get a®(ba?) = a*(ba).

Now we will prove (i). If ba? € 2,, then using (3) we can prove inductively
on r > 3 that there exist A, u, € F such that A, + pu, =1 and

a"b = \a""2(ba?) + pra” "t (ba). (5)

The cases r = 3,4 are proved above. For r > 4, we obtain from (3) and the
induction hypothesis that ba” = (1/3)(4a"~*(ba) — a"~%(ba?) + 2a®(ba"?) —
2a(ba""1)) = (1/3)(4a" " (ba) —a" 2 (ba?) +2 (A, —2a"2(ba?) + pr—2a" " (ba)) —
2(Ar—1a"72(ba?) + pr—1a” " (ba))) = (1/3)((—=1 4 22 — 2X,—1)a" "% (ba?) +
(44242 —2p1,—1)a" " (ba)). Thus, if ba® € 2, then relation (5) immediately
yields relation b, C 4. If i = 1, then a® (a™(---(a™b)---)) = a*"*(ba)
since ba € A, and A, is an associative algebra. If ba®> € A, and i, = 2,
then a™ (a2 (--- (a™b)---)) = a*"2(ba?®) = a**(a’(ba?)) = a*~°(a*(ba)) =
a®~1(ba), since ba? € A, and a®(ba?) = a*(ba). If ba? € A, and i, > 3, then we
already proved that ba®* € 2, and hence

a (@ (- (a™b)--+)) = a® " (a'b) =
a’ " ()\ikai"‘_2(ba2) + uikai’“_l(ba)) =
N a® "k (ai’“_z(baz)) + pug,at (ai’“_l(ba)) =
Nipa® 1 (ba) 4+ i a® " (ba) = (Niy, + iy )a® " (ba) = a* 7 (ba).
For (ii), we will assume in what follows that ba = 0 and b3 C 2, that
is ba = 0 and ba* € 2, for all positive integers k > 3. Using (4) we get
ba® = —a(ba?) and a>(ba?) = 0. Now
0 = p(a,a,a,ba®)/6 =
a’®(ba®) + a(a®(ba®)) + 2a(a(a(ba®))) — 4a®(a(ba®)) =
a(ba®) — 2a(a(ba®)) + 4a®(ba®) = a(ba*) + 2a°(ba®)
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so that a(ba) = —2a? (ba3). Next, relation (3) for r = 5 forces ba® =
(1/3)( = 2a(ba*) + 4a ( ) 2a(a(ba’ ))) (1/3)( = 2a(ba®) + 24*(ba®)) =
(1/3)( — 3a(ba)) = ). Setting z = a and y = ba? in (1) immediately

ylelds relation a*(ba ) ( %(ba?)) and now using second identity of (4) we
get a*(ba?) = a?(ba). Thus

0 =p(a®,a® a®b)/6 = ba® + a*(ba') + 2a* (a®(ba®)) — 4a*(ba®) =
ba® — a*(ba?).

Now, a(ba®) = —a(a(ba*) = —a?(ba*) = —ba®.
Taking x = a and y = ba? in identity (2) we get

0 = a3(ba*) + 2a® (a(a(ba®))) — 2a°(a*(a(b )) ( ) =
a®(ba*) — a*(a(ba®)) = a(a*(ba")) + a
a(ba®) + a*(ba®) = a(ba) ( (a*(ba ))
a(ba®) + a(a(ba’ ))/2 = a(ba®) — a(ba®)/2 = a(ba®)/2.

Finally, we will prove that © = a™(a™(---(a’b)---)) vanishes for all
i1,19,...,1; positive integers with s = Zle iy > 7. Using (3), we can prove, by
induction on s, that the element a® (asz ( < (a®b)--- )) is spanned by the set of
all elements a’* (a?2(-- - (a’tb) - -+ )) with j1,...,j; € {1,2} and j1+---+ji = s.
Thus, we can assume, without loss of generality, that iy,...,4 € {1,2}. If
i, = 1, then x = 0 since ba = 0. If 4, = 2 and iy = 1, then z =
—a (a2 (- (a™*2(ba®))--+)) = —a*""(a(a(a®(ba®)))) = a* " (a(ba®))/2 =
0 since ba® € Y,. If 3, = 341 = 2, then z = a®* (aiZ(--~ (ai’“*Z(ba‘l)) )) =
a*~"(a(a*(ba'))) = a*~"(a(ba®)) = 0. This complete the proof of the lemma.

o

2. Nilindex n

Throughout this section, 2 will be a commutative power-associative nilalgebra
of dimension and nilindex n. Let a be an element in 2 with maximal nilindex.
It is well known that A¥ = A% for all k& > 2 (see [2]). Hence

a2 C A, (6)
for all j > 1. Furthermore, A" = 2" = 0 and for each z € 2, the power z"~!
is in the annihilator of 2.

For a finite list S = {a1,...,a,} we write (a1,...,a,) for the subspace
consisting of all the linear combinations of elements of S.

Lemma 2. Let a be an element in A with mazimal nilindex and k an integer
with 1 < k < n — 1. Then there exists by, € A~ A, such that bya® = 0. The
annihilator of a* in A is (bg,a" %, a"F 1 a"h).
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Proof. Take b € A ~ 2A,. Then {b,a,aQ,...,a”*I} is a basis of 2. By the
above lemma, ba* € Ql’;“, so that ba* = MNgp1a®t + -+ N,_1a™ 1, for
Met1s-- > An_1 in F. Then bra® =0 for by, = b — A\py1a — -+ — Ay_1a™ k7L,

Finally, let & = &by, + E1a + E2a% + - - + &,_1a™ ! be an arbitrary element
in A. Then za® = &obra® + &0 + &aF 2 + o+ 610t = §aF T +
&aFt? 4. 4 &, _p_1a"" " This proves the lemma.

Corollary 3. Let a € 2 be an element in A with maximal nilindex. Then there
exists b € AN A, such that ba € (a*) and a™2b = 0. Furthermore, an element
c € A satisfies ca € (a?) and ca™? = 0 if and only if c € (b,a™" ).

We will denote by P() the set of ordered pairs (a,b) of elements in A
where a has maximal nilindex, and b € 2 \ 2, with ba € (a?) and ba"~? = 0.
By definition and relation (6), we have that

b2 e A2,
ba = Aa?,
ba® c (a1, e = AR for k=2,...,n—3,

ba" 2 =ba""t =0,

for any (a,b) € P(2).

For commutative power-associative nilalgebras of dimension 3 and nilindex
3, we have one family of algebras A(a) = (b,a,a?), with v* = aa?, ba = 0,
parametrized by F/(F*)?2, that is A(a) is isomorphic to A(a’) if and only if
there exists v € F* such that o’ = y2a. We denote F ~ {0} by F™*.

M. Gerstenhaber and H. C. Myung [4] showed that commutative, power-
associative nilalgebras of dimension 4 over fields of characteristic # 2 are nilpo-
tent and determined the isomorphic classes. They found one family of algebras
parametrized by F/(F*)? and four individual algebras.

Theorem 4. If A is a commutative power-associative nilalgebra over F with
dimension and nilindex 4, then 2 has a pair (a,b) € P(2) where the nontrivial
and nonzero product belong to one and only one of the list below:

Ai(a) : b = ad® (e F)
Ay b? =48
As: ba = a’®
Ay 0?2 =a? ba = a®
As b = a2 ba = a®

where Aj(«) is isomorphic to Ai(d) if and only if there exists v € F* such
that o = v2a.
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A description of commutative power-associative nilalgebras of dimension 5
was given by I. Correa and A. Suazo in [2] in the Jordan case, and by L. Elgueta
and A. Suazo in [3] for algebras that are not Jordan.

Lemma 5. If 2 is a commutative power-associative nilalgebra over the field F
with dimension and nilindezx 5 and (a,b) € P(A), then b*> € A3 and
ba? — 2a(ba) € AL.

In Theorem 6, we will show a classification of such algebras without proof.

Theorem 6. If A is a commutative power-associative nilalgebra of dimension
and nilindex 5, then A has a basis {b,a,a? a®, a*} with (a,b) € P(A), and the
other nonzero products belong to one and only one of the types listed below.

Ay(a) : b* = a® + ad?, ba = a?, ba? = 2a, (v € F),
As(a) : b = aa®, ba = a?, ba? = 2a?, (€ F),
As(a) : b* = aa?, ba? = a*, (€ F),
Ay(a) : b = ad®, (€ F),
As b =a?, ba® = a*,
Ag : b? = a®.

Furthermore, we have the following conditions for two algebras in such a class
to be isomorphic. For i € {2,4} we have that A;(«) = A;(¢') if and only if
there exists v € F* such that o' = y?a. Neat, Az(a) = As(a’) if and only if
a = d'. Finally, we have that A1 (o) = A1(e) if and only if there exists v € F*
such that .
o — 16 —~v* + 1'
164
We observe that the algebras A4(«) are associative. The algebras As(a),

As and Ag are Jordan and are not associative. On the other hand, the algebras
Ai(a) and As(a) are not Jordan.

Lemma 7. Let 2 be a commutative power-associative nilalgebra over the field
F with dimension and nilindex 6. Take (a,b) € P(). Then there exist scalars
a, By A, A1, A2 € F such that
b’ = aa® + Ba®,
ba = \a?,
ba® = M\a* + )\gas,

ba® = 2 a* — \a’.

(7)

Reciprocally, if a, B, A\, A\1 and Ao are scalars and B is a commutative algebra

with basis {b,a,a? a®, a*, a®} and products ba* = ba® = a* =0, a’a? = a™*7 for
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all k > 6 and for all positive integers i, j and (7), then B is a power-associative
nilalgebra of dimension and nilindex 6. Furthermore, 2 is Jordan if and only
ifA=0=A.

Proof. By (6), we know that v> € A2 = A2 and ba* € AT = AT for
k=23

Because (a,b) € P(A), we have that ba* = 0 and there exists A € F such
that ba = Aa?. By (4) we have that a?(ba?) = ba* = 0 so that ba® € 2.
Let A1,A2 € F such that ba® = Xia* + Ma®. Now Lemma 1 forces ba® =
—a(ba?) + 2a*(ba) = —a(ba?) + 2Aa* and hence ba® = 2\a* — A\1a®. Next, 0 =
pla,a,b,b)/4 = a(ab?)+b(ba?)+2a(b(ba)) +2b(a(ba)) —4(ba)? —2a2b* = —a?b?
so that b? € 2. This completes the proof of the first part of the lemma.

Reciprocally, let x = £b+y be an element in B, where y = Z?:l &a'. Then

2?2 =y? + 266 0a® mod (a*,d®),

3 =y + 25%5)@3 + &4 (§1A1 + 26X + 652)\)a4 mod <a5>,
ot = (2%)? = y' +4EENE + ENa” + (8¢,

a® = € (&1 + 260)%a,

®)

and hence 9B is a power-associative nilalgebra of nilindex 6.

Finally, we observe that (a?b)a —a?(ba) = A\1a® — Xa* and hence A = 0 = \;
if 2 is Jordan. Reciprocally, if A = 0 = Ay, then (b— A2a®)A? = 0 and Theorem
2.1 of [3] implies that 2( is Jordan. This completes the proof of the lemma. o

Lemma 8. Let 2 be a commutative power-associative nilalgebra over the field
F with dimension and nilindex 7. Take (a,b) € P(). Then ba = 0 and there
exist scalars o, B, A\, A1, Aa € F' such that

¥ = Na* + ad® +  BdS,
ba®? = Xt + Md® o+ )\2a6, )
ba® = - A® = A\dS,
ba* = Aa®.

Reciprocally, if a,, 8, A\, A1 and o are scalars and B is a commutative algebra
with basis {b,a,a? a® a* a° a%} and products ab = 0 = ba® = ba® = a*,
a‘a’ = a*J for all k > 7 and for all positive integers i,j and (9), then B is a
power-associative nilalgebra of dimension and nilindez 7.

Furthermore, A is Jordan if and only if A =0 = Aq.

Proof. Because (a,b) € P(A) and (6), we know that b* € % = 22, ba = A\ga?,
ba* € AL = A+ for k =2,3,4, ba® = 0 and ba® = 0.
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Combining the above relations and (i) of Lemma 1 we have that A\ga® =
a*(ba) = ba® = 0 so that A\g = 0 and hence ba = 0. Also, by (i) of Lemma 1
we have a®(ba?) = ba® = 0 and hence ba® € . Thus, we have ba®? = Aa* +
A1a®+Xaa®, for A\, A1, \a € F. Using (4) we have that ba® = —a(ba?) +a?(ba) =
—a(ba?) = —Xa® — \1a® and ba* = a?(ba?) = Aa®. Now

Ozp(a7a’b’b)/4:
a(ab®) + b(ba®) + 2a(b(ba)) + 2b(a(ba)) — 2a*b> — 4(ab)® =
a(ab?) + b(ba®) — 2a%b* = —a(ab?®) + b(ba?) = —a(ab?) + \%a®,
since a(ab?) = a?b? and b(ba?) = b(Aa* + A1a® + X2a®) = A\2aS. Thus, we have

proved that a(ab?) = A2a®. This completes the proof of the first part of the
lemma.

Reciprocally, let © = £b+y be an element in B, where y = Z?:l &;a'. Then

® = y? + EANEN+26)a* mod (a®,a%),
2® = P + EG At + 6 (EN + E1M1)a”® mod (af),
2t = (2%)? = y' + 2AENEN + 262)a’,
2 =y + E€iAd,
0=y = gt
so that B is a power-associative nilalgebra of nilindex 7.

Finally, if 2 is Jordan, then 0 = (a?b)a — a?(ba) = (a?b)a = Xa® + \1a®,
so that A = 0 = A;. Reciprocally, if A = 0 = A1, then (b — A\2a®)A? = 0 and
Theorem 2.1 of [3] implies that 2 is Jordan. This proves the lemma.

Theorem 9. Let 2l be a commutative power-associative nilalgebra over the field
F with dimension and nilindex n and n > 8. Take (a,b) € P(2A). Then

ba = 0,
a’h? =0,
a®(ba?) = 0,
3 5 (10)
ba® = —a(ba®),
ba* = a®(ba?),
ba* =0,
for all k > 5.
Reciprocally, if a, 8, X\, A1 and Ay are scalars in F' and B is a commutative
algebra with basis {b,a,a® a>,...,a" 1} and products ba = 0, a™ = 0, a'a! =

a'*7, for all positive integers i, j, and

Volumen 47, Numero 1, Anio 2013



ON POWER-ASSOCIATIVE NILALGEBRAS 9

o= ad"? +  Ba" 7l
ba®> = Aa"? 4+ Ma"? 4+ Aa"!l,
ba®> = —  Ad"? — e (11)
ba* = a1t
ba* = 0, Vk > 5,

then B is a power-associative nilalgebra of dimension and nilindez n.
Furthermore, B is Jordan if and only if A =0 = \;.

Proof. Because (a,b) € P(21), we know that A% C A2, ba = \ga?, ba® C Ak+!
for k=2,...,n—3,ba" "2 =0and ba""! = 0. By (i) of Lemma 1 we have that
Xoa™ "t = a"3(ba) = ba""? = 0 so that \g = 0 and hence ba = 0. Also, by (i)
of Lemma 1 we have

a®(ba?) = a*(ba) = 0,
ba* = a*"L(ba) =0 for k>5.

Using identities of (4) we have that ba® = —a(ba?) + a?(ba) = —a(ba?) and
a?(ba?) = ba*. Now
0=p(a,a,b,b)/4=
a(ab®) + b(b(a®)) + 2a(b(ba)) + 2b(a(ba)) — 2a*b* — 4(ab)* =
a(ab?) — 2a*b* = —a(ab?)

so that a(ab?) = 0. This completes the proof of the first part of the lemma.
Reciprocally, let # = b+ y be an elements in B, where y = Y7 &a’.

Then

2=y +266 00" mod <a"_27 a"_l>7

3 =93 1 e€? ()\anfg + )xlanfz) mod (a" '),

ot = (2?)? =yt + 4G AT,

2’ =y> +EE AT

¥ =yF  forall k>5,

n—1_ n—1_ ¢m—1 n—1
T =y =& a s

so that 9B is a power-associative nilalgebra of nilindex n — 1.
Finally, if B is Jordan, then 0 = (a?b)a—a?(ba) = (a?b)a = Aa™ "t +A1a" 1,
so that A = 0 = A;. Reciprocally, if A = 0 = Ay, then (b — \2a"3)B2 = {0}

and Theorem 2.1 of [3] implies that 9B is Jordan. This completes the proof of
the theorem. ™
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We therefore have the following result.

Remark 10. Let 2 be a commutative nilalgebra of dimension and nilindex n.
Take (a,b) € P(2) and A € F such that ab = \a®. If = b+ Y1~ &a’ is an
element of 2, then:

(i) for n = 5,6 we have that = has nilindex n if and only if & (& + 2\) # 0;

(ii) for n > 7, we have that x has nilindex n if and only if & # 0.
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