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A Generalization for the Riesz

p-Variation

Una generalización de la p-variación de Riesz
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1. Introduction

Two centuries ago, around 1880, C. Jordan introduced the notion of a function
of bounded variation in [8] and established the relation between those functions
and monotonic ones when he was studying convergence of Fourier series. Later
on the concept of bounded variation was generalized in various directions by
many mathematicians, such as F. Riesz, N. Wiener, R. E. Love, H. Ursell, L.
C. Young, W. Orlicz, J. Musielak, L. Tonelli, L. Cesari, R. Caccioppoli, E. de
Giorgi, O. Oleinik, E. Conway, J. Smoller, A. Vol’pert, S. Hudjaev, L. Ambro-
sio, G. Dal Maso, among many others. It is noteworthy to mention that many
of these generalizations where motivated by problems in such areas as calculus
of variations, convergence of Fourier series, geometric measure theory, mathe-
matical physics, etc. For many applications of functions of bounded variation
in mathematical physics see, e.g., the monograph [14]. For a thorough expo-
sition regarding bounded variation spaces and related topics, see the recent
monograph [1].

In his 1910 paper [13], F. Riesz defined the concept of bounded p-variation
and proved that, for 1 < p <∞, this class coincides with the class of absolutely
continuous functions with derivative in Lp[a, b]. Moreover the p-variation of a
function f on [a, b] is given by

Vp
(
f, [a, b]

)
= Vp(f) =

∥∥f ′∥∥p
Lp[a,b]

.

In [3] the first and third named authors generalized the concept of bounded
p-variation introducing a strictly increasing continuous function α : [a, b] → R
and considering the bounded p-variation with respect to α. This new concept
was called (p, α)-bounded variation and denoted by BV(p,α)[a, b].

In this paper we generalize the concept of (p, α)-bounded variation. In order
to do that, we take a φ-function and then we consider the bounded φ-variation
with respect to α. We will call this new concept (φ, α)-bounded variation in the
sense of Riesz and denote it by BVR

(φ,α)[a, b]. We will show that BVR
(φ,α)[a, b] is

a modular space and this allows us to construct a vector space RBV(φ,α)[a, b]

generated by BVR
(φ,α)[a, b] and thus define a norm on it, the Nakano-Luxemburg

norm.

After that, we use the embedding RBV(φ,α)[a, b] ↪→ B[a, b] to show that
RBV(φ,α)[a, b] is a complete space, without assuming the validity of the
∞1-condition, which is standard to impose in analogous cases. However we will
use the∞1-condition to avoid that RBV(φ,α)[a, b] coincide with BV[a, b]. Finally,

we obtain the following result: f ∈ BVR
(φ,α)[a, b] if and only if f ∈ α-AC[a, b] and∫ b

a
φ
(∣∣f ′α(t)

∣∣) dα(t) < +∞ which is a generalization of the Medved’ev lemma,
see also [2] for some embedding results in these spaces.
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2. Preliminaries

In this section, we gather definitions and notations that will be used throughout
the paper. Let α be any strictly increasing, continuous function defined on [a, b].
By µα we denote the Lebesgue-Stieltjes measure induced by α. For a standard
treatment regarding Lebesgue-Stieltjes measure and integral, see e.g. [6].

Definition 2.1. A function f : [a, b] → R is said to be absolutely continuous
with respect to α if, for every ε > 0, there exists some δ > 0 such that if
{(aj , bj)}nj=1 are disjoint open subintervals of [a, b], then

n∑
j=1

∣∣α(bj)− α(aj)
∣∣ < δ implies

n∑
j=1

∣∣f(bj)− f(aj)
∣∣ < ε.

All functions in α-AC[a, b] are bounded and form an algebra of functions
under pointwise defined standard operations.

Definition 2.2. Suppose f and α are real-valued functions defined on the
same open interval I and let x0 ∈ I. We say that f is α-differentiable at x0 if
exists

lim
x→x0

f(x)− f(x0)

α(x)− α(x0)
.

In that case we denote its value by f ′α(x0), which we call the α-derivative of f
at x0.

The following lemma connects the α-AC[a, b] concept with the concept of
α-derivative (for a proof of Lemma 2.3 see e.g. [5, 4, 7, 13]).

Lemma 2.3. If f ∈ α-AC[a, b], then f ′α exists and is finite µα-a.e. on [a, b].
Moreover, there holds an analogue of the fundamental theorem of calculus for

f ∈ α-AC[a, b], i.e. |f(x)− f(y)| =
∣∣∣∣ x∫
y

f ′α dα(t)

∣∣∣∣.
Definition 2.4. Let φ : [0,∞) → [0,∞) be a function such that: (i) φ is
continuous; (ii) φ is strictly increasing; (iii) φ(0) = 0; and (iv) limt→∞ φ(t) =∞.
Then such a function is known as a φ-function.

3. Functions of (φ, α)-Bounded Variation

Definition 3.1. Let f be a real-valued function on [a, b] and φ be a φ-function.
Let Π = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b]. We consider

σR
(φ,α)(f ; Π) =

n∑
j=1

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
and

VR
(φ,α)

(
f ; [a, b]

)
= VR

(φ,α)(f) = sup
Π
σR

(φ,α)(f ; Π),
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where the supremum is taken over all partitions Π of [a, b]. VR
(φ,α)(f) is called

the Riesz (φ, α)-variation of f on [a, b]. If VR
(φ,α)(f) < ∞, we say that f is

a function of Riesz (φ, α)-bounded variation. The set of all these functions is
denoted by

BVR
(φ,α)[a, b] =

{
f : [a, b]→ R

∣∣ VR
(φ,α)(f) <∞

}
.

Setting φ(t) = tp(1 ≤ p < ∞) we obtain the concept of (p, α)-bounded
variation defined in [3]. Fixing α(t) = t, t ∈ [a, b], the quantity VR

(φ,α)

(
f ; [a, b]

)
is known as the Riesz-Medvedev total variation, see [1] for more details.

By B[a, b] we denote the Banach space of bounded functions on [a, b] with
the supremum norm.

Theorem 3.2. Let f : [a, b] → R be a function and φ be a φ-function. If
f ∈ BVR

(φ,α)[a, b], then f ∈ B[a, b].

Proof. Let x ∈ (a, b). Then taking the division Π = (a < x < b) we get

φ

(
|f(x)− f(a)|
α(x)− α(a)

)(
α(x)− α(a)

)
≤M = VR

(φ,α)(f) <∞. (1)

In particular, from (1)

φ

(
|f(x)− f(a)|
α(x)− α(a)

)(
α(x)− α(a)

)
≤M, ∀x ∈

[
(a+ b)/2, b

)
. (2)

Since α is increasing α
(
a+b

2

)
≤ α(x), for all x ∈

[
(a+ b)/2, b

)
, from which

0 < α

(
a+ b

2

)
− α(a) ≤ α(x)− α(a), ∀x ∈

[
(a+ b)/2, b

)
. (3)

Since φ takes non-negative values, i.e. φ(t) ≥ 0, ∀t ≥ 0, from (2) and (3), we
get

φ

(
|f(x)− f(a)|
α(x)− α(a)

)(
α

(
a+ b

2

)
− α(a)

)
≤M, ∀x ∈

[
(a+ b)/2, b

)
from which we obtain

φ

(
|f(x)− f(a)|
α(x)− α(a)

)
≤ M

α
(
a+b

2

)
− α(a)

= C1, ∀x ∈
[
(a+ b)/2, b

)
. (4)

Since φ : [0,∞) → [0,∞) is bijective (strictly increasing, so injective, con-
tinuous with φ(0) = 0 and limt→∞ φ(t) = ∞), φ−1 : [0,∞) → [0,∞) is bi-

jective strictly increasing, from (4) we deduce
|f(x)−f(a)|
α(x)−α(a) ≤ φ−1(C1) = L1,

∀x ∈
[
(a+ b)/2, b

)
or

|f(x)− f(a)| ≤ L1

(
α(x)− α(a)

)
, ∀x ∈

[
(a+ b)/2, b

)
.
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Then

|f(x)| ≤ |f(x)− f(a)|+ |f(a)|
≤ L1

(
α(x)− α(a)

)
+ f(a) ≤ L1

(
α(b)− α(a)

)
+ |f(a)| (5)

for all x ∈
[
(a+ b)/2, b

)
, where the last inequality follows from the fact that α

is increasing.

For the case where x ∈ (a, (a+ b)/2] we get

|f(x)| ≤ L2

(
α(b)− α(a)

)
+ |f(b)|, (6)

adapting the previous argument.

From (5) and (6) it follows that f is bounded on (a, b), hence on [a, b]. �X

4. BVR
(φ,α)[a, b] as a Vector Space

In this section we study some properties of the (φ, α)-variation. Let us consider
VR

(φ,α)(f) as a functional defined on the set of Riesz (φ, α)-bounded variation,

that is VR
(φ,α)

: BVR
(φ,α)[a, b]→ [0,+∞) with f 7→ VR

(φ,α)(f).

Theorem 4.1. Let φ be a φ-function. Then

(1) VR
(φ,α)(−f) = VR

(φ,α)(f) for f ∈ BVR
(φ,α)[a, b];

(2) VR
(φ,α) is convex if and only if φ is convex;

(3) VR
(φ,α)(f) = 0 if and only if f is a constant function;

(4) If φ is convex and 0 ≤ λ ≤ 1, then VR
(φ,α)(λf) ≤ λVR

(φ,α)(f) for f ∈
BVR

(φ,α)[a, b].

Proof.

(1) Follows directly from the definition of VR
(φ,α)(f).

(2) Suppose that φ is convex. Let f, g ∈ BVR
(φ,α)[a, b] and λ, µ ∈ [0, 1] such that

λ + µ = 1. Let Π = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b].
Since φ is increasing and convex we have
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σR
(φ,α)

(
λf + µg; Π

)
=

n∑
j=1

φ

(∣∣(λf + µg)(xj)− (λf + µg)(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
≤ λ

n∑
j=1

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
+ µ

n∑
j=1

φ

(∣∣g(xj)− g(xj−1)|
α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
= λσR

(φ,α)(f ; Π) + µσR
(φ,α)(g; Π)

≤ λVR
(φ,α)(f) + µVR

(φ,α)(g),

which entails VR
(φ,α)(λf+µg) ≤ λVR

(φ,α)(f)+µVR
(φ,α)(g), i.e. VR

(φ,α) is convex

on BVR
(φ,α)[a, b]. Moreover, if f, g ∈ BVR

(φ,α)[a, b] then λf+µg ∈ BVR
(φ,α)[a, b]

with λ+ µ = 1 and λ, µ ∈ [0, 1]. Conversely, suppose that VR
(φ,α) is convex.

Let s, t ∈ [0,∞) and define for x ∈ [a, b], the functions f(x) = sα(x), and
g(x) = tα(x). Let λ, µ ∈ [0, 1] with λ + µ = 1. Let Π = {a = x0 < x1 <
· · · < xn = b} be a partition of [a, b], then we have

σR
(φ,α)(f ; Π) =

n∑
j=1

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
=

n∑
j=1

φ

(
|sα(xj)− sα(xj−1)|
α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
= φ(s)

(
α(b)− α(a)

)
<∞,

which is true for any partition Π of [a, b].

Therefore VR
(φ,α)(f) = φ(s)

(
α(b)−α(a)

)
and f ∈ BVR

(φ,α)[a, b]. In the same

way, we have VR
(φ,α)(g) = φ(t)

(
α(b) − α(a)

)
and g ∈ BVR

(φ,α)[a, b]. Since

f, g ∈ BVR
(φ,α)[a, b] and VR

(φ,α) is convex, we have that λf+µg ∈ BVR
(φ,α)[a, b]

with λ, µ ∈ [0, 1] and λ+µ = 1. On the other hand, observe that VR
(φ,α)(λf+

µg) = φ(λs+µt)
(
α(b)−α(a)

)
. By hypothesis VR

(φ,α)(λf+µg) ≤ λVR
(φ,α)(f)+

µVR
(φ,α)(g) then φ(λs+µt) ≤ λφ(s)+µφ(t) and thus φ is convex on [0,+∞).

(3) If f is constant on [a, b], then VR
(φ,α)(f) = 0, since φ(0) = 0. Next, suppose

that VR
(φ,α)(f) = 0, then for all partitions Π of [a, b], we have σR

(φ,α)(f ; Π) =

0. Let now Π = {a < t < b} be a partition of [a, b], then
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σR
(φ,α)(f ; Π) =

φ

(
|f(b)− f(t)|
α(b)− α(t)

)(
α(b)− α(t)

)
+ φ

(
|f(t)− f(a)|
α(t)− α(a)

)(
α(t)− α(a)

)
= 0

and hence φ
(
|f(t)−f(a)|
α(t)−α(a)

)(
α(t) − α(a)

)
= 0 and |f(t)−f(a)|

α(t)−α(a) = 0. Therefore

f(t) = f(a) for t ∈ [a, b], that is, f is constant on [a, b].

(4) By (2) and (3) we have VR
(φ,α)(λf) = VR

(φ,α)

(
λf + (1− λ)0

)
≤ λVR

(φ,α)(f) +

(1− λ)VR
(φ,α)(0) = λVR

(φ,α)(f). �X

Remark 4.2. In general BVR
(φ,α)[a, b] is not a vector space.

The following lemma will be useful in what follows.

Lemma 4.3. Let (R,V,+) be a vector space. Let A ⊂ V be a symmetric and
convex subset. Let [A] be the vector space generated by A. Then [A] = {v ∈ V |
∃λ > 0 such that λv ∈ A}.

Next, we apply Lemma 4.3 to Theorem 4.1 to obtain the following.

Corollary 4.4. Let φ be a convex φ-function, then BVR
(φ,α)[a, b] ⊂ B[a, b] is a

symmetric and convex set. Moreover
{
f : [a, b]→ R

∣∣∃λ > 0 such that λf ∈
BVR

(φ,α)[a, b]
}

is the vector space generated by BVR
(φ,α)[a, b].

Definition 4.5. Let φ be a convex φ-function. Then

{
f : [a, b]→ R

∣∣ ∃λ > 0 such that λf ∈ BVR
(φ,α)[a, b]

}
={

f : [a, b]→ R
∣∣ ∃λ > 0 such that VR

(φ,α)(λf) < +∞
}

is called the vector space of (φ, α)-bounded variation functions in the sense of
Riesz and we denote it by RBV(φ,α)[a, b].

We now have that RBV(φ,α)[a, b] =
[
BVR

(φ,α)[a, b]
]
⊂ B[a, b].

5. RBV(φ,α)[a, b] as a Normed Space

Before introducing a norm in the RBV(φ,α)[a, b] space, let us show some pre-
liminary results.

Theorem 5.1. Let φ be a convex φ-function and f ∈ RBV(φ,α)[a, b]. Then

(1) If 0 < k < k′, then VR
(φ,α)(kf) ≤ VR

(φ,α)(k
′f);
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(2) limβ→0 V
R
(φ,α)(βf) = 0;

(3)
{
ε > 0

∣∣ VR
(φ,α)(f/ε) ≤ 1

}
6= ∅.

Proof.

(1) Let 0 < k < k′ and Π =
{
a = x0 < x1 < · · · < xn = b

}
be a partition

of [a, b]. Then |kf(xj) − kf(xj−1)| ≤ |k′f(xj) − k′f(xj−1)|. Since φ is
increasing, for j = 1, . . . , n, we have

φ

(∣∣kf(xj)− kf(xj−1)
∣∣

α(xj)− α(xj−1)

)
≤ φ

(∣∣k′f(xj)− k′f(xj−1)
∣∣

α(xj)− α(xj−1)

)

and thus σR
(φ,α)(kf ; Π) ≤ σR

(φ,α)(k
′f ; Π), which yields the desired result.

(2) Since f ∈ RBV(φ,α)[a, b], there exists λ > 0 such that VR
(φ,α)(λf) <

∞. Let 0 < β ≤ λ, then by Theorem 4.1(4) we have VR
(φ,α)(βf) =

VR
(φ,α)

(
β
λλf

)
≤ β

λV
R
(φ,α)(λf) < ∞, therefore 0 ≤ limβ→0 V

R
(φ,α)(βf) ≤

limβ→0
β
λV

R
(φ,α)(λf) = 0.

(3) From part (2) there exists β > 0 such that VR
(φ,α)(βf) ≤ 1, which implies

the assertion (3). �X

Definition 5.2. Let φ be a convex φ-function. Then

RBV0
(φ,α)[a, b] =

{
f : [a, b]→ R

∣∣ f ∈ RBV(φ,α)[a, b] and f(a) = 0
}

is the vector space of functions of bounded Riesz (φ, α)-variation that vanish
at a.

We now define the functional |·|R(φ,α)
: RBV0

(φ,α)[a, b] → R+ by |f |R(φ,α) =

inf
{
ε > 0 : VR

(φ,α)(f/ε) ≤ 1
}

, which is well-defined by Theorem 5.1(3).

We show that |·|R(φ,α) defines a norm on RBV0
(φ,α)[a, b], the so-called Nakano-

Luxemburg norm. Before doing that, we need the following result.

Lemma 5.3. Let φ be a convex φ-function and f ∈ RBV0
(φ,α)[a, b]. Then

(1) |f |R(φ,α) 6= 0 implies VR
(φ,α)

(
f/|f |R(φ,α)

)
≤ 1;

(2) |f |R(φ,α) < k is equivalent to VR
(φ,α)(f/k) ≤ 1, k > 0;

(3) 0 ≤ |f |R(φ,α) ≤ 1 implies VR
(φ,α)(f) ≤ |f |R(φ,α);

(4)
{
ε > 0 : VR

(φ,α)(f/ε) ≤ 1
}

=
(
|f |R(φ,α),+∞

)
.
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Proof.

(1) Let k > |f |R(φ,α) and Π = {a = x0 < x1 < · · · < xn = b} be a partition of

[a, b]. Then σR
(φ,α)

(
f/k; Π

)
≤ VR

(φ,α)(f/k) ≤ 1 and σR
(φ,α)

(
f/|f |R(φ,α); Π

)
≤

limk→|f |R
(φ,α)

σR
(φ,α)

(
f/k; Π

)
≤ 1 which gives VR

(φ,α)

(
f/|f |R(φ,α)

)
≤ 1.

(2) Let |f |R(φ,α) < k. If |f |R(φ,α) = 0. Then there exists k′ such that 0 < k′ < k

and VR
(φ,α)(f/k

′) ≤ 1. Since 1/k < 1/k′ by Theorem 4.1(4) we have

VR
(φ,α)(f/k) ≤ VR

(φ,α)(f/k
′) ≤ 1. If 0 < |f |R(φ,α) < k, then 1/k < 1/|f |R(φ,α)

and again by Theorem 4.1(4) and Lemma 5.3(1) we obtain VR
(φ,α)(f/k) ≤

VR
(φ,α)

(
f/|f |R(φ,α)

)
≤ 1.

Conversely, VR
(φ,α)(f/k) ≤ 1 implies that k ∈

{
ε > 0 : VR

(φ,α)(f/ε) ≤ 1}
which gives that k > |f |R(φ,α).

(3) If |f |R(φ,α) = 0, then for k > 0 we have that VR
(φ,α)(f/k) ≤ 1, that is, k ∈{

ε > 0 : VR
(φ,α)(f/ε) ≤ 1

}
. Let 0 < k ≤ 1. Then, by Theorem 4.1(4), we

have VR
(φ,α)(f) = VR

(φ,α)

(
k(f/k)

)
≤ kVR

(φ,α)(f/k) ≤ k; thus VR
(φ,α)(f) = 0

and hence the required inequality holds.

If 0 < |f |R(φ,α) ≤ 1 by Theorem 4.1(4) we have that

VR
(φ,α)(f) = VR

(φ,α)

(
|f |R(φ,α)

(
f/|f |R(φ,α)

))
≤ |f |R(φ,α)V

R
(φ,α)

(
f/|f |R(φ,α)

)
which implies 1

|f |R
(φ,α)

VR
(φ,α)(f) ≤ VR

(φ,α)

(
f/|f |R(φ,α)

)
≤ 1 and by (1) we

get VR
(φ,α)(f) ≤ |f |R(φ,α).

(4) k ∈
{
ε > 0 : VR

(φ,α)(f/ε) ≤ 1
}
⇔ VR

(φ,α)(f/k) ≤ 1 which, by (2), is

equivalent to |f |R(φ,α) < k which is equivalent to k ∈
(
|f |R(φ,α),∞

)
. �X

Theorem 5.4. Let φ be a convex φ-function. Then |·|R(φ,α) is a norm on

RBV0
(φ,α)[a, b]

|f |R(φ,α) = inf

{
ε > 0 : VR

(φ,α)

(
f

ε

)
≤ 1

}
for f ∈ RBV0

(φ,α)[a, b].

Proof. We first show the positive definiteness. If f = 0, then |0|R(φ,α) ={
ε > 0 : VR

(φ,α)

(
0
ε

)
≤ 1

}
= 0. If |f |R(φ,α) = 0, then by Lemma 5.3(3),

0 ≤ VR
(φ,α)(f) ≤ |f |R(φ,α) = 0. Thus VR

(φ,α)(f) = 0 and by Theorem 4.1(3) we
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conclude that f is a constant function. Then, since f(a) = 0 then necessarily
f ≡ 0.

To prove the absolute homogeneity, we first suppose that m 6= 0. Then

|mf |R(φ,α) = inf

{
ε > 0 : VR

(φ,α)

(
mf

ε

)
≤ 1

}

= |m| inf

{
δ > 0 : VR

(φ,α)

(
f

δ

)
≤ 1

}
= |m||f |R(φ,α).

If m = 0 both sides are equal to zero.

We now show the validity of the triangle inequality. Lef f, g ∈ RBV0
(φ,α)[a, b].

If f = 0 or g = 0 then trivially we see that |f + g|R(φ,α) = |f |R(φ,α) + |g|R(φ,α). If

f 6= 0 and g 6= 0, by the convexity of VR
(φ,α) we have

VR
(φ,α)

(
f + g

|f |R(φ,α) + |g|R(φ,α)

)

= VR
(φ,α)

(
|f |R(φ,α)

|f |R(φ,α) + |g|R(φ,α)

f

|f |R(φ,α)

+
|g|R(φ,α)

|f |R(φ,α) + |g|R(φ,α)

g

|g|R(φ,α)

)

≤
|f |R(φ,α)

|f |R(φ,α) + |g|R(φ,α)

VR
(φ,α)

(
f

|f |R(φ,α)

)
+

|g|R(φ,α)

|f |R(φ,α) + |g|R(φ,α)

VR
(φ,α)

(
g

|g|R(φ,α)

)

≤
|f |R(φ,α)

|f |R(φ,α) + |g|R(φ,α)

+
|g|R(φ,α)

|g|R(φ,α) + |g|R(φ,α)

= 1

where the last inequality is due to Lemma 5.3(1). Thus, by Lemma 5.3(2) we
have

|f + g|R(φ,α) ≤ |f |
R
(φ,α) + |g|R(φ,α). (7)

In this way we obtain the triangle inequality (7) for f, g ∈ RBV0
(φ,α)[a, b]. �X

Remark 5.5. In what follows, we could had appeal to the theory of modular
spaces, see e.g. [11, Theorem 1.5], but we preferred to use a direct approach.

In the following we are going to define a norm on the space RBV(φ,α)[a, b].

Definition 5.6. Let φ be a convex φ-function. We define the functional ‖·‖R(φ,α)
:

RBV(φ,α)[a, b]→ R by f 7→ |f(a)|+
∣∣f − f(a)

∣∣R
(φ,α)

.

Theorem 5.7. Let φ be a convex φ-function. Then ‖·‖R(φ,α) is a norm on

RBV(φ,α)[a, b].
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Proof. To show the positive definiteness we take a function f ∈ RBV(φ,α)[a, b]

with ‖f‖R(φ,α) = 0; then |f(a)| = 0 and
∣∣f − f(a)

∣∣R
(φ,α)

= 0. From this we have

f(a) = 0 and by Theorem 5.4 we get f − f(a) = 0.

The absolute homogeneity holds, since taking f ∈ RBV(φ,α)[a, b] and c ∈ R,

we have ‖cf‖R(φ,α) = |cf(a)|+
∣∣cf − (cf)(a)

∣∣R
(φ,α)

= |c|‖f‖R(φ,α).

The triangular inequality follows from the fact that, if f, g ∈ RBV(φ,α)[a, b]
then

‖f + g‖R(φ,α) = |(f + g)(a)|+
∣∣(f + g)− (f + g)(a)

∣∣R
(φ,α)

≤ |f(a)|+ |g(a)|+
∣∣f − f(a)

∣∣R
(φ,α)

+
∣∣g − g(a)

∣∣R
(φ,α)

= ‖f‖R(φ,α) + ‖g‖R(φ,α). �X

Remark 5.8. If φ is a convex φ-function, then

(1)
(
RBV0

(φ,α)[a, b], |·|R(φ,α)

)
is a normed space;

(2)
(
RBV(φ,α)[a, b], ‖·‖R(φ,α)

)
is a normed space.

6. RBV(φ,α)[a, b] as a Banach Space

In what follows we are going to prove the completeness of the normed space
constructed in Section 5. First of all we will need the following well-known
result.

Lemma 6.1. Let φ be a convex φ-function defined on [0,∞). Then the function
ψ : (0,∞)→ R, defined by x 7→ φ(x)/x, is non-decreasing.

In what follows, we do not use the ∞1-condition as was used in [9] to prove
that, for f ∈ RBV0

(φ,α)[a, b], there exists M such that ‖f‖∞ ≤M |f |R(φ,α).

Lemma 6.2. Let φ be a convex φ-function. If f ∈ RBV0
(φ,α)[a, b], then ‖f‖∞ ≤

M |f |R(φ,α) with

M = max

 1(
α(b)− α(a)

)
φ
(

1
α(b)−α(a)

) , (α(b)− α(a)
)
φ−1

(
1

α(b)− α(a)

) .

Proof. If |f |R(φ,α) = 0, the result is trivial. Next, we assume that |f |R(φ,α) 6= 0
and let us consider

E =

{
x ∈ (a, b] :

∣∣∣∣∣ f(x)

|f |R(φ,α)

∣∣∣∣∣ ≥ α(x)− α(a)

α(b)− α(a)

}
.
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Let x ∈ E. Then

1

α(b)− α(a)
≤
(∣∣f(x)/|f |R(φ,α)

∣∣)/(α(x)− α(a)
)
,

by Lemma 6.1

φ

(
1

α(b)− α(a)

)/(
1

α(b)− α(a)

)
≤ φ

(∣∣f(x)/|f |R(φ,α)

∣∣
α(x)− α(a)

)/(∣∣f(x)/|f |R(φ,α)

∣∣
α(x)− α(a)

)

then by Lemma 5.3(1) we have

(
α(b)− α(a)

)∣∣∣∣∣ f(x)

|f |R(φ,α)

∣∣∣∣∣φ
(

1

α(b)− α(a)

)

≤ φ

(∣∣f(x)− f(a)
∣∣/|f |R(φ,α)

α(b)− α(a)

)(
α(x)− α(a)

)
≤ VR

(φ,α)

(
f/|f |R(φ,α)

)
≤ 1.

From this we obtain

|f(x)| ≤
|f |R(φ,α)(

α(b)− α(a)
)
φ
(

1
α(b)−α(a)

) . (8)

Let x ∈ (a, b] r E. Then∣∣∣∣∣ f(x)

|f |R(φ,α)

∣∣∣∣∣ < α(x)− α(a)

α(b)− α(a)
≤ 1.

Next, let us consider

φ


∣∣∣∣ f(x)

|f |R
(φ,α)

∣∣∣∣
α(b)− α(a)

 ≤ α(x)− α(a)

α(b)− α(a)
φ


∣∣∣∣ f(x)

|f |R
(φ,α)

∣∣∣∣
α(x)− α(a)



=
1

α(b)− α(a)
φ


∣∣∣∣ f(x)−f(a)

|f |R
(φ,α)

∣∣∣∣
α(x)− α(a)

(α(x)− α(a)
)
.

Since α(x)−α(a)
α(b)−α(a) ≤ 1, φ is convex and φ(0) = 0.
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By the previous estimate, Lemma 5.3(1) and taking into account the fact
that f(a) = 0 and the partition a < x < b of [a, b] we have

φ


∣∣∣∣ f(x)

|f |R
(φ,α)

∣∣∣∣
α(b)− α(a)

 ≤ 1

α(b)− α(a)
VR

(φ,α)

(
f/|f |R(φ,α)

)
≤ 1

α(b)− α(a)
,

from which we obtain ∣∣∣∣ f(x)

|f |R
(φ,α)

∣∣∣∣
α(b)− α(a)

≤ φ−1
(
1/
(
α(b)− α(a)

))
and thus

|f(x)| ≤
(
α(b)− α(a)

)
φ−1

(
1/
(
α(b)− α(a)

))
|f |R(φ,α) (9)

for x /∈ E. By (8) and (9) we have

|f(x)| ≤

max

 1(
α(b)− α(a)

)
φ
(

1
α(b)−α(a)

) , (α(b)− α(a)
)
φ−1

(
1

α(b)− α(a)

) |f |R(φ,α)

for all x ∈ (a, b].

LetM = max

{
1

(α(b)−α(a))φ
(

1
α(b)−α(a)

) , (α(b)−α(a)
)
φ−1

(
1

α(b)−α(a)

)}
. Then

we have ‖f‖∞ ≤M |f |R(φ,α) for f ∈ RBV0
(φ,α)[a, b]. �X

Theorem 6.3. Let φ be a convex φ-function. Then
(
RBV0

(φ,α)[a, b], |·|R(φ,α)

)
is

a complete space.

Proof. Let {fn}n∈R be a Cauchy sequence in RBV0
(φ,α)[a, b]. Given ε > 0 we

might select ε′ = εM , and thus there exists n ∈ N such that, for all p, q > N
we have

|fp − fq|R(φ,α) <
ε′

M
= ε.

By Lemma 6.2 we obtain ‖fp− fq‖∞ < ε′. This last inequality implies that
{fn}n∈N is a Cauchy sequence in

(
B[a, b], ‖·‖∞) and hence converges to f in

norm ‖·‖∞. Let us now define f : [a, b] → R by x 7→ limn→∞ fn(x) if x 6= a
and f(a) = 0. We need to show that
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(1) f ∈ RBV0
(φ,α)[a, b], and

(2) {fn}n∈N converges to f in norm |·|R(φ,α).

From Lemma 5.3(2) we see that VR
(φ,α)

(
fp−fq
ε

)
≤ 1.

Let Π = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b]. Then

σR
(φ,α)

(
fp − f
ε

; Π

)
= σR

(φ,α)

(
fp − limq→∞ fq

ε
; Π

)
= lim
q→∞

σR
(φ,α)

(
fp − fq

ε
; Π

)
≤ lim
q→∞

VR
(φ,α)

(
fp − fq

ε

)
≤ 1

for all partitions Π of [a, b], which yields

VR
(φ,α)

(
fp − f
ε

)
= sup

Π
σR

(φ,α)

(
fp − f
ε

; Π

)
≤ 1.

for p > N . Therefore fp − f ∈ RBV0
(φ,α)[a, b]. Since RBV0

(φ,α)[a, b] is a lin-

ear space, we conclude that the function f ∈ RBV0
(φ,α)[a, b]. Moreover, since

VR
(φ,α)

(
fp−f
ε

)
≤ 1, from Lemma 5.3(2), we conclude that |fp − f |R(φ,α) < ε if

p > N , which means that {fn}n∈N converges to f in |·|R(φ,α)-norm . �X

Theorem 6.4. Let φ be a convex φ-function. Then
(
RBV(φ,α)[a, b], ‖·‖R(φ,α)

)
is a complete space.

Proof. Let {fn}n∈N be a Cauchy sequence in RBV(φ,α)[a, b]. Given ε > 0, there

exists N ∈ N such that ‖fp − fq‖R(φ,α) < ε whenever p, q > N , that is
∣∣(fp −

fq)(a)
∣∣+ ∣∣(fp− fq)− (fp− fq)(a)

∣∣R
(φ,α)

whenever p, q > N . Let qp = fp− fp(a),

p ∈ N. Since f ∈ RBV(φ,α)[a, b] if and only if f − f(a) ∈ RBV0
(φ,α)[a, b] then

g ∈ RBV0
(φ,α)[a, b]. Then |gq−gq|R(φ,α) < ε whenever p, q > N and thus {gn}n∈N

is a Cauchy sequence in the space
(
RBV0

(φ,α)[a, b], |·|R(φ,α)

)
which is complete,

and therefore converges in norm |·|R(φ,α) to a function g ∈ RBV0
(φ,α)[a, b].

On the other hand, since
∣∣fp(a) − fq(a)

∣∣ < ε whenever p, q > N , we have

that
{
fn(a)

}
n∈N is a Cauchy sequence in R and hence converges to a function

f0 ∈ R. Let f = g + f0, then f ∈ RBV(φ,α)[a, b]. Since g and f0 are constant
functions they have (φ, α)-bounded variation in the Riesz sense and f(a) =
(g + f0)(a) = g(a) + f0 = f and g = f − f(a). Moreover∥∥(fn − f)

∥∥R
(φ,α)

=
∣∣(fn − f)(a)

∣∣+
∣∣(fn − f)− (fn − f)(a)

∣∣R
(φ,α)

=
∣∣fn(a)− f(a)

∣∣+
∣∣gn − g∣∣R(φ,α)

.
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Since fn(a)→ f(a) and gn → g, we have the result. �X

7. RBV(φ,α)[a, b] as a Banach Algebra

In their 1987 paper [9] L. Maligranda and W. Orlicz gave a lemma which
supplies a test to check if some function space is a Banach algebras, namely

Lemma 7.1 (Maligranda–Orlicz criterion). Let (X, ‖·‖) be a Banach space
whose elements are bounded functions and the space is closed under multipli-
cation of functions. Let us assume that f·g ∈ X and ‖fg‖ ≤ ‖f‖∞·‖g‖ +
‖f‖·‖g‖∞ for any f, g ∈ X. Then the space X equipped with the norm ‖f‖1 =
‖f‖∞ + ‖f‖ is a normed Banach algebra. Also, if X ↪→ B[a, b], then the norms
‖·‖1 and ‖·‖ are equivalent. Moreover, if ‖f‖∞ ≤ M‖f‖ for f ∈ X, then
(X, ‖·‖2) is a normed Banach algebra with ‖f‖2 = 2M‖f‖, f ∈ X and the
norms ‖·‖2 and ‖·‖ are equivalent.

To begin with, we are going to show that the space RBV(φ,α)[a, b] is closed
under multiplication of functions.

Theorem 7.2. Let φ be a convex φ-function. If f, g ∈ RBV(φ,α)[a, b], then

fg ∈ RBV(φ,α)[a, b] and
∣∣fg − (fg)(a)

∣∣R
(φ,α)

≤ ‖f‖∞
∣∣g − g(a)

∣∣R
(φ,α)

+ ‖g‖∞
∣∣f −

f(a)
∣∣R
(φ,α)

.

Proof. If f = f(a) = const or g = g(a) = const, the result is obvious. Assume
that f 6= const and g 6= const. Since the functions are bounded (see Theorem

3.2) we write λ1 = ‖f‖∞, λ2 = ‖g‖∞ and λ = λ1

∣∣g − g(a)
∣∣R
(φ,α)

+ λ2

∣∣f −
f(a)

∣∣R
(φ,α)

. Let Π = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b]. Since

f ∈ RBV(φ,α)[a, b] if and only if f − f(a) ∈ RBV0
(φ,α)[a, b] we have

σR
(φ,α)

(
fg − (fg)(a)

λ
; Π

)

= σR
(φ,α)

(
fg

λ
; Π

) n∑
j=1

φ

(∣∣(fg)(xj)− (fg)(xj−1)
∣∣

λ
(
α(xj)− α(xj−1)

) )(
α(xj)− α(xj−1)

)

≤
n∑
j=1

φ

(
λ2

∣∣f(xj)− f(xj−1)
∣∣+ λ1

∣∣g(xj)− g(xj−1)
∣∣

λ
(
α(xj)− α(xj−1)

) )(
α(xj)− α(xj−1)

)
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=

n∑
j=1

φ

λ2

∣∣f − f(a)
∣∣R
(φ,α)

λ

∣∣f(xj)− f(xj−1)
∣∣∣∣f − f(a)

∣∣R
(φ,α)

(
α(xj)− α(xj−1)

) +

λ1

∣∣g − g(a)
∣∣R
(φ,α)

λ

∣∣g(xj)− g(xj−1)
∣∣∣∣g − g(a)

∣∣R
(φ,α)

(
α(xj)− α(xj−1)

)
(α(xj)− α(xj−1)

)

≤
n∑
j=1

λ2

∣∣f − f(a)
∣∣R
(φ,α)

λ
φ

 ∣∣f(xj)− f(xj−1)
∣∣∣∣f − f(a)

∣∣R
(φ,α)

(
α(xj)− α(xj−1)

)
+

λ1

∣∣g − g(a)
∣∣R
(φ,α)

λ
φ

 ∣∣g(xj)− g(xj−1)
∣∣∣∣g − g(a)

∣∣R
(φ,α)

(
α(xj)− α(xj−1)

)

(α(xj)− α(xj−1)

)

=
λ2

∣∣f − f(a)
∣∣R
(φ,α)

λ
σR

(φ,α)

 f − f(a)∣∣f − f(a)
∣∣R
(φ,α)

; Π

+

λ1

∣∣g − g(a)
∣∣R
(φ,α)

λ
σR

(φ,α)

 g − g(a)∣∣g − g(a)
∣∣R
(φ,α)

; Π


≤
λ2

∣∣f − f(a)
∣∣R
(φ,α)

λ
VR

(φ,α)

 f∣∣f − f(a)
∣∣R
(φ,α)

+

λ1

∣∣g − g(a)
∣∣R
(φ,α)

λ
VR

(φ,α)

 g∣∣g − g(a)
∣∣R
(φ,α)

 .

Since f ∈ RBV(φ,α)[a, b] if and only if f − f(a) ∈ RBV0
(φ,α)[a, b] we have

=
λ2

∣∣f − f(a)
∣∣R
(φ,α)

λ
VR

(φ,α)

 f − f(a)∣∣f − f(a)
∣∣R
(φ,α)

+

λ1

∣∣g − g(a)
∣∣R
(φ,α)

λ
VR

(φ,α)

 g − g(a)∣∣g − g(a)
∣∣R
(φ,α)

 .

Volumen 48, Número 2, Año 2014



A GENERALIZATION FOR THE RIESZ P -VARIATION 181

Since f − f(a) and g − g(a) belong to RBV0
(φ,α)[a, b] and by Lemma 5.3(1)

we obtain

≤
λ2

∣∣f − f(a)|R(φ,α)

λ
+
λ2

∣∣g − g(a)
∣∣R
(φ,α)

λ
= 1.

This holds for any partition Π of [a, b], then

VR
(φ,α)

(
fg

λ

)
= VR

(φ,α)

(
fg − (fg)(a)

λ

)
= sup

Π
σR

(φ,α)

(
fg − (fg)(a)

λ
; Π

)
≤ 1.

Since VR
(φ,α)

(
fg
λ

)
<∞ we conclude that fg ∈ RBV(φ,α)[a, b] and fg−(fg)(a) ∈

RBV0
(φ,α)[a, b]. By Lemma 5.3(2) we have

∣∣fg − (fg(a))
∣∣R
(φ,α)

≤ λ. Replacing

λ1, λ2 and λ we obtain∣∣fg − (fg)(a)
∣∣R
(φ,α)

≤ ‖f‖∞
∣∣g − g(a)

∣∣R
(φ,α)

+ ‖g‖∞
∣∣f − f(a)

∣∣R
(φ,α)

. �X

Corollary 7.3. Let φ be a convex φ-function. If f, g ∈ RBV0
(φ,α)[a, b], then

fg ∈ RBV0
(φ,α)[a, b] and

|fg|R(φ,α) ≤ ‖f‖∞|g|
R
(φ,α) + ‖g‖∞|f |R(φ,α).

Theorem 7.4. Let φ be a convex φ-function. Then

(1) RBV(φ,α)[a, b] with the norm ‖·‖R1 = ‖·‖∞+‖·‖R(φ,α) is a Banach algebra;

(2) RBV(φ,α)[a, b] with the norm ‖·‖R2 = 2 max{1,M}‖·‖R(φ,α) is a Banach
algebra, where

M = max

 1(
α(b)− α(a)

)
φ
(

1
α(b)−α(a)

) , (α(b)− α(a)
)
φ−1

(
1

α(b)− α(a)

) .

(3) The norms ‖·‖R(φ,α), ‖·‖R1 and ‖·‖R2 are all equivalent.

Proof. First of all we need to check the hypothesis from Maligranda-Orlicaz
criterion (Lemma 7.1). By Theorem 3.2 we know that RBV(φ,α)[a, b] ⊂ B[a, b]

and by Theorem 6.4 we know that
(
RBV(φ,α)[a, b], ‖·‖R(φ,α)

)
is a Banach space

which is closed with respect to function multiplication; moreover
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‖fg‖R(φ,α) =
∣∣(fg)(a)

∣∣+
∣∣fg − (fg)(a)

∣∣R
(φ,α)

≤ 2|f(a)| |g(a)|+ ‖f‖∞·
∣∣g − g(a)

∣∣R
(φ,α)

+ ‖g‖∞·
∣∣f − f(a)

∣∣R
(φ,α)

≤ ‖f‖∞|g(a)|+ ‖g‖∞|f(a)|+ ‖f‖∞·
∣∣g − g(a)

∣∣R
(φ,α)

+

‖g‖∞·
∣∣f − f(a)

∣∣R
(φ,α)

= ‖f‖∞
(
|g(a)|+

∣∣g − g(a)
∣∣R
(φ,α)

)
+ ‖g‖∞

(
|f(a)|+

∣∣f − f(a)
∣∣R
(φ,α)

)
= ‖f‖∞‖g‖R(φ,α) + ‖g‖∞‖f‖R(φ,α)

for f, g ∈ RBV(φ,α)[a, b].

Then RBV(φ,α)[a, b] with the norm ‖f‖R1 = ‖f‖∞ + ‖f‖R(φ,α), is a Banach

algebra. Moreover, if f(a) 6= f ∈ RBV(φ,α)[a, b], then f − f(a) ∈ RBV0
(φ,α)[a, b]

and by Lemma 6.2 we have that
∥∥f − f(a)

∥∥
∞ ≤ M

∣∣f − f(a)
∣∣R
(φ,α)

yielding

‖f‖∞ ≤ max{1,M}‖f‖R(φ,α) for f ∈ RBV(φ,α)[a, b].

From Lemma 7.1 we deduce that RBV(φ,α)[a, b] with the norm ‖f‖R2 =

2 max{1,M}‖f‖R(φ,α) is a Banach algebra and the norms ‖·‖R(φ,α) and ‖·‖R2 are

equivalent. �X

Combining Lemma 7.1 and Theorem 7.4 we have

Corollary 7.5. Let φ be a convex φ-function. Then

(1) RBV0
(φ,α)[a, b] with the norm ‖·‖R1 = ‖·‖∞ + |·|R(φ,α) is a Banach algebra;

(2) RBV0
(φ,α)[a, b] with the norm ‖·‖R2 = 2 max{1,M}|·|R(φ,α) where

M = max

 1(
α(b)− α(a)

)
φ
(

1
α(b)−α(a)

) , (α(b)− α(a)
)
φ−1

(
1

α(b)− α(a)

) .

is a Banach algebra;

(3) The norms ‖·‖R(φ,α), ‖·‖R1 and ‖·‖R2 are all equivalent.

8. Medved’ev’s Theorem

In what follows, we need to justify why we need to introduce another condi-
tion on the function φ, the so-called ∞1-condition. This is done to avoid the
trivialization of the theory as stated in Corollary 8.4.

We first show some auxiliary results.
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Theorem 8.1. Let φ be a convex φ-function. Then RBV(φ,α)[a, b] ⊂ B[a, b].
Moreover, we have the following estimate

V(f, [a, b]) ≤
(
α(b)− α(a)

)
+

1

φ(1)
VR

(φ,α) (f) .

Proof. Let Π = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b].

Note that
∑n
j=1

∣∣f(xj)−f(xj−1)
∣∣ =

∑n
j=1

|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

(
α(xj)−α(xj−1)

)
. Let

E =
{
j ∈ {1, 2, . . . , n} : |f(xj)−f(xj−1)|

α(xj)−α(xj−1) ≤ 1
}

. If j /∈ E, then
|f(xj)−f(xj−1)|
α(xj)−α(xj−1) ≥ 1

and by Lemma 6.1 we obtain

φ(1)

1
≤
φ
(
|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

)
|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

.

and thus ∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)
≤ 1

φ(1)
φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)
for j /∈ E. Then

n∑
j=1

∣∣f(xj)− f(xj−1)
∣∣

=
∑
j∈E

∣∣f(xj)− f(xj−1)
∣∣+

∑
j /∈E

∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

(
α(xj)− α(xj−1)

)
≤
∑
j∈E

∣∣f(xj)− f(xj−1)
∣∣+

1

φ(1)

∑
j /∈E

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)
≤ α(b)− α(a) +

1

φ(1)
VR

(φ,α)(f) < +∞

for all partitions Π of [a, b]. Therefore V
(
f, [a, b]

)
≤ α(b)−α(a)+ 1

φ(1)V
R
(φ,α)(f).

�X

We now introduce the concept of ∞1-condition.

Definition 8.2. Let φ be a convex φ-function. If limx→∞
φ(x)
x = +∞, then we

say that φ satisfies the ∞1-condition.

Theorem 8.3. Let φ be a convex φ-function which does not satisfies the ∞1-
condition. Then we have BV[a, b] ⊂ RBV(φ,α)[a, b], with VR

(φ,α)(f) ≤ rVR
(φ,α)(f),

where supx∈(0,∞) φ(x)/x = r < +∞.
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Proof. Let f ∈ BV[a, b] and Π = {a = x0 < x1 < · · · < xn = b} be a partition
of [a, b]. Let us consider

φ
(
|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

)
|f(xj)−f(xj−1)|
α(xj)−α(xj−1)

≤ r, j = 1, 2, . . . , n.

Then

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)−α(xj−1)

)
≤ r
∣∣f(xj)−f(xj−1)

∣∣, j = 1, 2, . . . , n.

and

σR
(φ,α)(f ; Π) ≤ r

n∑
j=1

∣∣f(xj)− f(xj−1)
∣∣

for all partition Π of [a, b]. Therefore σR
(φ,α)(f ; Π) ≤ rVR

(φ,α)(f) and VR
(φ,α)(f) ≤

rV
(
f, [a, b]

)
. Consequently, f ∈ RBV(φ,α)[a, b]. �X

From Theorem 8.1 and 8.3 we deduce the following result.

Corollary 8.4. Let φ be a convex φ-function such that limx→∞
φ(x)
x = r <

+∞. Then RBV(φ,α)[a, b] = BV[a, b] and

1

r
VR

(φ,α)(f) ≤ V
(
f, [a, b]

)
≤ α(b)− α(a) +

1

φ(1)
VR

(φ,α)(f).

To avoid this case and the trivialization of the theory, we will impose the
∞1-condition on the φ function hereafter.

Theorem 8.5. Let φ be a convex φ-function which satisfies the ∞1-condition
and f ∈ RBV(φ,α)[a, b]. Then f is absolutely continuous with respect to α on
[a, b], that is, RBV(φ,α)[a, b] ⊂ α-AC[a, b].

Proof. Let f ∈ RBV(φ,α)[a, b]. Given ε > 0, let us consider (aj , bj), j =
1, 2, . . . , n a finite collection of disjoint subintervals contained in [a, b]. Let
m > 0 such that VR

(φ,α)(f) < mε
2 . Since φ satisfy the∞1-condition, there exists

x0 ∈ (0,∞) such that φ(x) ≥ mx for x ≥ x0. Next, let us consider the following

set E =
{
j ∈ {1, 2, . . . , n} : |f(bj)−f(aj)|

α(bj)−α(aj)
≥ x0

}
. If j ∈ E, then x0 ≤ |f(bj)−f(aj)|

α(bj)−α(aj)

and since φ satisfies the∞1-condition we have m
|f(bj)−f(aj)|
α(bj)−α(aj)

≤ φ
(
|f(bj)−f(aj)|
α(bj)−α(aj)

)
and thus

∣∣f(bj)−f(aj)
∣∣ ≤ 1

mφ
(
|f(bj)−f(aj)|
α(bj)−α(aj)

)(
α(bj)−α(aj)

)
. From this inequal-

ity we obtain
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n∑
j=1

∣∣f(bj)− f(aj)
∣∣ =

∑
j∈E

∣∣f(bj)− f(aj)
∣∣+

∑
j /∈E

∣∣f(bj)− f(aj)
∣∣

≤ 1

m

∑
j∈E

φ

(∣∣f(bj)− f(aj)
∣∣

α(bj)− α(aj)

)(
α(bj)− α(aj)

)
+ x0

∑
j /∈E

(
α(bj)− α(aj)

)
≤ 1

m

n∑
j=1

φ

(∣∣f(bj)− f(aj)
∣∣

α(bj)− α(aj)

)(
α(bj)− α(aj)

)
+ x0

n∑
j=1

(
α(bj)− α(aj)

)
<

1

m
VR

(φ,α) (f) + x0

n∑
j=1

α(bj)− α(aj).

Choose 0 < δ < ε/(2x0). If
∑n
j=1 α(bj) − α(aj) < δ, then we have∑n

j=1

∣∣f(bj)− f(aj)
∣∣ < ε

2 + x0δ < ε.

Finally, collecting all of this information we conclude that, given ε > 0 there
exists δ > 0 such that for all finite family of disjoint subintervals

{
(aj , bj) : j =

1, 2, . . . , n
}

of [a, b] such that
∑n
j=1 α(bj) − α(aj) < δ, then

∑n
j=1

∣∣f(bj) −
f(aj)

∣∣ < ε, which means that f ∈ α-AC[a, b]. �X

The coming result is a generalization of the result due to Medved’ev [10]
which provide us with a characterization of the (φ, α)-bounded variation func-
tions in the sense of Riesz.

Theorem 8.6. Let φ be a convex φ-function which satisfies the ∞1-condition.
Let f : [a, b]→ R, then:

(1) If f is an α-absolutely continuous function on [a, b] and

b∫
a

φ
(
|f ′α(x)|

)
dµα(x) <∞,

then we have that f ∈ RBV(φ,α)[a, b] and

VR
(φ,α)(f) ≤

b∫
a

φ
(
|f ′α(x)|

)
dµα(x).

(2) If f ∈ RBV(φ,α)[a, b] then f is α-absolutely continuous on [a, b] and

b∫
a

φ
(
|f ′α(x)|

)
dµα(x) ≤ VR

(φ,α)(f).
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Proof. (1) Since f ∈ α-AC[a, b], by Lemma 2.3 there f ′α exists µα-a.e. on [a, b].
Let x1, x2 ∈ [a, b] with x1 < x2, then

φ

(∣∣f(x2)− f(x1)
∣∣

α(x2)− α(x1)

)(
α(x2)− α(x1)

)
= φ


∣∣∣∣ x2∫
x1

f ′α(x) dα(x)

∣∣∣∣
α(x2)− α(x1)

(α(x2)− α(x1)
)

≤ φ


x2∫
x1

∣∣f ′α(x)
∣∣dα(x)

α(x2)− α(x1)

(α(x2)− α(x1)
)

= φ


x2∫
x1

∣∣f ′α(x)
∣∣dα(x)

x2∫
x1

dα(x)

(α(x2)− α(x1)
)

≤

x2∫
x1

φ
(∣∣f ′α(x)

∣∣) dα(x)

x2∫
x1

dα(x)

(
α(x2)− α(x1)

)

=

x2∫
x1

φ
(∣∣f ′α(x)

∣∣)dα(x),

where we have used Lemma 2.3 and the generalized Jensen inequality (see, e.g.
[12, Theorem 1.2.5]).

Now, let Π = {a = x0 < x1 < · · · < xn = b} be an arbitrary partition of
[a, b]. Then

n∑
j=1

φ

(∣∣f(xj)− f(xj−1)
∣∣

α(xj)− α(xj−1)

)(
α(xj)− α(xj−1)

)

≤
n∑
j=1

xj∫
xj−1

φ
(∣∣f ′α(x)

∣∣) dα(x) =

b∫
a

φ
(∣∣f ′α(x)

∣∣)dα(x) <∞,

and hence

VR
(φ,α)(f) ≤

b∫
a

φ
(∣∣f ′α(x)

∣∣) dα(x),

i.e., f ∈ RBV(φ,α)[a, b].
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(2) Let f ∈ RBV(φ,α)[a, b]. Then, by Theorem 8.5, f is absolutely continous
with respect to α on [a, b] and thus f ′α exists µα-a.e. on [a, b]. Let n ∈ N and
Πn = {a = x0,n < x1,n < · · · < xn,n = b} be a partition of [a, b] given by

xj,n = a+
j(b− a)

n
, j = 1, . . . , n.

Next, let us consider the sequence
{
fn
}
n∈N with fn : [a, b]→ R given by

fn(x) =


f(xk+1,n)−f(xk,n)
α(xk+1,n)−α(xk,n) , if xk,n ≤ x < xk+1,n;

any other reasonable value, if x = b.

Claim
{
fn
}
n∈N converge to f ′α on those points where f is α-differentiable and

different of xi,n, i = 0, 1, . . . , n, that is, on

A =
{
x ∈ [a, b] : f ′α(x) exists

}
r
{
xi,n : n ∈ N, i = 0, 1, . . . , n

}
.

Let x ∈ A. Then, for each n ∈ N there exists k ∈ {0, . . . , n} such that xk,n ≤
x < xk+1,n. Then

fn(x) =
f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(xk,n)

=
f(xk+1,n)− f(x) + f(x)− f(xk,n)

α(xk+1,n)− α(xk,n)

=
α(xk+1,n)− α(x)

α(xk+1,n)− α(xk,n)

f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(x)
+

α(x)− α(xk,n)

α(xk+1,n)− α(xk,n)

f(x)− f(xk,n)

α(x)− α(xk,n)
.

Therefore, fn(x) is a convex combination of the points

f(xk+1,n)− f(xk,n)

α(xk+1,n)− α(x)
and

f(x)− f(xk,n)

α(x)− α(xk,n)
.

When n→∞, then xn,k → x and xk+1,n → x. Since f is α-differentiable at x,
the expressions

f(xk+1,n)− f(x)

α(xk+1,n)− α(x)
and

f(x)− f(xk,n)

α(x)− α(xk,n)

go to the α-derivative, i.e. to f ′α. From this we have that limn→∞ fn(x) = f ′α(x),
x ∈ A µα-a.e on [a, b]. Since φ is continuous, then
limn→∞ φ

(∣∣fn(x)
∣∣) = φ

(
limn→∞ |fn(x)|

)
= φ

(
|f ′α(x)|

)
, x ∈ A. Using Fatou’s

lemma, we obtain
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b∫
a

φ
(
|f ′α|

)
dα(x) =

b∫
a

lim
n→∞

φ
(
|fn(x)|

)
dα(x)

≤ lim inf
n→∞

b∫
a

φ
(
|fn(x)|

)
dα(x)

= lim inf
n→∞

n−1∑
i=0

xi+1,n∫
xi,n

φ
(
|fn(x)|

)
dα(x)

= lim inf
n→∞

n−1∑
i=0

φ

(∣∣f(xi+1,n)− f(xi,n)
∣∣

α(xi+1,n)− α(xi,n)

) xi+1,n∫
xi,n

dα(x)

= lim inf
n→∞

n−1∑
i=0

φ

(∣∣f(xi+1,n)− f(xi,n)
∣∣

α(xi+1,n)− α(xi,n)

)(
α(xi+1,n)− α(xi,h)

)
≤ VR

(φ,α)(f) <∞. �X

Corollary 8.7. Let φ be a convex φ-function such that satisfies the ∞1-
condition. If f ∈ RBV(φ,α)[a, b], then f is α-absolutely continuous on [a, b]
and

b∫
a

φ
(
|f ′α(x)|

)
dα(x) = VR

(φ,α)(f).

Corollary 8.8. Let φ be a convex φ-function such that satisfies the ∞1-
condition. Then f ∈ RBV(φ,α)[a, b] if and only if f is α-absolutely continuous

on [a, b] and
b∫
a

φ
(
|f ′α|

)
dα(x) <∞. Moreover

b∫
a

φ
(
|f ′α|

)
dα(x) = VR

(φ,α)(f).

Corollary 8.9. Let φ be a convex φ-function such that satisfies the ∞1-
condition. Let f ∈ RBV0

(φ,α)[a, b], then

|f |R(φ,α) = inf

{
ε > 0 :

b∫
a

φ
( |f ′α(x)|

ε

)
dα(x) ≤ 1

}
.
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