1Universidad Sergio Arboleda, Bogotá, Colombia. Email: hermes.martinez@usa.edu.co
In this paper we study the classification of surfaces under twisted derived categories.
Key words: Twisted derived categories, Brauer groups, Moduli spaces.
En este artículo estudiamos la clasificación de superficies bajo las categorías derivadas torcidas.
Palabras clave: Categorías derivadas torcidas, grupos de Brauer, espacios moduli.
Texto completo disponible en PDF
References
[1] W. Barth, K. Hulek, C. Peters, and A. V. d. Ven, Compact Complex Surfaces, Vol. 4 of Modern Surveys in Mathematics, 2nd edn, Springer Verlag, Berlin, Germany, 2004.
[2] A. Bondal and D. Orlov, 'Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences', Comp. Math. 125, (2001), 327-344.
[3] T. Bridgeland, Fourier-Mukai Transforms for Surfaces and Moduli Spaces of Stable Sheaves, PhD thesis, University of Edinburgh, 1998.
[4] T. Bridgeland and A. Maciocia, 'Complex Surfaces with Equivalent Derived Categories', Math. Z. 236, 4 (2001), 677-697.
[5] A. Caldararu, Derived Categories of Twisted Sheaves on Calabi-Yau Manifolds, PhD thesis, Cornell University, 2000.
[6] A. Canonaco and P. Stellari, 'Twisted Fourier-Mukai Functors', Adv. Math. 212, 2 (2007), 484-503.
[7] I. Dolgachev and M. Gross, 'Elliptic Threefolds I. Ogg-Shafarevich Theory', J. Alg. Geom. 3, 1 (1994), 39-80.
[8] R. Donagi and T. Pantev, Torus Fibrations, Gerbes, and Duality, Vol. 193 of Memoirs of the American Mathematical Society Series, Amer Mathematical Society, 2008.
[9] R. Friedman and J. Morgan, Smooth Four-Manifolds and Complex Surfaces, Vol. 27 of Ergebnisse Math. Grengeb., Springer-Verlag, Berlin, Germany, 1994.
[10] A. Grothendieck, 'Éléments de géométrie algébrique', Publications Mathématiques de l'IHÉS 4, (1960), 5-228.
[11] D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, UK, 2006.
[12] Y. Kawamata, 'D-Equivalence and K-Equivalence', J. Diff. Geom. 61, 1 (2002), 147-171.
[13] J. Milne, Étale cohomology, Vol. 33 of Princeton Mathematical series, Princeton University Press, Princeton, USA, 1980.
[14] S. Mukai, 'Duality between D(X) and D(
) with its Applications to Picard Sheaves', Nagoya Math. J, 81 (1981), 153-175.
[15] D. Orlov, 'Derived Categories of Coherent Sheaves and Equivalences between them', Russian Math. Surveys 58, 3 (2003), 511-591.
[16] A. Polishschuk, Abelian Varieties, Theta Functions and the Fourier Transform, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 2003.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv46n2a06,
AUTHOR = {Martínez, Hermes},
TITLE = {{Fourier-Mukai Transform for Twisted Derived Categories of Surfaces}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2012},
volume = {46},
number = {2},
pages = {205--228}
}