1Universidad Tecnológica de Pereira, Pereira, Colombia. Email: alexguti@utp.edu.co
En este trabajo se hace una demostración alternativa de los resultados [6], donde se estudió la existencia de soluciones T-periódicas para una familia de ecuaciones del tipo Lazer-Solimini con retraso dependiente del estado. Las herramientas utilizadas en la demostración son una combinación de cotas a priori y grado de coincidencia.
Palabras clave: Ecuación de Lazer-Solimini, retraso dependientedel estado, grado de coincidencia, soluciones periódicas.
In this paper, an alternative proof of results in [6] is given; there, the existence of T-periodic solutions of a family of Lazer-Solimini equations with state-dependent delay is studied. The tools used in the proof are a combination of a priori bounds and coincidence degree.
Key words: Lazer-Solimini equation, State-dependent delay, Coincidence degree, Periodic solution.
Texto completo disponible en PDF
Referencias
[1] Hans-Otto Walther , F. H. , T. Krisztin, and J. Wu, Functional Differential Equations with State-Dependent Delay: Theory and Applications, 'Handbook of Differential Equations: Ordinary Differential Equations, A. Canada, P. Drbek, A. Fonda (Eds.)', (2006), Vol. 3, Elsevier, North-Holand, p. 435-545.
[2] A. Capietto, J. Mawhin, and F. Zanolin, 'Continuation Theorems for Periodic Perturbations of Autonomous Systems', Trans. Amer. Math. Soc. 329, (1992), 41-72.
[3] R. D. Driver, 'A Two-Body Problem of Classical Electrodynamics: The One-Dimensional Case', Ann. Phys. 21, (1963), 122-142.
[4] B. Du, C. Bai, and X. Zhao, 'Problems of Periodic for a Type of Duffing Equation with State-Dependent Delay', J. Comput. Appl. Math. 233, (2010), 2807-2813.
[5] W. B. Gordon, 'Conservative Dynamical Systems Involving Strong Forces', Trans. Amer. Math. Soc. 204, (1975), 113-135.
[6] A. Gutiérrez and P. J. Torres, 'The Lazer-Solimini Equation with State-Dependent Delay', Appl. Math. Lett. 25, (2012), 643-647.
[7] D. Hao and S. Ma, 'Semilinear Duffing Equations Crossing Resonance Points', J. Differential Equations 133, (1997), 98-116.
[8] A. C. Lazer and S. Solimini, 'On Periodic Solutions of Nonlinear Differential Equations with Singularities', Proc. Amer. Math. Soc. 99, 1 (1987), 109-114.
[9] S. Ma, Z. Wang, and J. Yu, 'Coincidence Degree and Periodic Solutions of Duffing Equations', Nonlinear Anal. 34, (1998), 443-460.
[10] J. Mawhin, 'Equivalence Theorems for Nonlinear Operator Equations and Coincidence Degree Theory for Some Mappings in Locally Convex Topological Vector Spaces', J. Difference Equations Appl. 12, (1972), 610-636.
[11] S. P. Travis, 'A One-Dimensional Two-Body Problem of Classical Electrodynamics', SIAM J. Appl. Math. 28, 3 (1975), 611-632.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv47n1a03,
AUTHOR = {Gutiérrez, Alexander},
TITLE = {{Ecuación de Lazer-Solimini con retraso dependiente del estado: una demostración alternativa}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2013},
volume = {47},
number = {1},
pages = {29--38}
}