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Resumen. En este art́ıculo se estudia el problema del primer retorno asociado a
ciertos operadores pseudo-diferenciales eĺıpticos en dimensiones 4 y 2 sobre los
números p-ádicos. Este tipo de problemas está conectado con ciertos modelos
de sistemas complejos.
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1. Introducción

During the last twenty-five years there has been a strong interest on random
walks on ultrametric spaces mainly due to its connections with models of com-
plex systems, such as glasses and proteins. Random walks on ultrametric spaces
are very convenient for describing phenomena whose space of states display a
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hierarchical structure, see e.g. [2, 1, 3, 8, 10, 11, 15, 12, 14, 17, 19, 20, 21],
and the references therein. Avetisov et al. have constructed a wide variety of
models of ultrametric diffusion constrained by hierarchical energy landscapes,
see [2], [3]. These models can be applied, among other things, to the study of
the relaxation of biological complex systems [4]. From a mathematical point of
view, in these models the time-evolution of a complex system is described by
a p-adic master equation (a parabolic-type pseudodifferential equation) which
controls the time-evolution of a transition function of a random walk on an
ultrametric space, and the random walk describes the dynamics of the system
in the space of configurational states which is approximated by an ultrametric
space (Qp).

The problem of the first passage time was study in [5] for the dimension 1
and in arbitrary dimension in [7]. In [5] and [7] pseudodifferential operators with
radial symbols were considered. In this article we consider operators over Q4

p

whose symbols are not radial functions. By using a similar techniques to those
of [5] and [7], we study the problem of the first passage time for a random walk
X(t, ω) (see Definition 3.4) on the ultrametric space Q4

p, whose distribution
density Z(x, t), x ∈ Q4

p, t ∈ R+, satisfies the ultrametric diffusion equation

∂u(x, t)

∂t
= − 1

Γ2
p(−α)

∫
Q4
p

u(x− y, t)− u(x, t)

|f(y)|α+2
p

d4y,

where f is an elliptic quadratic form of dimension 4, see (2).

Our aim is to prove that the random walk X(t, ω) is recurrent if α ≥ 2
and transient when α < 2, see Theorem 3.10. By using the same techniques,
we obtain similar results for the problem of the first passage time over Q2

p, see
Theorem 4.1.

The article is organized as follows. In Section 2, we review the basic notions
of p-adic analysis and some results about elliptic pseudodifferential operators
which were studied in [21] and [6]. In Section 3, we study the first passage
time for a pseudodifferential operator attached to an elliptic quadratic form of
dimension 4. In Section 4, we present similar results to those in Section 3, for
the problem of the first passage time over Q2

p. Finally, in Section 5, by using
the same technique used in [5] we find the asymptotic behavior for the survival
probability.

2. Preliminaries

In this section we fix notation and collect some basic results on p-adic analysis
that we will use through the article. For a detailed exposition on p-adic analysis
the reader may consult [1], [18], [20].
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THE PROBLEM OF THE FIRST PASSAGE TIME 193

2.1. The Field of p-Adic Numbers

Along this article p will denote a prime number different from 2. The field of
p−adic numbers Qp is defined as the completion of the field of rational numbers
Q with respect to the p−adic norm |·|p, which is defined as

|x|p =

{
0, if x = 0;

p−γ , if x = pγ
a

b
;

where a and b are integers coprime with p. The integer γ := ord(x), with
ord(0) := +∞, is called the p−adic order of x. We extend the p−adic norm to
Qnp by taking

‖x‖p := max
1≤i≤n

|xi|p, for x = (x1, . . . , xn) ∈ Qnp .

We define ord(x) = min1≤i≤n
{
ord(xi)

}
, then ‖x‖p = p−ord(x). Any p−adic

number x 6= 0 has a unique expansion x = pord(x)
∑∞
j=0 xjp

j , where xj ∈
{0, 1, 2, . . . , p−1} and x0 6= 0. By using this expansion, we define the fractional
part of x ∈ Qp, denoted {x}p, as the rational number

{x}p =

{
0, if x = 0 or ord(x) ≥ 0;

pord(x)
∑−ord(x)−1
j=0 xjp

j , if ord(x) < 0.

For γ ∈ Z, denote by Bnγ (a) =
{
x ∈ Qnp : ‖x − a‖p ≤ pγ

}
the ball of

radius pγ with center at a = (a1, . . . , an) ∈ Qnp , and by Sγ(a) =
{
x ∈ Qnp :

‖x − a‖p = pγ
}

the sphere of radius pγ with center at a = (a1, . . . , an) ∈ Qnp ,
and take Bnγ (0) := Bnγ , Snγ (0) := Snγ . Note that Bnγ (a) = Bγ(a1)×· · ·×Bγ(an),

where Bγ(ai) :=
{
x ∈ Qp : |x − ai|p ≤ pγ

}
is the one-dimensional ball of

radius pγ with center at ai ∈ Qp. The ball Bn0 (0) is equals the product of n
copies of B0(0) := Zp, the ring of p−adic integers. We denote by Ω

(
‖x‖p

)
the

characteristic function of Bn0 (0). For more general sets, say Borel sets, we use
1A(x) to denote the characteristic function of A.

2.2. The Bruhat-Schwartz Space

A complex-valued function ϕ defined on Qnp is called locally constant if for any
x ∈ Qnp there exist an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for x′ ∈ Bnl(x). (1)

A function ϕ : Qnp → C is called a Bruhat-Schwartz function (or a test
function) if it is locally constant with compact support. The C-vector space
of Bruhat-Schwartz functions is denoted by S

(
Qnp
)

:= S. For ϕ ∈ S
(
Qnp
)
, the
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largest of such number l = l(ϕ) satisfying (1) is called the exponent of local
constancy of ϕ.

Let S′
(
Qnp
)

:= S′ denote the set of all functionals (distributions) on S
(
Qnp
)
.

All functionals on S
(
Qnp
)

are continuous.

Set Ψ(y) = exp
(
2πi{y}p

)
for y ∈ Qp. The map Ψ(·) is an additive character

on Qp, i.e. a continuos map from Qp into the unit circle satisfying Ψ(y0 +y1) =
Ψ(y0)Ψ(y1), y0, y1 ∈ Qp.

Given ξ = (ξ1, . . . , ξn) and x = (x1, . . . , xn) ∈ Qnp , we set ξ·x :=
∑n
j=1 ξjxj .

The Fourier transform of ϕ ∈ S
(
Qnp
)

is defined as

(Fϕ)(ξ) =

∫
Qnp

Ψ(−ξ·x)ϕ(ξ) dnx, for ξ ∈ Qnp ,

where dnx is the Haar measure on Qnp normalized by the condition vol
(
Bn0
)

= 1.

The Fourier transform is a linear isomorphism from S
(
Qnp
)

onto itself satisfying(
F(Fϕ)

)
(ξ) = ϕ(−ξ). We will also use the notation Fx→ξϕ and ϕ̂ for the

Fourier transform of ϕ.

2.3. Fourier Transform

The Fourier transform F
[
f
]

of a distribution f ∈ S′
(
Qnp
)

is defined by(
F
[
f
]
, ϕ
)

=
(
f,F

[
ϕ
])

for all ϕ ∈ S
(
Qnp
)
.

The Fourier transform f → F
[
f
]

is a linear isomorphism from S′
(
Qnp
)

onto

S′
(
Qnp
)
. Furthermore, f = F

[
F
[
f
](
− ξ
)]

.

2.4. Elliptic Pseudo Differential Operators

Definition 2.1. Let f(ξ) ∈ Qnp
[
ξ1, . . . , ξn

]
be a non constant polynomial. We

say that f(ξ) is an elliptic polynomial of degree d, if it satisfies the following
conditions (i) f(ξ) is a homogeneous polynomial of degree d, and (ii) f(ξ) =
0⇔ ξ = 0.

We note that if f(ξ) is elliptic, then cf(ξ) is elliptic for any c ∈ Q×p . For this
reason we will assume from now on that elliptic polynomials have coefficients
in Zp.

Definition 2.2. Let f(ξ) ∈ Znp
[
ξ1, . . . , ξn

]
be a non constant polynomial. A

pseudo differential operator f(D,α), α > 0, with symbol
∣∣f(ξ)

∣∣α
p

, is an operator

of the form(
f(D,α)ϕ

)
:= F−1

ξ→x
(
|f |αpFx→ξϕ

)
, for ϕ ∈ S

(
Qnp
)
.
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THE PROBLEM OF THE FIRST PASSAGE TIME 195

If f is an elliptic polynomial, we said that f(D,α) is an elliptic pseudodif-
ferential operator.

When n = 4, Zúñiga-Galindo and Casas-Sánchez established the following
formula

−
(
f(D,α)ϕ

)
= − 1

Γ2
p(−α)

∫
Q4
p

ϕ(x− y)− ϕ(x)∣∣f(y)
∣∣α+2

p

d4y, for all ϕ ∈ S
(
Q4
p

)
,

where Γ2
p(α) := 1−pα−2

1−p−α is the p-adic Gamma function in dimension two, see [20].

The operator f(D,α) has a self-adjoint extension with dense domain in
L2
(
Q4
p

)
. A elliptic form f(ξ) over Qnp , with p 6= 2, is called quadratic form if

d = 2. It is known that all quadratic forms in five or more variables are not
elliptic.

We set

f(x) := x2
1 − ax2

2 − px2
3 + pax2

4, f◦(x) := apx2
1 − px2

2 − ax2
3 + x2

4, (2)

with a ∈ Z a quadratic non-residue module p (note that |a|p = 1). Then f , f◦

are elliptic polynomials of degree 2.

Lemma 2.3. Let f , f◦ be as above. Then

(i) p−1‖x‖2p ≤ |f(x)|p ≤ ‖x‖2p, for every x ∈ Q4
p;

(ii) p−1‖x‖2p ≤
∣∣f◦(x)

∣∣
p
≤ ‖x‖2p, for every x ∈ Q4

p.

Proof. If x = 0 then the statement is obvious. If x 6= 0 then x = pord(x)u
where ‖u‖p = 1 and |f(x)|p = p−2 ord(x)|f(u)|p = ‖x‖2p|f(u)|p it is easy to

check that |f(u)|p ∈
{
p−1, 1

}
, which completes the proof for f . The proof for

f◦ is similar. �X

This lemma is a particular case of Lemma 1 in [21].

2.5. Some Results About the Solution of the Cauchy Problem for
Elliptic Operators

We need some results of [21] for n = 4. Consider the Cauchy problem{
∂ϕ(x,t)
∂t = −

(
f(D,α)ϕ

)
(x, t), x ∈ Q4, t ∈ (0, T ];

ϕ(x, 0) = ϕ0(x).
(3)

Set

Zt(x) := Z(x, t) =

∫
Q4
p

Ψ(ξ·x)e−t|f
◦(ξ)|αp d4ξ. (4)
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196 LEONARDO FABIO CHACÓN-CORTES

Then Z(x, t) is a fundamental solution of (3) and the solution for Cauchy
problem (3) is given by

ϕ(x, t) = Z(x, t) ∗ ϕ0(x) =

∫
Q4
p

Ψ(ξ·x)ϕ0(ξ)e−t|f
◦(ξ)|αp d4ξ.

Some known results about the fundamental solution are collected in the
following theorem.

Theorem 2.4. The function Z(x, t) has the following properties:

(i) Z(x, t) ≥ 0 for any t > 0;

(ii)
∫
Qnp
Z(x, t) d4x = 1 for any t > 0;

(iii) Z(x, t) ≤ A
(
‖x‖p + t

1
2α

)−4−2α

; here, A is a positive constant for any

t > 0, and any x ∈ Q4
p;

(iv) Zt(x) ∗ Zt′(x) = Zt+t′(x) for any t, t′ > 0;

(v) lim
t→0+

Z(x, t) = δ(x) in S′
(
Q4
p

)
;

(vi) Zt(x) ∈ C
(
Q4
p,R

)
∩ L1

(
Q4
p

)
∩ L2

(
Q4
p

)
for any t > 0.

Proof. (i),(ii),(iii),(iv) follow from [21, Theorem 2, Proposition 2, Theorem 1,
Proposition 2].

(v) By Lemma 2.3 e−tf
◦(‖ξ‖p) ∈ C

(
Q4
p,R

)
∩ L1 for t > 0, then the inner

product 〈
e−tf

◦(‖ξ‖p), φ
〉

=

∫
Q4
p

e−tf
◦(‖ξ‖p)φ

(
ξ
)
dnξ

defines a distribution on Q4
p; now, by the Dominated Converge Theorem,

lim
t→0+

〈
e−tf

◦(‖ξ‖p), φ
〉

= 〈1, φ〉

and thus

lim
t→0+

〈
Z(x, t), φ

〉
= lim
t→0+

〈
e−tf

◦‖ξ‖p ,F−1φ
〉

=
〈
1,F−1φ

〉
= (δ, φ).

(vi) From Lemma 2.3, we have Zt(x) ∈ C
(
Q4
p,R

)
∩ L1

(
Q4
p

)
, t > 0, and by (i)

and (ii), Zt(x) ∈ L2
(
Qnp
)
. �X
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THE PROBLEM OF THE FIRST PASSAGE TIME 197

2.6. Markov Processes over QQQ4
p

Along this section we consider
(
Q4
p, ‖·‖p

)
as complete non-Archimedean metric

space and use the terminology and results of [9, Chapters Two, Three]. Let B
denote the Borel σ−algebra of Q4

p. Thus
(
Q4
p,B, d4x

)
is a measure space.

We set
p(t, x, y) := Z(x− y, t) for t > 0, x, y ∈ Q4

p,

and

P (t, x,B) =

{∫
B
p(t, y, x) d4y, for t > 0, x ∈ Q4

p, B ∈ B;

1B(x), for t = 0.

Lemma 2.5. With the above notation the following assertions hold:

(i) p(t, x, y) is a normal transition density;

(ii) P (t, x,B) is a normal transition function.

Proof. The result follows from Theorem 2.4. See [9, Section 2.1] for further
details. �X

Lemma 2.6. The transition function P (t, x,B) satisfies the following two con-
ditions:

(i) for each u ≥ 0 and compact B

lim
x→∞

sup
t≤u

P (t, x,B) = 0, [Condition L(B)];

(i) for each ε > 0 and compact B

lim
t→0+

sup
x∈B

P
(
t, x,Q4

p rB4
ε (x)

)
= 0, [Condition M(B)].

Proof.

(i) By Theorem 2.4 (iii) and the fact that ‖·‖p is an ultranorm, we have

P (t, x,B) ≤ Ct
∫
B

(
‖x− y‖p + t

1
2α

)−4−2α

d4y

= t
(
‖x‖p + t

1
2α

)−4−2α

vol(B), for x ∈ Q4
p rB.

Therefore lim
x→∞

sup
t≤u

P (t, x,B) = 0.
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(ii) By using Theorem 2.4 (iii), α > 0, and the fact that ‖·‖p is an ultranorm,
we have

P
(
t, x,Q4

p rB4
ε (x)

)
≤ Ct

∫
‖x−y‖p>ε

(
‖x− y‖p + t

1
2α

)−4−2α

d4y

= Ct

∫
‖z‖p>ε

(
‖z‖p + t

1
2α

)−4−2α

d4z

≤ Ct
∫

‖z‖p>ε

‖z‖−4−2α
p d4z

= C ′(α, ε)t.

Therefore

lim
t→0+

sup
x∈B

P
(
t, x,Q4

p rB4
ε (x)

)
≤ lim
t→0+

sup
x∈B

C ′(α, ε)t = 0. �X

Theorem 2.7. Z(x, t) is the transition density of a time and space homoge-
neous Markov process which is bounded, right-continuous and has no disconti-
nuities other than jumps.

Proof. The result follows from [9, Theorem 3.6] by using that
(
Q4
p, ‖x‖p

)
is

semi-compact space, i.e. a locally compact Hausdorff space with a countable
base, and P (t, x,B) is a normal transition function satisfying conditions L(B)
and M(B), c.f. Lemma 2.5, 2.6. �X

3. The First Passage Time over QQQ4
p

Consider the following Cauchy problem{
∂ϕ(x,t)
∂t = − 1

Γ2
p(−α)

∫
Q4
p

ϕ(x−y,t)−ϕ(x,t)

|f(y)|α+2
p

d4y, x ∈ Q4
p, t ∈ (0, T ]

ϕ(x, 0) = Ω
(
‖x‖p

)
.

(5)

The solution of (5) is given by

ϕ(x, t) =

∫
Q4
p

Ψ(ξ·x)Ω
(
‖ξ‖p

)
e−t|f

o(ξ)|p d4ξ. (6)

Lemma 3.1. The function ϕ(x, t) is infinitely differentiable in the time t ≥ 0
and its derivative is given by

∂mϕ

∂tm
(x, t) = (−1)m

∫
Q4
p

|f◦(ξ)|mp Ψ(ξ·x)Ω
(
‖ξ‖p

)
e−t|f

◦(ξ)|p d4ξ, for m ∈ N.
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Proof. Note that for t ≥ 0 and m ∈ N, |f◦(ξ)|mp Ψ(ξ·x)Ω
(
‖ξ‖p

)
e−t|f

o(ξ)|p ∈
L1
(
Q4
p

)
. The announced formula is obtained by induction on m by applying

the Lebesgue Dominated Convergence Theorem. �X

Lemma 3.2. [6, Lemma 7] Let f(x) = x2
1 − ax2

2 − px2
3 + apx2

4, α ∈ C, then∫
‖y‖p≥1

1

|f(y)|α+2
p

d4y =
p−2α

(
1− p−2

)
(1 + pα)

1− p−2α
, Re(α) > 0.

Remark 3.3. We note

− 1

Γ2
p(−α)

∫
‖y‖p>1

d4y

|f(y)|α+2
p

≤ − 1

Γ2
p(−α)

∫
‖y‖p≥1

d4y

|f(y)|α+2
p

≤ 1. (7)

Set Υ to be the space of all paths of the random process X(t, ω). Then
there exists a probability space (Υ,B, P ), where P is a probability measure on
Υ. The construction of this probability space follows from classical arguments,
see e.g. [16, pp. 338–339] or [13, proof of Theorem 5.9]. The argument uses the

one-point compactification Q4

p of Q4
p by a point, and that Υ =

∏
0≤t<∞

Q4

p(t),

where the Q4

p(t) are copies of Q4

p. The construction of P follows from the Stone-
Weierstrass Theorem and Riesz-Markov Theorem like in the Archimedean case.

The probability P (dω) is roughly
+∞∏
i=1

[
Zti(xi) ∗ Ω

(
‖xi‖p

)]
dxi.

This section is dedicated to the study of the following random variable.

Definition 3.4. The random variable τZ4
p

: Υ→ R+ ∪ {+∞} defined by

inf
{
t > 0;X(t, ω) ∈ Z4

p : there exists t′ such that 0 < t′ < t and X(t′, ω) /∈ Z4
p

}
is called the first passage time of a path of the random process X(t, ω) entering
the domain Z4

p.

Note that the initial condition in (5) implies that

P
({
ω ∈ Υ : X(0, ω) ∈ Z4

p

})
= 1.

Definition 3.5. We say that X(t, ω) is recurrent with respect to Z4
p if

P
({
ω ∈ Υ : τZ4

p
(ω) < +∞

})
= 1. (8)

Otherwise we say that X(t, ω) is transient with respect to Z4
p.

The meaning of (8) is that every path of X(t, ω) is sure to return to Z4
p. If

(8) does not hold, then there exist paths of X(t, ω) that abandon Z4
p and never

go back.
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Lemma 3.6. The probability density function for a path of X(t, ω) to enter
into Z4

p at the instant of time t, with the condition that X(0, ω) ∈ Z4
p is given

by

g(t) = − 1

Γ2
p(−α)

∫
Q4
prZ4

p

ϕ(x, t)

|f(x)|α+2
p

d4x. (9)

Proof. The survival probability, by definition

S(t) := SZ4
p
(t) =

∫
Z4
p

ϕ(x, t) d4x,

is the probability that a path of X(t, ω) remains in Z4
p at the time t. Because

there are no external forces acting on the random walk, we have

S′(t) =

Probability that a path of X(t, ω)

goes back to Z4
p at the time t

− Probability that a path of X(t, ω)

exits Z4
p at the time t

= g(t)− C·S(t) with 0 < C ≤ 1. (10)

By using Lemma 3.1 and (5) we have

S′(t) =

∫
Z4
p

∂ϕ(x, t)

∂t
d4x =

−1

Γ2
p(−α)

∫
Z4
p

∫
Q4
p

ϕ(x− y, t)− ϕ(x, t)

|f(y)|α+2
p

d4y d4x

=
−1

Γ2
p(−α)

∫
Z4
p

∫
Z4
p

ϕ(x− y, t)− ϕ(x, t)

|f(y)|α+2
p

d4y d4x +

−1

Γ2
p(−α)

∫
Z4
p

∫
Q4
prZ4

p

ϕ(x− y, t)− ϕ(x, t)

|f(y)|α+2
p

d4y d4x.

The integral over Z4
p × Z4

p is zero since the parameter of constancy of ϕ is
greater that 1. Thus

S′(t) =
−1

Γ2
p(−α)

∫
Z4
p

∫
Q4
prZ4

p

ϕ(x− y, t)
|f(y)|α+2

p

d4y d4x +

1

Γ2
p(−α)

∫
Z4
p

∫
Q4
prZ4

p

ϕ(x, t)

|f(y)|α+2
p

d4y d4x. (11)
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Now by substituting (6) in the first integral in (11) and by using Lemma 2.3,
Fubini’s Theorem and fact that

∫
Z4
p

Ψ(ξ·y) d4y = Ω
(
‖ξ‖p

)
, we have

S′(t) =
−1

Γ2
p(−α)

∫
Q4
prZ4

p

ϕ(y, t)

|f(y)|α+2
p

d4y − −1

Γ2
p(−α)

 ∫
Q4
prZ4

p

1

|f(y)|α+2
p

d4y

S(t).

Take C = −1
Γ2
p(−α)

∫
Q4
prZ4

p

1
|f(y)|α+2

p
d4y ≤ 1, c.f. (7). Finally, by using (10),

one gets

g(t) =
−1

Γ2
p(−α)

∫
Q4
prZ4

p

ϕ(x, t)

|f(x)|α+2
p

d4x. �X

Proposition 3.7. The probability density function f(t) of the random variable
τ(ω) satisfies the non-homogeneous Volterra equation of second kind

g(t) =

∫ ∞
0

g(t− τ)f(τ) dτ + f(t). (12)

Proof. The result follows from Lemma 3.6 by using the argument given in the
proof of Theorem 1 in [5]. �X

Lemma 3.8. Let f◦(x) = apx2
1 − px2

2 − ax2
3 + x2

4 be with a ∈ Z a quadratic
non-residue module and γ ∈ Z, α > 0, Re(s) > 0. Then the following formulas
hold:

(i) ∫
S4
0

1

s+ p−2γα|f◦(y)|αp
d4y =

1− p−2

s+ p−2γα
+

(1− p−2)p−2

s+ p−2γα−α .

(ii) If |ξ|p ≥ p, then there exist constants C1 and C2 such that

∫
S4
0

Ψ(y·ξ)
s+ p−2γα|f◦(y)|αp

d4y =

{
C1

s+p−2γα − C2

s+p−2γα−α , if ‖ξ‖p = p;

0, if ‖ξ‖p > p.

Proof. Let S4
0(0) = tiU (i) be where U (i) = U

(i)
1 × U

(i)
2 × U

(i)
3 × U

(i)
4 and

U
(i)
j :=

{
pijZp, if ij = 1;

Z∗p, if ij = 0;

for i = (i1, i2, i3, i4) ∈ {0, 1}4 r
{

(1, 1, 1, 1)
}

. Thus
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∫
S4
0

1

s+ p−2γα|f◦(y)|αp
d4y =

∑
i

∫
U(i)

1

s+ p−2γα|f◦(y)|αp
d4y :=

∑
i

Zi(α). (13)

Taking into account that |f◦(y)|p = max
{
p−1|x1|2p, p−1|x2|2p, |x3|2p, |x4|2p

}
is

constant on each U
(i)
j , the calculation is reduced to the calculation of vol(U (i)).

The following table summarizes the calculations:

Index i Zi(α)

(1, 1, 1, 0), (1, 1, 0, 1) (1−p−1)p−3

s+p−2γα

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1) (1−p−1)2p−2

s+p−2γα

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) (1−p−1)3p−1

s+p−2γα

(0, 0, 0, 0) (1−p−1)4

s+p−2γα

(1, 0, 1, 1), (0, 1, 1, 1) (1−p−1)p−3

s+p−2γα−α

(0, 0, 1, 1) (1−p−1)2p−2

s+p−2γα−α

(i) It follows from (13) by using the above table.

(ii) It follows by using the same decomposition as above, and the following
fact ∫

B1
−1

Ψ(yξ) dy =

{
p−1, if |ξ|p ≤ p;
0, if |ξ|p > p.

∫
S1
0

Ψ(yξ) dy =


(
1− p−1

)
, if |ξ|p ≤ 1;

−p−1, if |ξ|p = p;

0, if |ξ|p > p.

We have∫
S4
0

Ψ(y·ξ)
s+ p−2γα|f◦(y)|αp

d4y =

∑
i

∫
U(i)

Ψ(y·ξ)
s+ p−2γα|f◦(y)|αp

d4y ={
C1

s+p−2γα − C2

s+p−2γα−α , if ‖ξ‖p = p;

0, if ‖ξ‖p > p.
�X

Volumen 48, Número 2, Año 2014



THE PROBLEM OF THE FIRST PASSAGE TIME 203

Proposition 3.9. The Laplace transform G(s) of g(t) is given by G(s) =
G1(s) +G2(s), where

G1(s) =

−
(
1− p−2

)(
1 + pα

)
Γ2
p(−α)

×
∞∑
ν=1

p−2να
∞∑
γ=ν

p−4γ

(
1− p−2

s+ p−2γα
+

(
1− p−2

)
p−2

s+ p−2γα−α

)
,

and

G2(s) =
−1

Γ2
p(−α)

∞∑
ν=1

p−2ναp−4(ν−1)

(
C1

s+ p−2(ν−1)α
− C2

s+ p−2(ν−1)α−α

)
.

Proof. We first note that, if Re(s) > 0, then

e−ste−t|f
◦(ξ)|αp Ω

(
‖ξ‖p

)
|f(x)|α+2

p

∈ L1
(
(0,∞)×Q4

p ×Q4
p r Z4

p, dt d
4ξ d4x

)
. (14)

We compute the Laplace transform G(s) of g(t) substituting (6) into (9) and
interchanging the iterated integrals in a suitable form, which is allowed by (14)
via Fubini’s Theorem. In this way one gets

G(s) =

∫
Q4
prZ4

p

∫
Z4
p

Ψ(ξ·x)(
s+ |f◦(ξ)|αp

)
|f(x)|α+2

p

d4ξ d4x, for Re(s) > 0.

We now assert that G(s) is convergent for Re(s) > 0. Indeed, since∣∣s+ |f◦(ξ)|αp
∣∣ ≥ Re(s) + |f◦(ξ)|αp > |f◦(ξ)|αp for Re(s) > 0. (15)

By Lemma 2.3, we have

1∣∣s+ |f◦(ξ)|αp
∣∣|f(x)|α+2

p

∈ L1
(
Q4
p r Z4

p × Z4
p, d

4x d4ξ
)
, for Re(s) > 0,

then

G(s) =
−1

Γ2
p(−α)

∫
Q4
prZ4

p

1

|f(x)|α+2
p

∫
Z4
p

Ψ(ξ·x)

s+ |f◦(ξ)|αp
d4ξ d4x

=
−1

Γ2
p(−α)

∞∑
ν=1

∫
S4
ν

1

|f(x)|α+2
p

∞∑
γ=0

∫
S4
−γ

Ψ(ξ·x)

s+ |f◦(ξ)|αp
d4ξ d4x.

By making the following change of variables{
ξ = pγy′,

x = p−νy,

d4ξ = p−4γd4y′;

dx = p4νd4y.
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one gets

G(s) =
−1

Γ2
p(−α)

×

∞∑
ν=1

p−2να

∫
S4
0

1

|f(y)|α+2
p

∞∑
γ=0

p−4γ

∫
S4
0

Ψ
(
pγ−νy′·y)

s+ p−2γα|f◦(y′)|αp
d4y′ d4y (16)

To calculate the integral (16) we divide the interior integral as follows:

∫
S4
0

Ψ
(
pγ−νy′·y)

s+ p−2γα|f◦(y′)|αp
d4y′ =∫
S4
0

|pγ−νy′·y|p≤1

Ψ(pγ−νy′·y)

s+ p−2γα|f◦(y′)|αp
d4y′ +

∫
S4
0

|pγ−νy′·y|p>1

Ψ(pγ−νy′·y)

s+ p−2γα|f◦(y′)|αp
d4y′

and define for |pγ−νy′·y|p ≤ 1,

G1(s) :=
−1

Γ2
p(−α)

×

∞∑
ν=1

p−2να

∫
S4
0

1

|f(y)|α+2
p

∞∑
γ=v

p−4γ

∫
S4
0

1

s+ p−2γα|f◦(y′)|αp
d4y′ d4y,

and for |pγ−νy′·y|p > 1,

G2(s) :=
−1

Γ2
p(−α)

×

∞∑
ν=1

p−2να

∫
S4
0

1

|f(y)|α+2
p

v−1∑
γ=0

p−4γ

∫
S4
0

Ψ
(
pγ−νy′·y)

s+ p−2γα|f◦(y′)|αp
d4y′ d4y.

Hence G(s) = G1(s) +G2(s). By using Lemma 3.8, we have

G1(s) = − (1− p−2)(1 + pα)

Γ2
p(−α)

×
∞∑
ν=1

p−2να
∞∑
γ=ν

p−4γ

(
1− p−2

s+ p−2γα
+

(1− p−2)p−2

s+ p−2γα−α

)
and
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G2(s) =

−1

Γ2
p(−α)

∞∑
ν=1

p−2ναp−4(ν−1)

(
C1

s+ p−2(ν−1)α
− C2

s+ p−2(ν−1)α−α

)
. �X (17)

Theorem 3.10.

(i) If α ≥ 2, then X(t, ω;W ) is recurrent with respect to Znp .

(ii) If 2 > α, then X(t, ω;W ) is transient with respect to Znp .

Proof. By Proposition 3.7, the Laplace transform of F (s) of f(t) equals G(s)
1+G(s) ,

where G(s) is the Laplace transform of g(t), and thus

F (0) =

∫ ∞
0

f(t) dt = 1− 1

1 +G(0)
.

Hence, in order to prove that X(t, ω;W ) is recurrent, it is sufficient to show
that G(0) = lims→0G(s) = ∞, and to prove that it is transient that G(0) =
lims→0G(s) <∞.

(i) Take s ∈ R, s > 0 and set s = p−2να = p−2γα, note that s→ 0+ ⇔ v →∞
(v = γ). Now taking only first term of G1(s) we have

G(s) > −
(
1− p−2

)(
1 + pα

)
Γ2
p(−α)

p−2α ×

∞∑
γ=1

p−4γ

(
1− p−2

s+ p−2γα
+

(
1− p−2

)
p−2

s+ p−2γα−α

)
+G2(s).

We get G2

(
p−2να

)
<∞, but the first sum diverges if α ≥ 2. Then

lim
s→0+

G(s) =∞.

(ii) Now

|G(s)| ≤ −
(
1− p−2

)(
1 + pα

)
Γ2
p(−α)

×

∞∑
ν=1

p−2να
∞∑
γ=ν

p−4γ

(
1− p−2

p−2γα
+

(
1− p−2

)
p−2

p−2γα−α

)
+G2(0).

One sees easily that G2(0) converges and that the double series converges
if α > 2. Therefore lims→0+ G(s) <∞. �X
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4. The First Passage Time over QQQ2
p

We set f(x) = x2
1− ηx2

2, η = ε, p, pε, where ε is unit which is not square in Qp.
Then f is a quadratic form over Q2

p.

We now consider pseudodifferential operators whose symbols involve elliptic
quadratic forms of dimension 2 over Q2

p.

(
f(D,α)ϕ

)
(x) :=


1

Γ2
p(−2α)

∫
Q2
p

ϕ(y)−ϕ(x)

|f(x−y)|α+1
p

dy, η = ε

1
Γ1
p(−α)

∫
Q2
p

ϕ(y)−ϕ(x)

|f(x−y)|α+1
p

dy, η = p, εp,

for ϕ ∈ S
(
Q2
p

)
, and α > 0, see Proposition 1 of [6].

By using the technique of Section 3 we prove the following results.

Theorem 4.1.

(i) If α ≥ 1 and η = ε, εp, p then X(t, ω;W ) is recurrent with respect to Z2
p.

(ii) If 1 > α, and η = ε, εp, p then X(t, ω;W ) is transient with respect to Z2
p.

5. Survival Probability

The survival probability is given by

SZ4
p
(t) :=

∫
Z4
p

ϕ(x, t) d4x

where ϕ(x, t) is given by (6). By Fubini’s Theorem and Lemma 2.3, we have

(
1− p−4

) ∞∑
i=0

e−tp
−2i−1

p−4i ≤ SZ4
p
(t) ≤

(
1− p−4

) ∞∑
i=0

e−tp
−2i

p−4i. (18)

We now give a simple generalizing of [5, Lemma A1], to dimension n.

Lemma 5.1. If α > 0 then

p−n

t
n
αα ln p

γ

(
n

α
, tpα

)
≤
∞∑
i=0

e−tp
−iα

pni
≤ pn

t
n
αα ln p

γ

(
n

α
, t

)
,

where γ(a, b) =
∫ b

0
e−zza−1 dz is the incomplete Gamma function.

Proof. We know that e−tp
−xα

is an increasing function and p−nx is a decreasing
function in the variable x. Thus, we have on the interval i ≤ x ≤ i+ 1 that

e−tp
−(x−1)α

pnx
≤ e−tp

−iα

pni
≤ e−tp

−xα

pn(x−1)
.
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Integrating in the variable x from i to i+ 1, we get

p−n
∫ i+1

i

e−tp
−(x−1)α

pn(x−1)
dx ≤ e−tp

−iα

pni
≤ pn

∫ i+1

i

e−tp
−xα

pnx
dx.

Now by summing with respect to i from 0 to ∞ we have

p−n
∫ ∞

0

e−tp
−(x−1)α

pn(x−1)
dx ≤

∞∑
i=0

e−tp
−iα

pni
≤ pn

∫ ∞
0

e−tp
−xα

pnx
dx.

Finally, by changing variables as z = tp−(x−1)α in the left side and z = tp−xα

in the right side, we have

p−n

t
n
ααlnp

∫ tpα

0

e−zz
n
α−1 dz ≤

∞∑
i=0

e−tp
−iα

pni
≤ pn

t
n
ααlnp

∫ t

0

e−zz
n
α−1 dz. �X

Theorem 5.2. The function SZ4
p
(t) satisfies(

1− p−4
)
p−4

t2 ln p

(
1 + o(1)

)
≤ SZ4

p
(t) ≤

(
1− p−4

)
p6

t2 ln p

(
1 + o(1)

)
, for t >> 1.

Proof. It follows by applying twice Lemma 5.1 to (18) with n = 4, α = 2 and
using that γ(a, b) = Γ(a)

(
1 + o(1)

)
, if b >> 1. �X
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Volumen 48, Número 2, Año 2014



THE PROBLEM OF THE FIRST PASSAGE TIME 209

[19] V. S. Varadarajan, Path Integrals for a Class of p-Adic Schrödinger Equa-
tions, Lett. Math. Phys. 39 (1997), 97–106.

[20] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and
Mathematical Physics, World Scientific, 1994.
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México D.F., C.P. 07360, México
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