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ABsTrACT. Using a new way to represent links, that we call a butterfly repre-
sentation, we assign to each 3-bridge link diagram a sequence of six integers,
collected as a triple (p/n,q/m,s/l), such that p > ¢ > s > 2,0 < n < p,
0 <m < qgand 0 <[ <s. For each 3-bridge link there exists an infinite num-
ber of 3-bridge diagrams, so we define an order in the set (p/n,q/m,s/l) and
assign to each 3-bridge link L the minimum among all the triples that corre-
spond to a 3-butterfly of L, and call it the butterfly presentation of L. This
presentation extends, in a natural way, the well known Schubert classification
of 2-bridge links.

We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to
correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple
(p/n,q/m,s/l) we give an algorithm to draw a canonical 3-bridge diagram of
the associated link. We present formulas for a 3-butterfly of the mirror image
of a link, for the connected sum of two rational knots and for some important
families of 3-bridge links. We present the open question: When do the triples
(p/m,q/m,s/l) and (p'/n’,q’'/m’,s'/l") represent the same 3-bridge link?

Key words and phrases. Links, 3-bridge links, Bridge presentation, Link dia-
gram, 3-butterfly, Butterfly presentation.
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REesuMEN. Usando una nueva forma de representar enlaces, que se denomina

representacion en mariposa, se asocia a cada diagrama de 3 puentes de un en-
lace una sucesién de seis enteros, organizados como una tripla (p/n, q/m, s/l),

@ Partially Support by Colciencias, code 1118-521-28160.

113



114 H. M. HILDEN, J. M. MONTESINOS, D. M. TEJADA & M. M. TORO

talquep > ¢g>s5s2>22,0<n<p 0<m<qy0 <l < s Para cada
enlace de 3 puentes existe un nimero infinito de diagramas de 3 puentes, por
lo que se define un orden en el conjunto de triplas de la forma (p/n,q/m, s/l)
y se asigna a cada enlace de 3 puentes L el minimo entre todas las triplas que
corresponden a una 3-mariposa de L, y que se llama la presentacion en mari-
posa de L. Esta presentacién extiende, en una forma natural, la bien conocida
clasificacién de Schubert de los enlaces de 2 puentes.

Se obtienen condiciones necesarias y suficientes para que una tripla de la
forma (p/n,q/m,s/l) corresponda a una 3-mariposa y por tanto, a un dia-
grama de 3 puentes de un enlace. Dada una tripla (p/n,q/m,s/l) se da un
algoritmo para dibujar, en forma candnica, un diagrama de 3 puentes del en-
lace de 3 puentes asociado. Se presentan férmulas para la 3-mariposa de la
imagen espejos de un enlace de 3 puentes, para la suma conexa de dos nudos
racionales y de algunas familias importantes de enlaces de 3 puentes. Queda
la pregunta abierta: ;Cudndo dos triplas (p/n,q/m,s/l) y (p'/n',q'/m’, s /')
representan el mismo enlace de 3 puentes?.

Palabras y frases clave. Enlaces, enlaces de 3 puentes, presentacién en puentes,
diagrama de enlace, 3-mariposa, presentacién en mariposa.

1. Introduction

Our goal in this paper is to study 3-bridge link using a new presentation of links,
called butterfly, that we introduced in [6], [5], [4], [7] and [8]. Up to now, the
classification of 3-bridge links has not been realized, and it presents difficulties
that contrast with the case of 2-bridge links, that were completely classified by
Schubert, [19].

We will associate to each 3-bridge link diagram a set of 6 integers, extending
the classification of 2-bridge links given by Schubert, [19]. As each 3-bridge link
admits different 3-bridge diagrams, (in fact, infinitely many), the situation is
more difficult and we can not expect the same type of classification that was
obtained for 2-bridge links.

In Section 2 we present a brief review of the concept of m-butterfly and
some results from [7] and [8]. The main result in [7], that the butterfly number
coincides with the bridge number, is the starting point for our work: to study
the 3-butterflies with the objective of classifying the 3-bridge links. For our
purpose, we need to consider only reduced 3-bridge link diagrams, so we will
impose restrictions on the type of butterfly we will consider.

In Section 3 we assign a set of positive integers {p,n,q, m,s,l} to each
3-butterfly, that we write as a triple (p/n,q/m,s/l) for geometrical reasons,
to be explained in that section. We obtain necessary and sufficient condi-
tions for a triple (p/n,q/m,s/l) to correspond to a 3-butterfly and so to a
3-bridge link. This is done by defining a permutation p associated to each
triple (p/n, ¢/m, s/1) and studying its cyclic decomposition. This cyclic decom-
position answers the question of the number of components of the link diagram
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associated to the 3-butterfly (p/n, q/m, s/l) and provides an algorithm to draw
a canonical link diagram associated to it. We define the concept of butterfly
equivalence and find some conditions for two 3-butterflies to be equivalent. It
is an open problem to find necessary and sufficient conditions for the equiva-
lence of two 3-butterflies and to find a complete set of “moves” to transform
a 3-butterfly into an equivalent one. All the constructions and algorithms are
easily implemented, and we have done so using the software Mathematica. A
variation of the permutation p allows us to find the combinatorial knot (or
Gauss code) associated to a link diagram given by (p/n,q/m, s/l). Then it is
possible to compute invariants of the link, such as the link group or an invariant
polynomial. See [24], [17] and [23] for details on combinatorial knots.

In Section 4 we define the butterfly representation of a link L. We do so by
ordering the set of all 3-butterflies and taking the minimum, in that order, of
all 3-butterflies that represent the link L.

In Section 5 we give a 3-butterfly representation of two basic link construc-
tions: the mirror image of a 3-bridge link and the connected sum of two rational
knots. Also, we give a 3-butterfly representation of some families of 3-bridge
links: the pretzel P(a,b,c), the torus link T'(p, 3) and the 3-bridge knots up to
9 crossings in Rolfsen’s table [18]. We end this section by giving a 3-butterfly
interpretation of the constructions given in [2], [12] and [13].

In the last section we present some concluding remarks regarding the open
problems that arise and the applications of our construction. The basic infor-
mation on links and knots can be found in [1], [3] or [14].

2. About n-Butterflies

Intuitively, an m-butterfly is a 3-ball B3 with m > 0 polygonal faces on its
boundary S? = 0B2, such that each face C is subdivided by an arc tc in
two subfaces (that have the same number of vertices) that are identified by a
“reflection” along this arc tc. Thurston’s construction of the borromean rings,
[21] and [22], is a nice example of this construction, that we generalize for all
links in [7]. In this example we notice that the cube is actually a closed 3-cell
B3, with twelve faces on its boundary that are identified by reflections along
some axes. Moreover, pasting the faces of the cube we obtain S and the set of
axes become the borromean rings. In terms of butterflies, that we are going to
define in Section 2.1, the cube edges and vertices form the graph and the axes
form the trunk of a 6-butterfly, (see Figure 1a).

In this section we give the definitions and basic aspects of the constructions
given in [7], and in the rest of the paper we will consider the case m = 3. For
more details and proofs see [7].
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2.1. Definitions and Constructions

Let R be a connected graph embedded in S$? = B2, where B? is a closed
3-cell, so that S%2 — R is a disjoint union of open 2-cells. We denote each open
2-cell generically by C.

For any n € N, let P,,, be the regular polygon that is the closed convex hull
of the 2nt" roots of unity. We define a parametrization of C' to be a function f
from Py, to the closure C' of C, with the following properties:

a) The restriction of f to interior Pa, is a homeomorphism from interior Py,
to C.

b) The restriction of f to an edge of P, is a piecewise linear homeomorphism
from that edge to an edge in the graph R.

c) f as a map from the edges of P, to the edges of OC' is at most 2 to 1.

The existence of a parametrization of C' places restrictions on C' and on R.
We will assume that R is such that each C' has a parametrization f : Py, — C,
for some n, and we fix a parametrization fo for each C.

Complex conjugation, z — Z, restricted to Ps, or to the boundary of Ps,
defines an involution and an equivalence relation on the edges and vertices of
Ps,,, and this in turn, induces an equivalence relation on the edges and vertices
of C, and on the points of C' as well. That is to say, for v and w points of C,

v~ wif f5(v) = fol (w) or £51(v) = f5 ' (w), where f5'(v) is defined as the
set {E/z € fal(v)}
The equivalence relation on each C' induces an equivalence relation on S? =

O0B3. That is « ~ y if and only if there exists a finite sequence x = z1,...,2; = y
with ; ~ 2,41 fori=1,...,1—1.

Each P, contains the line segment [—1, 1], which is the fixed point set of
complex conjugation restricted to Ps,. The image of this line segment
fe([—1,1]) is called the trunk t. A pair (C,t) will be called a butterfly with trunk
t. The wings W and W' are just fo(Pan N upper half plane) and
fo(Pay, 0 lower half plane) and W N W' = ¢. Each time that we consider a
trunk ¢ we are implicitly considering the equivalence relation described above.
We denote by T the collection of all trunks ¢ (over all C').

Let us denote by M (R, T) the space B3/ ~ with the topology of the iden-
tification map p : B> — M(R,T), where ~ is the minimal equivalence relation
generated by equivalence relation ~ defined on S2.

Equivalence classes of points of C' contain two points except for those points
in f([-1,1]) where there is only one point. Note that if x is a vertex of R, its
complete class under the equivalence relation ~ is composed entirely of vertices.
We classify the vertices as follows: A member of RNT will be called an A-vertex.
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A member of p~! (p(v)), v € RNT, which is not an A-vertex will be called an
E-vertex. A vertex of R which is neither an A-vertex nor an E-vertex will be
called a B-vertez iff p=* (p(v)) contains at least one non-bivalent vertex of R.

Definition 1. Let R and T be as above. For m > 1, an m-butterfly (R,T) is a 3-
ball B3 with m butterflies (C;,t;),i = 1,...,m, on its boundary S? = B3, such
that (i) the A- and E-vertices are bivalent in R, and (ii) 7" has m components.

In [7] we proved the following results:

Theorem 2. [7, Theorem 1, pag. 5] For any m-butterfly (R,T), the space
M(R,T) is homeomorphic to S® and p(T) is a knot or a link, where p : B> —
M(R,T) is the identification map.

Theorem 3. [7, Theorem 3, pag. 11] Fvery knot or link can be represented by
an m-butterfly diagram, for some m > 0.

Example 4. In Figure 1 we show examples of butterflies and its associated
links. The example in Figure la is the classical example of Thurston and the
one in Figure 1b is a 2-butterfly that represents the rational link p/q, for the
case 5/3. Notice that the 2-butterfly illustrates the process of pasting the north-
ern and southern hemispheres of S? to themselves by reflections through half
meridians separated apart 2mq/p. See [11] and [10] for details.

7\
o F )
»"' % (}/
I ey M.
. )
a b

FIGURE 1. Examples of butterflies.

Definition 5. The minimum m among all possible m-butterfly diagrams of a
given link L is called the butterfly number of L and it is denoted by m(L).

Theorem 6. [7, Theorem 5, pag17.] For any link L, m(L) = b(L), where b(L)
is the bridge number of L.

In the examples in Figure 2a, (and in the rest of the paper) we consider B
as the 3-ball lying beneath the plane R? 4 oo, so that R is a planar graph. The
trunk 7" is drawn with bold lines and we do not draw the B-vertices. When
we perform the identification given by the map p, we say that we “close the
butterfly” and the link p(T) is formed by the trunk, that becomes the bridges,
and the under arcs, (drawn by dashed lines), are described by the orbits of
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FIGURE 2. Examples of a 2-butterfly and a 3-butterfly. In b we close the butterflies
in a.

the A-vertices. Figure 2b shows the links constructed by the 3-butterflies in
Figure 2a.

In [7, Sections 4 and 5.] we define algorithms that permit the construction
of the diagram of a link associated to an m-butterfly and the construction of
the butterfly associated to a link diagram. In Section 4 we will explain the first
one for 3-butterflies.

2.2. Simplifying Butterflies

Our definition of butterfly is given in such a way as to allow us to represent
every m-bridge diagram of a link, even if it has kinks or it admits type II
Reidemeister moves. For the purpose of this paper, we need to work only with
reduced 3-bridge diagrams, so we need only a more restricted type of butterflies,
in which the graph R has no monovalent vertices.

Let us see that in fact we need to consider only this type of m-butterflies.
A link diagram can be reduced by a type I Reidemeister move if and only if
when we produce the butterfly, following the algorithm given in [7], we have
the situation described in Figure 3a.

Figure 3b shows the situation when the link diagram admits type II Reide-
meister moves, and Figure 3c refers to the case when it admits type I and II
Reidemeister moves. As we want to study reduced 3-bridge diagrams, we work
only with 3-butterflies whose graph has no monovalent vertices. From now on,
the term 3-butterfly refers only to this type of 3-butterfly.

3. 3-Butterflies

Given that to every 3-bridge diagram of a link we can associate a 3-butterfly
and, conversely, each 3-butterfly produces a 3-bridge diagram, it is natural to
study 3-bridge links by using 3-butterflies. In this section we assign to each
3-butterfly a set of six positive integers {p,n, ¢, m, s,1}, that satisfy some con-
ditions. For geometrical reasons, to be explained in Remark 9, we will use the
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C% %

FI1GURE 3. Examples of butterflies with a monovalent vertex.

notation (p/n,q/m,s/l) to refer to this set, but they are not to be consid-
ered rational numbers. In this way we extend, in a “natural way”, Schubert
classification of rational links.

Definition 1 and the above considerations, lead to the following definition:

Definition 7. A 3-butterfly is a 3-ball B® with a graph R on its boundary
0B3 = §2, such that S? \ R is a union of 3 polygonal regions and (i) the A-
and E-vertices are bivalent in R, (ii) T has 3 components and (iii) R has no
monovalent vertices.

In the general definition of an m-butterfly given in [7], we impose the ad-
ditional condition (iv) that the graph R has only A-vertices, E-vertices and
B-wvertices. This condition is not essential and we can drop it. We say that a
3-butterfly is reduced if it satisfies Condition (iv), but in our construction we al-
low this more general type of butterfly. Notice that Condition (ii) is equivalent
to (ii’) There are exactly 6 A-vertices.

3.1. Description of a 3-Butterfly by (p/n,g/m,s/l)

Let R be the graph of a 3-butterfly. It separates S? in 3 butterflies, called P,
@ and S, each one of them parameterized by a polygon with an even number
of vertices. We will identify each butterfly with the polygon and so we will talk
about the vertices and edges of the butterfly. In each butterfly we have a trunk,
that divides the butterfly in two wings, and a reflection along the trunk, that
identifies the two wings. There can be only two basic forms for the graph R, as
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shown in Figure 4, that are determined by the way the butterflies P, ) and S
intersect.

FIGURE 4. The two types of 3-butterflies without monovalent vertices.

Type I: The graph is a theta graph, and the three butterflies intersect in
two vertices, denoted 0 and *, see Figure 4a. This is the only type of
3-butterflies that we need to consider, as we will see later.

Type II: Two of the polygons do not intersect, see Figure 4b. Again, there
are only two intersection points for the three butterflies.

In [15, pag. 480], Negami classifies the 3-bridge diagrams in two types,
shown in Figure 5, where each circle stands for a neighborhood of a bridge and
each edge represents a collection of parallel subarcs.

(@) (b)

FIGURE 5. Negami [15] classification of 3-bridge diagrams.

He proved that if a link L admits a type (b) 3-bridge diagram D, it can
be transformed in a type (a) 3-bridge diagram D’ by a finite number of wave
moves, see [15, pag. 1], and that the crossing number of D’ is less than the
crossing number of D. Now, when we use the algorithm to produce a 3-bridge
diagram associated to a type I (resp. type II) 3-butterfly, we obtain a type (a)
(resp. type (b)) 3-bridge diagram, therefore, as we are interested in classifying
3-bridge diagrams, in this paper we need only to consider type I 3-butterflies.
It is important to note, that type (b) diagrams can not be ignored in some
other problems concerning the study of 3-bridge links. In a future paper we
will address the complete description of both types of 3-butterflies and the
interpretation of the wave moves in terms of butterflies.
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For now on, we will assume that all 3-butterflies are of type I. If we consider
plane diagrams of the 3-butterflies, taking the point at co as a point on the
interior of the butterfly P, we have diagrams as shown in Figure 6a. If we take
oo as a point of the graph R, we get the diagram shown in Figure 6b.

Now, if we take a point outside the graph R as the point at infinity, and we
reshape the plane and stretch out the vertices, so that the butterflies become
disks, we get diagrams as shown in Figure 6¢. We will use any of the three types
of diagrams. The last diagram is useful to understand the reason we want to
interpret the set {p,n,q,m,s,l} as a triple (p/n, q/m,s/l).

FIGURE 6. Plane diagrams for 3-butterflies.

Let us consider the 3-butterfly given by Figure 6¢. All B-vertices are either
in the orbit of 0 or *, and the link is determined by the orbits of the A-vertices.
So we do not draw the B-vertices except for 0 or x. We call the set of vertices
that are not B-vertices admissible vertices. So, if the 3-butterfly is reduced, an
admissible vertex is an A-vertex or a E-vertex.

The integers p, ¢ and s are defined as follows:

2p = |P| = Number of admissible vertices of the butterfly P.
2qg = |Q] = Number of admissible vertices of the butterfly Q.
2s = |S| = Number of admissible vertices of the butterfly S.

In order to obtain a canonical way to describe a 3-butterfly, we will always
assume that
pP>q>s>2, (1)

and by rotating the plane (and interchanging the points 0 and oo, if necessary),
we can always obtain a 3-butterfly diagram with P at the top, @ to the left
and S to the right, and we read it in the counter-clock wise direction, P @ S.
The condition s > 2 is to ensure that each bridge has at least one crossing.

Remark 8. If we are not interested in a canonical way to describe a 3-butterfly,
we can omit condition (1). In fact, in Lemma 13 we give equivalences between
3-butterflies that do not satisfy this condition. We can omit the condition s > 2
if we want to allow bridges without crossings.
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We need to know the number of admissible vertices in the intersection of the
butterflies. Let us denote by |PN Q)| the number of admissible vertices between
P and @ and define

t=|PNaQ|, v=1]QNS|, and w=|PNS|.

As each butterfly intersects the other two, ¢, v and w are positive integers.
Counting the admissible vertices of P, @ and S we get, respectively,

2p=t+w, 2q=t+v, 2s=v+w.

So,
t=p+q—s, v=q+s—p, w=p+s—gq, (2)

therefore, the information on the number of admissible vertices of the butterflies
is enough to determine the relative position of them. As v > 1, then

p+1<s+q. (3)

Thus, we only need to know the integers p, ¢ and s (or ¢, v and w), satis-
fying (1) and (3) to describe the graph R completely.

Now let us describe the trunk. We orient clock wise each disk as shown in
Figure 7.

From the point 0, following the orientation, we count the number of admis-
sible vertices between 0 and the A-vertex in which the trunk begins, this is the
rotation index of the trunk. The end of the trunk is on an opposite vertex.

We call n, m and [ the rotation indices of P, @) and S, respectively. Clearly

1<n<p, 1<m<gq, 1<i<s. (4)

Remark 9. Notice that Qw corresponds to the angle between the trunk of
p
P and the radius that ends on the first admissible vertex to the right of the
l
point 0. (See Figure 7b.) For butterfly @ the angle is M and for S it is 7.
q s

This is analogous to the description of a rational link as a 2-butterfly and the
reason we want to use the fraction notation to describe a 3-butterfly.

Condition (ii) in Definition 7 of a 3-butterfly means that the three trunks
have no common vertices, so the 3-butterfly have 6 different A-vertices. This
imposes additional conditions on the set of integers {p, n, ¢, m, s,1}. In Figure 8
we show all possible 3-poligonalizations that fail condition (ii) and consequently,
do not represent 3-butterflies.

Volumen 46, Numero 2, Afio 2012



ON THE CLASSIFICATION OF 3-BRIDGE LINKS 123

FIGURE 7. Description of a 3-butterfly. The integers n, m and ! describe the trunk
position. Figure b shows the angle "o
p

S 9 @
2 D

d e f

FIGURE 8. All possible graphs that do not represent 3-butterflies. In each case, two
of the trunks have a common vertex.
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Each diagram of Figure 8 imposes restrictions on the set {p,n,q,m,s, [}
that we summarize in the following table

Diagram Condition
a n+m=q+1
b n+m=2¢—p+1 and m>qg+s—p
c n+m=2¢+1 and m>qg+s—p (5)
d n+l=p+1
e n+l=p—s+1 and I<p-—s
f m+l=s+1 and m<qg+s—p

We have proved the following theorem:

Theorem 10. Every 3-butterfly defines a unique set of integers {p,m,q,n, s,l}
such that

P=q=s=2,

1<n<p, 1<m<yq, 1<1<s,

n+m#qg+1, n+l#p+1,

n+m#2¢+1 and n+m#*2¢q—p+1 if m>qg+s—p,
n+l#p—s+1 if [<p-—s,

m+l#s+1 if m<qg+s—np.

(6)

Conversely, any set of integers {p,m,q,n,s,l} that satisfies conditions (6)
defines a 3-butterfly. We write this set as the triple (p/n,q/m,s/l) and we
represent it by the diagrams shown in Figure 9.

&

s, s A \ s
N S
£
T

q+p-s
a b
FIGURE 9. Diagrams for the 3-butterfly (p/n,q/m,s/l).
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Proof. Tt is just a consequence of the previous construction. Note that in
each step of the construction we obtain unique numbers, so each 3-butterfly is
completely determined by the triple (p/n,q/m, s/l). o]

The integers p,n,q,m,s,l are independent, in the sense that we can not
deduce one of them from the other five. Table 1 shows examples of different
3-butterflies that coincide in five of the numbers. We prove the no equivalence
of the associated links by using the Jones polynomial.

3-butterfly Jones Polynomial
(6/2,6/2,5/1) G—@P+2¢ —g*+¢® — b
(6/2.6/25/3) 141 1—2q+2¢ — 4q3;3;]4 —3¢° +2¢5 - ¢7
(6/2,6/3,5/1) m #£m/ —1+ 21:/;12 —q'
(6/1,6/2,5/1) n#n' ~1+q—2¢° _;5/32_q4+q5_q6
(8/2.6/25/1)  p#1' —1- qz;;“ +
(6/2,5/2,5/1)  q#4 1
(6/26/2.4/1)  s# . ;ﬁz s

TABLE 1. Each 3-butterfly differs in just one number from the 3-butterfly in the first

TOwW.

3.2. 3-Butterfly (p/n,q/m, s/l) Representation of a 3-Bridge Link
Diagram

Given a 3-butterfly we produce a 3-bridge diagram of a link, by “closing the
butterfly wings”. For instance, the 3-butterfly (5/2,5/2,5/2) gives rise to the
Borromean rings. (See Figure 10a.)

Definition 11. We say that a 3-bridge link diagram D has a (p/n,q/m, s/l)
butterfly representation if the 3-butterfly (p/n,q/m,s/l) produces the dia-
gram D.

Recall that each 3-bridge link can be represented by an infinite number of
3-bridge diagrams, so it is represented by an infinite number of 3-butterflies
(p/n,q/m,s/l). For instance, the knot 8y in Rolfsen’s Table can be repre-
sented by the 3-butterflies (6/6,5/2,4/4) and (6/2,6/4,4/3), see Figure 10b
and Figure 10c.
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- ~

(5/2,5/2,5/2) (6/6,5/4,4/4) (6/2,6/4,4/3)
a b c
FI1GURE 10. Butterfly diagrams for the Borromean rings and the knot 839 in Rolfsen’s
table.

Remark 12. Note that our convention of 3-bridge diagram forces each bridge
to have at least one under crossing, but some authors allow trivial bridges, for
instance [16]. In that setting, it could be possible to take s = 1 and to describe
the rational link p/q as a 3-bridge link with 3-butterfly representation given by
(p/q,p/1,1/1). So, it is clear why we say that our construction is a “natural”
extension of Schubert notation.

We say that two 3-butterflies are equivalent if they produce the same 3-
bridge link. It is an open problem to find a complete set of moves that allows
us to transform a 3-butterfly into an equivalent one. We have, however, some
cases in which we are able to establish the equivalence.

In order to get a normal form for a 3-butterfly we require p > q¢ > s > 2,
but it is possible to have a 3-butterfly that does not satisfy this condition. The
following lemma allows us to write any 3-butterfly in a canonical form.

Lemma 13.

i) The 3-butterfly (p/n,q/m, s/l) is equivalent to the 3-butterflies
(a/m,s/l,p/n) and  (s/l,p/n,q/m).

it) If s > q, the 3-butterfly (p/n,q/m,s/l) is equivalent to (p/n’,s/l',q/m'),
where

n' = (n+s—q) mod p,
m’ = (m+p— s) mod q, and (7)
"= (l+q—p) mod s.
Proof. i) It is just a rotation of 2, as the diagrams in Figure 11 show.

ii) For ii) we change the viewpoint. In Figure 12a we have the 3-butterfly
(p/n,q/m,s/l), with 0 as the initial point from which we count the numbers
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T

FIGURE 11. Rotations of a 3-butterfly.

n, m and [, that describe the trunk. In Figure 12b we rotate S? and have
the same graph to describe the 3-butterfly, but with * as the initial point,
and the integers n’, m’ and I’ describe the trunk position with respect to
. To find the relations in (7) it is enough to consider the plane diagram
for the 3-butterflies given in Figure 12c and Figure 12d.

F1GURE 12. Change of viewpoint to describe a 3-butterfly.

]

Example 14. We need to be careful with the relative order of the numbers
in (p/n,q/m,s/l). Lemma 13 allows us to perform cyclic rotations, but if we
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change the order, it is possible that we get non-equivalent 3-butterflies. The
3-butterflies (4/2,4/1,3/2) and (4/1,4/2, 3/2) represent the links shown in Fig-
ure 13. The first one is a knot and the second is a 2 component link, so the

butterflies are non equivalent.

\/ /\/

(4/2,4/1,3/2) (4/1,4/2,3/2)
FI1GURE 13. Different links obtained by a change in the order of a 3-butterfly.

In the sequel, when we say the (p/n, ¢/m, s/1) 3-butterfly we mean that the
triple (p/n,q/m, s/l) satisfies the conditions of Theorem 10.

3.3. 3-Butterfly Classification

Now we want to address the questions of the number of components of the
3-bridge link associated to a 3-butterfly and if a 3-butterfly is reduced or not.
Recall that a 3-butterfly is reduced if its graph has only A-vertices, E-vertices
and B-vertices. We associate to each 3-butterfly (p/n,q/m, s/l) a permutation
that allows us to answer both questions. When a 3-butterfly is not reduced, we
give a method to find an equivalent reduced 3-butterfly.

Given a 3-butterfly (p/n,q/m,s/l) we label the admissible vertices of the
butterfly P with the set A = {ao,...,a;,...,a2-1}, © € Zgp, the admissible
vertices of the butterfly @ with the set B = {bg,...,b;,...,baq—1}, j € Zsq and
the admissible vertices of the butterfly S with the set C = {cg, ..., ¢, ..., ca5-1},
l € Zss. For butterfly P (resp. @ and S) the ends of the trunk are labeled by
ap and a,, (resp. by, by and cp, ¢s), and we label the vertices in the reverse order
of the butterfly orientation, see Figure 7.

The subscripts of set A (resp. B and C') are taken mod (2p) (resp. mod (2¢)
and mod (23)) but, for simplicity, we use regular notation for the operation and
do not write the mod notation.

To the 3-butterfly (p/n,q/m,s/l) we associate two permutations of the set
AUBUC, denoted ¢ and . The permutation ¢ is determined by the fact that
each admissible vertex of the graph R belongs to two butterflies, and therefore,
gets two labels. The permutation «y is associated to the identification of the
butterflies wings.

Volumen 46, Numero 2, Afio 2012



ON THE CLASSIFICATION OF 3-BRIDGE LINKS 129

Lemma 15. Given a 3-butterfly (p/n,q/m,s/l) satisfying the conditions given
in (6) and the sets A = {ag,...,a2p-1}, B = {bo,...,baq—1} and
C={co,...,Cca5-1}, the map ¢ : AUBUC — AUBUC defined by

Ap—i < bm+i71, Zf 1 < { < ta
Qpyj < cj—1, if 0<j<w—1, (8)
bp—n < cign—1, f 1< h <o,

is an order 2 permutation, wheret =p+q—s,v=q+s—p andw =p+s—q.

Proof. As ¢ is defined as a product of transpositions, we need to prove that all
elements of AU B U C' are considered and that the transpositions are disjoint.

Ast=p+q—s,v=qg+s—pand w = p+s—q are the number of admissible
vertices in PNQ, QNS and PN S, respectively, and given that 2 < s < g < p,
then 1 <t <2¢<2p, 0<v<2s<2¢and 1 <w < 2s < 2q. The elements of
A appear in the transpositions

(An—isbmtio1); (Antjsci—j-1), for 1<i<t, 0<j<w-1.

Clearly, for 1 < 4,1 <t < 2p, apn—; # an_y if © # | and for 0 < j,
[ <w—-1<25—1<2p, antj # anyr if § # 1. Now, if ap—; = an; for 4, j,
1<i<t,0<j<w—1thenn—1i=n+jmod2p, soi+j=0mod 2p, but
this is not possible because 1 < i+ j < t+ w — 1 = 2p — 1. Therefore all the
elements in A belong to a transposition. The elements in B are in

(an—ia bm+i—1)7 (bm—ha cl-‘rh—l)v for 1 S ) S t7 1 S h S v,

and if by, 45—1 = bp_p for i, h, 1 <i<t, 1 <h<w,theni+h—1=0mod 2gq,
but 2<i+h—-1<t+v—-1<2q—1. So, all the elements in B belong to a
transposition, and the same is true for the elements in C. Then ¢ is the product
of disjoint bicycles, so its order is 2.

Note that ¢ does not have fixed points, and among the transpositions in ¢
there is no transposition in the set

F = {(ao,bo), (a0, by), (ag, co), (ao, cs), (bo, ap), (bo, co),
(bO’ CS)> (COvap)> (COv bq)v (a’p7 bq)’ (a;mCS)’ (bqch)} (9)

since the trunks do not have common vertices. Let us call F the set of forbidden
transpositions.
The construction of ¢ is well defined for any poligonalization of S? with 3

polygons, even if they do not satisfy the conditions of Theorem 10. In fact, in
terms of the permutation ¢, we can rewrite Theorem 10 as follows.
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Theorem 16. A triple (p/n,q/m,s/l), withp > ¢ > s > 2,1 < n < p,
1<m < gq,1 <1< s, describes a 3-butterfly if and only if the associated
permutation ¢ (8) does not have any of the transpositions in the forbidden set
F given by (9).

The following lemma describes the permutation ¢ explicitly. This is useful
when we want to use ¢, since there are some special considerations depending
on the relative position of ag, ay, bo, by, co and c,. We omit the tedious details
of the proofs.

Lemma 17. For a 3-butterfly (p/n,q/m, s/l), the associated permutation ¢ is
given by:
bmtn—j—1, 0<j<m
#(a;) = < cln—j-1, n<j<n+w;
bmtn—j—14+2p, wW+n<j<2p.

Alyn—i-142s, ©+1 <0< 2s.

Al i1, 0<i<l;
(b(cl) = an-H—i—la l < < v+ l, If m <wv
Clpm—k—15 0<k<m
Gmtn—k—1, m<k<t+m; If m>v
Clym—k—1+2¢, M+t <k <2q.
Am4n—k—14+2q> 0<k<m-— v;
P(br) = { Clpm—k—1, m-—uv<k<m;
Umtn—k—1, m < k< 2q.

The following permutation v comes from the wing identification by the
reflection along the trunk. Its properties are clear.
Lemma 18. The function defined in the set AU BUC by
y(a;) = agp—i, 0 <1i < 2p,
Y(bj) = bag—j, 0<j<2q, (10)
(en) = bagn, 0<h<2s,

is an order 2 permutation. The fized point set is {ag, ap, bo, bg, co, Cs}-

Now we study p = ¢7. The cyclic decomposition of y allows us to determine
if a 3-butterfly is reduced or not and to know the number of components of the
associated link diagram.

Theorem 19 (Classification). Let (p/n,q/m,s/l) be a 3-butterfly, ¢ and
its associated permutations given in Lemma 15 and Lemma 18 and let p = ¢ry.
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The 3-butterfly (p/n,q/m, s/l) is reduced if and only if p is the product of three
disjoint cycles. Besides, if O(x) is the orbit of x, the 3-bridge link diagram L
represented by the reduced 3-buttefly satisfies:

i) L is a knot if and only if a, ¢ O(ag), by ¢ O(by) and cs ¢ O(co).

it) L is a two component link if and only if one, and only one, of the following
conditions is true: a, € O(ap), by € O(by) or ¢s € O(co).

i) L is a three component link if and only if a, € O(ag), by € O(by) and
¢s € O(cp).

Proof. The essential point in the proof is to notice that the orbits of the
vertices ag, ap, bo, by, co, cs describe the three arcs that go under the bridges
of the diagram. As we have only three bridges, if there are more than three
cycles, then there are vertices that are not admissible and the 3-butterfly is not
reduced. It is not possible that the number of cycles is one or two, because in
that case the link diagram has only one or two bridges, but we are assuming
that the triple (p/n,q/m, s/l) is a 3-butterfly, so it satisfies the conditions of
Theorem 10. Analyzing the orbits we get conditions i), ii) and iii). o

The previous theorem answers the question of whether a 3-butterfly is re-
duced or not, but not in a combinatorial way. It would be interesting to find
combinatorial conditions on the set {p,n,q, m,s,(} that allow us to know, a
priori, if the 3-butterfly (p/n,q/m, s/l) is reduced or not.

A variation of the permutation p is very useful for the actual construction
of a combinatorial knot (or Gauss code) for the link, (see [26] or [24] for more
information on combinatorial knots) and so we are able to compute link in-
variants, such as the link group, the Seifert matrix, the Alexander, Jones and
HOMFLY polynomials. In this paper we do not use this approach, but we de-
scribe an algorithm to draw a link diagram for any 3-butterfly (p/n,q/m,s/l)
in the next section.

If the 3-butterfly is not reduced, we drop the vertices corresponding to the
orbits of not admissible vertices and recompute the values of the new butterfly.
The following example shows some families of not reduced butterflies.

Example 20.

1) For n > 2, the 3-butterfly ((2n+1)/n, (2n+1)/1,(2n+1)/1) is not reduced
and yields the same link diagram of the reduced 3-butterfly (3/1,3/1,3/1).

2) For n > 2, the 3-butterfly (4n/n,4(n—1)/1,4(n—1)/1) is not reduced and
yields the same link diagram of the reduced 3-butterfly (4/1,4/1,4/1).
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3) For p > 8, the 3-butterfly (p/5, (p—3)/(p—6), (p—6)/(p—6)) is not reduced
and yields the same link diagram of the reduced 3-butterfly

((p—S) (p—4) (p—8)>
5 "(p-7"(p-8))

3.4. An Algorithm to Draw a Canonical 3-Bridge Link Diagram

There exists a canonical way to draw a rational link, see [9, pag. 21]. In an
analogous way, we describe a canonical method to draw a 3-bridge link diagram
represented by a 3-butterfly (p/n,q/m, s/l). This is a symmetric diagram and
in the process the role of the integers {p,n, q,m, s,l} becomes very clear.

We draw the three bridges as three segments, each one of them correspond-
ing to the trunk of one of the butterflies. The initial point of each segment
is on a circle, whose radius depends on the value of n +m + [. The trunk of
butterfly P is drawn by a vertical segment and we call it bridge a. The trunk
of butterfly @ (resp. S) is a segment forming a 120° angle (resp. 240° angle)
with the bridge a and it is called bridge b (resp. bridge c).

We divide bridge a in p segments, and we fix two points in each division, one
to the left and one to the right, except in the extremes, where there is only one
point. We have then 2p points and we label them with the elements of the set
A ={ap,a1,...,a2p—1}, in a counter-clock wise sense, so the extreme bridges
are labeled ag and a,. For bridge b we repeat the process, but we divide the
bridge in g segments and label the points with B = {by, ..., bas—1}. For bridge
¢ the number of segments is s and the labels are C = {co, ..., c25—1}. As before,
the subscripts of A (resp. B and C) are taken mod(2p), (resp. mod(2q) and
mod (2s)).

To draw the link diagram we need to join, with appropriate arcs, the points
ai, by and ¢y, , i € Zop, j € Zaq, and k € Zy,, according to the rules given by
permutations ¢ and « given in (8) and (10).

The number of arcs between the bridges corresponds to the number of
vertices in the intersection of the corresponding butterflies, so by (2) we have:

t =p+ q— s :arcs between the a and b bridges,
v =q+ s— p:arcs between the b and ¢ bridges,

w=p+ s — q:arcs between the ¢ and a bridges.

It is enough to know how to construct the first arc between each pair of
bridges, and the rest of the arcs are “parallel” arcs to them. By the description
of the 3-butterfly, we find that the first arc between the a and b bridges connects
Gn—1 With b,,, the first arc between the bridges b and ¢ connects b, 1 with ¢
and the first one between bridges ¢ and a connects ¢;_1 with a,,, see Figure 14.
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FIGURE 14. First step in the algorithm to draw a 3-bridge diagram associated with
the 3-butterfly (p/n, q/m,s/l).

Therefore the ¢ arcs between the a and b bridges, see Figure 15a, are

an—lbma an—Qbm+1a an—Sbm+2 ] CLn—ijL+j—1 PR an—tbm+t—17 (11)

the v arcs between the b and ¢ bridges are
bm_lcl, bm_26l+17 bm_36l+2 goeny bm—jCl-l—j—l geeey bm—vcl+v—17 (12)

and the w arcs between the ¢ and b bridges are

Cl—10n, Cl—20n41, Cl—30n42 -y Cl_jlngj—1 5+, Clewlntw—1, (13)

Figure 15b shows the complete 3-diagram. The restrictions on (p/n, q/m, s/l)

given in (6) assure that the bridges do not connect one with another and in
fact we get a 3-bridge diagram.

If the butterfly (p/n, q/m, s/l) is reduced, we use all the arcs in the diagram,
but if there are vertices that are not E-; A- or B-vertices, they yield arcs that
are obsolete and we do not use them in the 3-bridge diagram, but we need
them in the construction. So, we just drop the obsolete arcs and vertices, and
we find a new 3-bridge diagram that corresponds to a new reduced 3-butterfly.

As a result of the previous construction we obtain the following lemma.

Lemma 21. If the 3-butterfly (p/n, q/m, s/l) is reduced, the 3-bridges diagram
has p + q+ s — 3 crossings.

4. 3-Butterfly Representation of a 3-Bridge Link

A natural way to establish a classification for the 3-bridge links is to order the
set of 3-butterflies that represent them and take the minimum with respect
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FIGURE 15. Canonical 3-bridge diagram represented by the 3-butterfly

(p/n,q/m, s/l).

to this order. We want to minimize the crossing number of the diagram, but
this consideration is not enough, because there are different 3-bridges diagrams
of the same link, with minimum crossing numbers. For instance the 8;g knot
is represented by the 3-butterflies (10/4,10/2,8/4) and (10/9,10/7,8/5), the
corresponding 3-bridge diagrams have 25 crossings, (see Figure 16), that is the
minimum crossing number for a 3-bridge diagram for this knot. In fact, in [10]
Montesinos shows examples of minimal non equivalent 3-plats presentations of
the same link, i.e. it is not possible to change one into the other preserving the
3-bridge representation. This example shows the difficulties in the classification
of 3-bridge links. So we need to consider other aspects in the classification. In
this section we address the problem arising from the lack of uniqueness in
the presentation of a 3-bridge link as a 3-butterfly. By a typical procedure
in knot theory, we establish a concept of minimality among all 3-butterfly
representations of a link and define that minimum as the appropriate 3-butterfly
representation of that link.

Now we define an order in the set T of all 3-butterflies (p/n, ¢/m, s/l). As
we are interested in the simplicity of the diagram, the first consideration is
to minimize the crossing number. By Lemma 21, we know that the 3-bridge
diagram represented by the reduced 3-butterfly (p/n,q/m,s/l) has crossing
number equal to p + g + s — 3. Then we order the set 7 by the sum p + ¢ + s,
then we take a lexicographic order in the triples (p, ¢, s) and then a lexicographic
order in the triples (n,m,1).

Definition 22. In the set {(x,y, z) € Ng} we define the lexicographic order
as

(z,y,2) < (¢/,y,2) if and only if
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) z+y+z<a’'+y +2  or
i) x+y+z=a+y +7 and r < or
iii) z+y+z=2"+y +2, z=2 and y <y

Using this order, we define an order in the set of all 3-butterflies.

Definition 23. Given two 3-butterflies (p/n, q/m, s/l) and (p'/n’,q' /m’, s’ /'),

we say that
(p/n,q/m,s/l) < (0'/n',d'/m',s"JU')

if and only if
i) (pgs)<@.ds) or
i) (p.g,s)=@®.d.,s) and  (n,m,1) < (n',m )

Using this order, we are able to define the 3-butterfly representation of a
link.

Definition 24. Given a 3-bridge link L, we define the 3-butterfly representa-
tion of L as the minimum of the set of all the 3-butterflies (p/n, ¢/m, s/l) such
that (p/n,q/m,s/l) is a 3-butterfly representation of some 3-bridge diagram of
L.

Thus, the 3-butterfly representation of a link is an invariant of the 3-bridge
link.

Example 25. For the 3-butterflies of the knot 8;g given in Figure 16 we
have that (10/4,10/2,8/4) < (10/9,10/7,8/5), and it is possible to prove that
(10/4,10/2,8/4) is in fact the 3-butterfly representation of 8;g.

We choose this order to minimize the crossing number and to have as
much symmetry as possible. Figure 16 shows two 3-bridge diagrams for the
818 knot, corresponding to the 3-butterflies My = (10/4,10/2,8/4) and My =
(10/9,10/7,8/5). Both have the same crossing number and the same value for
(p,q,s). Note the symmetry for the diagram in Figure 16a, that corresponds
to My and My < M.

With this 3-butterfly representation for any 3-bridge link we are able to
construct a table of all 3-bridge links using the procedure:

1) We order all reduced 3-butterflies.

2) For each 3-butterfly we find its associated 3-bridge link L. Using link invari-
ants, we check if L is in the table or not. If it is not, we add L to the table
and continue with the next 3-butterfly.

In [25] we have a list with the first thousand 3-bridge knots, in this order.
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b
a
FIGURE 16. Two 3-bridge diagrams for the knot 8:s.

5. Examples of 3-Bridge Link Families

In this section we show the usefulness of our construction by giving the 3-
butterfly presentations of some important families of 3-bridge links: the mirror
image, the connected sum of two rational knots, the torus link of type 7'(3, p),
the pretzel links of type P(a,b,c) and the 3-bridge knots, up to 9 crossings in
Rolfsen’s table, see [18]. We give a short idea of the proofs, by using diagrams,
and we omit the details.

The 3-butterfly representation distinguishes a 3-bridge link from its mirror
image.

Theorem 26 (Mirror Image). If a 3-bridge link L has a 3-butterfly repre-
sentation given by (p/m,q/m,s/l), then its mirror image L* has a 3-butterfly
representation giwen by (p/n’,q/m’,s/l") with

((g —s—n) mod p) + 1,
((s—p—m)modq) +1,
((p—¢q—1)mod s) + 1.

!
n

!
m

l/

Proof. 1t is enough to change the way we “close” the 3-butterfly. For the
construction of L we suppose that the graph R is in the plane z = 0 and the
3-ball B is the semi-space under the plane, see Section 2.1. Now, if we consider
the same graph R and the ball the semi-space over the plane, we construct the
mirror image L*. Therefore, we change the way of looking at the 3-butterfly as
the diagram in Figure 17 shows. We now read the values of n’/, m’ and I'. ™

We have the following corollary.

Corollary 27. If a link L has a 3-butterfly representation given by
(p/n,q/m,s/l) and is such that
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FIGURE 17. A 3-butterfly and its mirror image.

n—1=(¢g—s—n)mod p,
m—1=(s—p—m)mod g, and

l-1=(p—q—1)mods,
then L = L*.

This is not an equivalence. There are amphicheiral 3-bridge links with an in-
finite number of 3-bridge diagrams that are not its mirror image. For instance,
the knot 10g; is amphicheiral and has (13/6,12/4,10/3) as the 3-bridge pre-
sentation. The following question arises: Is it true that if a 3-bridge link is am-
phicheiral then it admits a S-butterfly representation satisfying conditions (27)%

Theorem 28 (Connected Sum). If K = p1/q1 and L = p3/qe are rational
knots, then its connected sum K+#L has a 3-butterfly representation given by

((pr+p2—1)/q1,p1/(q1 + 1), p2/q2) (14)

Proof. Tt is easy to check that the triplet given in (14) satisfies conditions (6),
thus it is a 3-butterfly. We draw the associated 3-bridge and we see clearly that
it is the connected sum K#L, (see Figure 18). Note that the connected sum
was made by joining two of the bridges. o

Theorem 29 (Torus links T'(3,p)). The 3-bridge link given by (p/1,p/1,p/1)
is the toroidal link T'(3,—p) and the 3-bridge link (p/p,p/p,p/p) is its mirror
image T'(3,p).

Proof. Just draw the torus link in the canonical way describe in Seccion 3.4.
Figure 19 shows an example.
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FI1GURE 18. 3-bridge diagram of the connected sum of two rational links.

FIGURE 19. The toroidal knot T'(3, —5).

Theorem 30 (Pretzel Links). For integers 0 < a < b < ¢, the pretzel links
have the 3-butterfly representation given by:

b b
1) P(a,b,c) has 3-butterfly representation (C T cta bt a) .

) )

c a b

b b
2) P(—a,—b,—c) has 3-butterfly representation <C to cta b a>.

c+1'a+1"04+1

b—1 10
3) P(a,b,—c) has 3-butterfly representation <C + c+a + a)‘

c " a+1 'b—1

b—1 b -1
4) P(a,—b,c) has 3-butterfly representation (C + cta b+a ) .

c+1 'a—1’ b

c+b ct+a—1b+a-—-1
5) P(—a,b has 3-butt tati
) P(—a,b,c) has 3-butterfly representation (c—l’ PR )

b-1 ~1b
6) P(—a,—b,c) has 3-butterfly representation <c + c+a n a>‘

c—1 " a b+ 2
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c+b—1 c+a—-1 b—i—a)

7) P(—a,b,—c) has 3-butt tati
) P(—a,b,—c) has 3-bu erﬂyrepresenawn( O Ta12 o1

c+b ct+a—-1 b+a
c+2 a—1 " b '

8) P(a,—b,—c) has 3-butterfly representation (

Proof. We sketch the proof of Case 1 by the sequence of diagrams of Figure 20,
Figure 21 and Figure 22.

a crossings 2\
¢
=

FIGURE 21. Two ways to draw the pretzel link P(a,b,c).

For the Cases 3, 4 and 5, we may need to simplify the diagram by performing
some Reidemeister moves of type II in order to get an appropriate 3 bridge link
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ct+b

b+a

FIGURE 22. Diagrams of the pretzel link P(a, b, c) for the case 0 < a <b <ec.

diagram. For the other cases we use the formula for the mirror image of the
appropriate pretzel. o

Table 2 gives the 3-butterfly representations of the 3-bridge knots, up to
9 crossings, in Rolsfsen’s table, see [18]. To compile the table, we studied all
3-butterflies up to 30 crossings. We used HOMFLY and Jones polynomials for a
first classification and then we turned to Knotscape [20] for further refinements.
In [25] we present a table with the 3-butterfly representation of all knots, up
to 10 crossings, in Rolfsen’s table.

— (6/3,5/2,5/3) 810 = (7/3,7/3,6/3) 815 = (9/5,9/2,6/3)
816 = (8/3,8/2,7/3) 817 = (9/3,8/3,8/3) 815 = (10/4,10/2,8/4)
819 = (4/4,4/4,4/4) 820 = (5/2,5/3,4/3) 821 = (6/6,6/5,5/4)
916 = (11/1,11/7,6/3) 990 = (11/4,9/3,8/5) 924 = (13/1,13/8,6/3)
905 = (11/5,9/2,8/5) 95 = (15/2,15/8,6/3) 99 = (11/8,11/7,9/6)
950 = (13/11,11/5,8/6) 95 = (12/10,11/7,10/8)

933 — (13/5,12/2,10/5) 934 = (14/11,12/8,12/9)

— (6/3,6/3,6/3) 94 = (9/4,8/3,7/4) 947 = (12/7,9/5,9/2)
938 (13/8,10/6,10/2) 939 = (12/7,12/2,7/3) 940 = (12/9,12/9,12/9)
941 = (9/4,9/4,9/4) 9y = (6/1,6/1,6/2) Oy3 = (7/277/5,6/4)
944 = (8/7,7/6,6/6) 945 = (8/7,8/7,7/6) 946 = (6/2,5/3,5/4)

a7 = (8/3,8/3,8/3) 918 = (9/5,9/2,6/1) 940 = (7/5,7/5,7/5)

TABLE 2. 3-butterfly representation of the 3-bridge knots with less than 10 crossings.

We end this section with a brief note on the constructions given in [2], [12]
and [13]. In [2] the authors associate to every 3-bridge an special type of 3-
bridge link diagram that can be characterized by six integers. They denote this
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3-bridge link diagram by L(p,q, k, h,t,s) and the construction is given in an
algorithmic way, designed for the computer. The initial point is a diagram of
the p/q rational link and they introduce a method to modify the diagram in a
way that depends on the parameters k, h,t and s. They do not give conditions
on the set of integers to ensure that they represent a 3-bridge link diagram
and the 3-bridge diagram they obtain usually has kinks. We can interpret their
construction by using 3-butterflies (the details will be presented elsewhere) and
we obtain that a 3-butterfly representation of the link L(p, ¢, k, h,t, s) is given
by

P p—t h—t
(k+q@modp'p—t—k+1 s /)

In [12] and [13], the author obtains a family of 3-bridge diagrams, depending
on a set of three numbers. Again, the author starts with a diagram of the p/q
rational link and modifies it, depending on a parameter r. The obtained 3-bridge
diagram is denoted K (p, ¢;r). The author studies some interesting properties
of the links constructed in this way. In [2], the authors interpret this K (p, ¢;r)
en terms of their notation, and so we get a 3-butterfly representation of the
link K (p,q;r). It is an interesting project to extend some of the results given
in [2], [12] and [13] to other families of 3-bridge links.

6. Concluding Remarks

There are constructions related to 3-bridge links that can be formulated in
terms of the 3-butterfly representation introduced here. Some of them appear
here and some others will be left for another paper.

A presentation of the group of a 3-bridge link L can be easily obtained
from a 3-butterfly representation of L. It is interesting to find properties of this
group depending on the 3-butterfly representation.

Another important topic is to study the two-fold branched covering of a
3-bridge link in terms of a 3-butterfly representation.

In this paper we do not consider orientation. If we want to study oriented 3-
bridge links, we need to extend the set of integers that describe the 3-butterfly
and allow that n,m and I, (see Section 2.1) be integers. It is interesting to
investigate the changes in the restrictions and constructions.

A question remains unanswered: Is it possible to state a set of “butterfly
moves” to change a 3-butterfly into an equivalent one?
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