Revista Colombiana de Matemáticas Volumen 49(2015)1, páginas 39-55

✐

✐

✐

✐

Sectional-Anosov Flows in Higher Dimensions

Flujos seccionales Anosov en dimensiones superiores

ANDRÉS MAURICIO LÓPEZ^a

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT. A sectional-Anosov flow on a manifold is a C^1 vector field inwardly transverse to the boundary for which the maximal invariant is sectional hyperbolic [10]. We prove that every attractor of every vector field C^1 close to a transitive sectional-Anosov flow with singularities on a compact manifold has a singularity. This extends the three-dimensional result obtained in [9].

Key words and phrases. Transitive, Maximal invariant, Sectional-Anosov flow.

2010 Mathematics Subject Classification. 53C21, 53C42.

RESUMEN. Un *flujo seccional-Anosov* sobre una variedad es un C^1 campo vectorial transversal a la frontera apuntando hacia el interior, para el cual su conjunto maximal invariante es un conjunto seccional hiperbólico [10]. Probamos que todo atractor de todo campo vectorial $C¹$ próximo a un flujo seccional-Anosov transitivo con singularidades sobre una variedad compacta tiene una singularidad. Este resultado extiende el resultado tres-dimensional obtenido en [9].

Palabras y frases clave. Transitivo, maximal invariante, flujo seccional-Anosov.

1. Introduction

The sectional-Anosov flows were introduced in [10] as a generalization of the Anosov flows. These also includes the saddle-type hyperbolic attracting sets and the geometric and multidimensional Lorenz attractors [1, 5, 7]. Some properties of these flows have been shown in the literature [2, 4]. For instance, [9] proved that every attractor of every vector field $C¹$ close to a transitive sectional-Anosov flow with singularities on a compact 3-manifold has a singularity. Moreover, [3] generalized this result from transitive to nonwandering

^aCAPES

 \rightarrow

✐

✐

✐

✐

✐

40 ANDRÉS MAURICIO LÓPEZ

ones. In this paper we further extend [9] but now to higher dimensions. More precisely, we prove that every attractor of every vector field $C¹$ close to a transitive sectional-Anosov flow with singularities of a compact manifold has a singularity. Let us state our result in a precise way.

Consider a compact Riemannian manifold M of dimension $n \geq 3$ (a compact *n-manifold* for short). We denote by ∂M the boundary of M. Let $\mathcal{X}^1(M)$ be the space of C^1 vector fields in M endowed with the C^1 topology. Fix $X \in \mathcal{X}^1(M)$, inwardly transverse to the boundary ∂M and denote by X_t the flow of X, $t \in \mathbb{R}$.

The ω -limit set of $p \in M$ is the set $\omega_X(p)$ formed by those $q \in M$ such that $q = \lim_{n \to \infty} X_{t_n}(p)$ for some sequence $t_n \to \infty$.

Given $\Lambda \in M$ compact, we say that Λ is *invariant* if $X_t(\Lambda) = \Lambda$ for all $t \in \mathbb{R}$. We also say that Λ is transitive if $\Lambda = \omega_X(p)$ for some $p \in \Lambda$; singular if it contains a singularity and *attracting* if $\Lambda = \bigcap_{t>0} X_t(U)$ for some compact neighborhood U of it. This neighborhood is often called *isolating block*. It is well known that the isolating block U can be chosen to be positively invariant, i.e., $X_t(U) \subset U$ for all $t > 0$. An *attractor* is a transitive attracting set. An attractor is nontrivial if it is not a closed orbit.

Note that the set formed by a single singularity is a transitive set and in this case such transitive set is trivial.

The maximal invariant set of X is defined by $M(X) = \bigcap_{t \geq 0} X_t(M)$.

We denote by $m(L)$ the minimum norm of a linear operator L, i.e., $m(L)$ = $\inf_{v\neq 0} \frac{\|Lv\|}{\|v\|}$ $\frac{\Vert Lv\Vert}{\Vert v\Vert}.$

Definition 1.1. A compact invariant set Λ is *partially hyperbolic* if there is a continuous invariant splitting

$$
T_\Lambda M=E^s\oplus E^c
$$

such that the following properties hold for some positive constants C, λ :

(1) E^s is contracting, i.e.,

 \rightarrow

✐

✐

✐

$$
||DX_t(x) |_{E_x^s}|| \le Ce^{-\lambda t},
$$

for all $x \in \Lambda$ and $t > 0$.

(2) E^s dominates E^c , i.e.,

$$
\frac{\|DX_t(x)\mid_{E_x^s}\|}{m(DX_t(x)\mid_{E_x^c})} \le Ce^{-\lambda t},
$$

for all $x \in \Lambda$ and $t > 0$.

Volumen 49, Número 1, Año 2015

We say that the central subbundle E_x^c of Λ as above is *sectionally expanding* if for all two-dimensional subspace L_x of E_x^c

dim $(E_x^c) \geq 2$ and $|J(DX_t(x)|_{L_x})| \geq C^{-1}e^{\lambda t}$, $\forall x \in \Lambda$ and $t > 0$,

where $J(\cdot)$ is the jacobian.

 \rightarrow

 \rightarrow

✐

✐

Definition 1.2. A sectional hyperbolic set is a partially hyperbolic set whose singularities are hyperbolic and whose central subbundle is sectionally-expanding.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of its linear part have non zero real part.

Definition 1.3. We say that X is a sectional-Anosov flow if $M(X)$ is a sectional hyperbolic set.

Our result is the following.

Theorem 1.4. Let X be a transitive sectional-Anosov flow with singularities of a compact n-manifold. Then, every attractor of every vector field C^1 close to X has a singularity.

The proof of this theorem follows closely that of [9]. More precisely, we assume by contradiction that there exists a sequence X^n of vector fields C^1 close to X each one exhibiting a non-singular attractor $Aⁿ$. We then prove that A^n accumulates on a singularity of X and, consequently, for n large, we will prove that the corresponding attractor $Aⁿ$ does contain a singularity. This give us the desired contradiction. To prove such assertions we will extend some tools in [9] including the definitions of both Lorenz-like singularity and singular cross-section.

2. Lorenz-Like Singularities and Singular Cross-Sections in Higher Dimension

Let M be a compact Riemannian n-manifold, $n \geq 3$. Fix $X \in \mathcal{X}^1(M)$ inwardly transverse to ∂M . Denote by X_t the flow of $X, t \in \mathbb{R}$, and by $M(X)$ the maximal invariant of X.

Definition 2.1. A compact invariant set Λ of X is hyperbolic if there are a continuous tangent bundle invariant decomposition $T_\Lambda M=E^s\oplus E^X\oplus E^u$ and positive constants C , λ such that

- E^X is the vector field direction over Λ .
- E^s is contracting, i.e., $||DX_t(x)|_{E_x^s}|| \le Ce^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.
- E^u is expanding, i.e., $||DX_{-t}(x)|_{E_x^u}|| \le Ce^{-\lambda t}$, for all $x \in \Lambda$ and $t > 0$.

Revista Colombiana de Matemáticas

✐

✐

✐

✐

✐

✐

42 ANDRÉS MAURICIO LÓPEZ

A closed orbit or attractor is hyperbolic if it does as a compact invariant set.

It follows from the stable manifold theory [8] that if p belongs to a hyperbolic set Λ , then the sets

$$
W_X^{ss}(p) = \{x : d(X_t(x), X_t(p)) \to 0, t \to \infty\} \text{ and}
$$

$$
W_X^{uu}(p) = \{x : d(X_t(x), X_t(p)) \to 0, t \to -\infty\}
$$

are $C¹$ immersed submanifolds of M which are tangent at p to the subspaces E_p^s and E_p^u of T_pM respectively. Similarly, the sets

$$
W_X^s(p) = \bigcup_{t \in \mathbb{R}} W_X^{ss}(X_t(p)) \text{ and}
$$

$$
W_X^u(p) = \bigcup_{t \in \mathbb{R}} W_X^{uu}(X_t(p))
$$

are also C^1 immersed submanifolds tangent to $E_p^s \oplus E_p^X$ and $E_p^X \oplus E_p^u$ at p respectively. Moreover, for every $\epsilon > 0$ we have that

$$
W_X^{ss}(p, \epsilon) = \{x : d(X_t(x), X_t(p)) \le \epsilon, \forall t \ge 0\} \text{ and}
$$

$$
W_X^{uu}(p, \epsilon) = \{x : d(X_t(x), X_t(p)) \le \epsilon, \forall t \le 0\}
$$

are closed neighborhoods of p in $W_X^{ss}(p)$ and $W_X^{uu}(p)$ respectively.

There is also a stable manifold theorem in the case when X is sectional-Anosov. Indeed, denoting by $T_{M(X)}M = E^{s}_{M(X)} \oplus E^{c}_{M(X)}$ the corresponding sectional-hyperbolic splitting over $M(X)$ we have from [8] that the contracting subbundle $E_{M(X)}^s$ can be extended to a contracting subbundle E_U^s in M, where U is a neighborhood of $M(X)$. Moreover, such an extension is tangent to a continuous foliation denoted by W^{ss} (or W_X^{ss} to indicate dependence on X). By adding the flow direction to W^{ss} we obtain a continuous foliation W^s (or W^s_X) now tangent to $E_M^s \oplus E_M^X$. Unlike the Anosov case W^s may have singularities, all of which being the leaves $W^{ss}(\sigma)$ passing through the singularities σ of X. Note that W^s is transverse to ∂M because it contains the flow direction (which is transverse to ∂M by definition).

It turns out that every singularity σ of a sectional-Anosov flow X satisfies $W_X^{ss}(\sigma) \subset W_X^s(\sigma)$. Furthermore, there are two possibilities for such a singularity, namely, either dim $(W_X^{ss}(\sigma)) = \dim (W_X^s(\sigma))$ (and so $W_X^{ss}(\sigma) = W_X^s(\sigma)$) or dim $(W_X^s(\sigma)) = \dim(W_X^{ss}(\sigma)) + 1$. In the later case we call it Lorenz-like according to the following definition.

Definition 2.2. We say that a singularity σ of a sectional-Anosov flow X is Lorenz-like if dim $(W^s(\sigma)) = \dim (W^{ss}(\sigma)) + 1$.

Volumen 49, Número 1, Año 2015

 \rightarrow

 \rightarrow

✐

Hereafter, we will denote $\dim(W_X^{ss}(\sigma)) = s$, $\dim(W_X^u(\sigma)) = u$ and therefore dim $(W_X^s(\sigma)) = s + 1$ by definition. Moreover $W_X^{ss}(\sigma)$ separates $W_{loc}^s(\sigma)$ in two connected components denoted by $W^{s,t}_{loc}(\sigma)$ and $W^{s,b}_{loc}(\sigma)$ respectively.

Next we define singular cross-section in the higher dimensional context. First, we will denote a cross-section by Σ and its boundary by $\partial \Sigma$. Also, the hypercube $I^k = \left[-1, 1 \right]^k$ will be submanifold of dimension k, with $k \in \mathbb{N}$.

Thus, we begin by considering $B^u[0,1] \approx I^u$ and $B^{ss}[0,1] \approx I^s$ where

- $B^{ss}[0,1]$ is the ball centered at zero and radius 1 contained in $\mathbb{R}^{\dim(W^{ss}(\sigma))}$ = \mathbb{R}^s and
- $B^u[0,1]$ is the ball centered at zero and radius 1 contained in $\mathbb{R}^{\dim(W^u(\sigma))}$ = $\mathbb{R}^{n-s-1}=\mathbb{R}^u.$

Definition 2.3. A *singular cross-section* of a Lorenz-like singularity σ consists of a pair of submanifolds Σ^t , Σ^b , where Σ^t , Σ^b are cross-sections and

- Σ^t is transversal to $W^{s,t}_{loc}(\sigma)$.
- Σ^b is transversal to $W^{s,b}_{loc}(\sigma)$.

Note that every singular cross-section contains a pair singular submanifolds l^t , l^b defined as the intersection of the local stable manifold of σ with Σ^t , Σ^b respectively and additionally $\dim(l^*) = \dim(W^{ss}(\sigma))$ (* = t, b).

Thus, a singular cross-section Σ^* will be a *hypercube of dimension* $(n-1)$, i.e., diffeomorphic to $B^u[0,1] \times B^{ss}[0,1]$. Let $f : B^u[0,1] \times B^{ss}[0,1] \longrightarrow \Sigma^*$ be the diffeomorphism, such that

$$
f({0} \times B^{ss}[0,1]) = l^*
$$

and $\{0\} = 0 \in \mathbb{R}^u$. Define

$$
\partial \Sigma^* = \partial^h \Sigma^* \cup \partial^v \Sigma^*
$$

by

 \rightarrow

 \rightarrow

✐

✐

 $\partial^h \Sigma^* = \{\text{union of the boundary submanifolds which are transverse to } l^*\}\$ and

 $\partial^v \Sigma^* = \{\text{union of the boundary submanifolds which are parallel to } l^*\}.$

From this decomposition we obtain that

$$
\partial^h \Sigma^* = \left(I^u \times \left[\bigcup_{j=0}^{s-1} \left(I^j \times \{-1\} \times I^{s-j-1} \right) \right] \right) \bigcup \left(I^u \times \left[\bigcup_{j=0}^{s-1} \left(I^j \times \{1\} \times I^{s-j-1} \right) \right] \right)
$$

Revista Colombiana de Matemáticas

✐

✐

✐

✐

✐

✐

44 ANDRÉS MAURICIO LÓPEZ

and

$$
\partial^v \Sigma^* = \left(\left[\cup_{j=0}^{u-1} \left(I^j \times \{-1\} \times I^{u-j-1} \right) \right] \times I^s \right) \bigcup \left(\left[\cup_{j=0}^{u-1} \left(I^j \times \{1\} \times I^{u-j-1} \right) \right] \times I^s \right),
$$

where $I^0 \times I = I$.

Hereafter we denote $\Sigma^* = B^u[0,1] \times B^{ss}[0,1].$

3. Sectional Hyperbolic Sets in Higher Dimension

In this section we prove a preliminary result for transitive sectional-Anosov flows. To begin with, we present the following useful property.

Lemma 3.1. Let X be a sectional-Anosov flow, X a C^1 vector field in M. If Y is C^1 close to X , then every nonempty, compact, non singular, invariant set H of Y is hyperbolic saddle-type (i.e. $E^s \neq 0$ and $E^u \neq 0$).

Proof. See [11]. The proof in [11] is made in dimension three, but the same proof yields the same conclusion in any dimension. \blacksquare

Lemma 3.2. Let X be a transitive sectional-Anosov flow C^1 in M. If $O \subset$ $M(X)$ is a periodic orbit of X, then O is a hyperbolic saddle-type periodic orbit. In addition, if $p \in O$ then the set

$$
\left\{q\in W_X^{uu}(p):M(X)=\omega_X(q)\right\}
$$

is dense in $W_X^{uu}(p)$.

Proof. By Lemma 3.1, we have that O is hyperbolic and saddle-type. Let W be an open set in $W_X^{uu}(p)$. This set W exists since the point p belongs to the periodic orbit O which is hyperbolic. Define

$$
B = \bigcup_{0 \le t \le 1} X_t(W).
$$

This set has dimension at least two, and so,

$$
B' = \bigcup_{x \in B} W_X^{ss}(x)
$$

contains an open set V with $B \cap V \neq \emptyset$.

Since $M(X)$ is the maximal invariant of $X, B \subset W_X^u(p)$ and $p \in O$, we obtain $B \cap V \subset M(X)$. Let $q \in M(X)$ such that $M(X) = \omega_X(q)$. Then, the forward orbit of q intersects V and so it intersects B' too. It follows from the definition of B' that the positive orbit of q is asymptotic to the forward orbit of some $q' \in B$. In particular, $M(X) = \omega_X(q) = \omega_X(q')$. This proves that $\{q \in W_X^{uu}(p) : M(X) = \omega_X(q)\}$ is dense in $M(X)$ as desired.

Volumen 49, Número 1, Año 2015

 \rightarrow

 \rightarrow

✐

The following theorem appears in [4].

Theorem 3.3. Let X be a transitive sectional-Anosov flow C^1 for M. Then, every $\sigma \in Sing(X) \cap M(X)$ is Lorenz-like and satisfies

$$
M(X) \cap W_X^{ss}(\sigma) = \{\sigma\}.
$$

Proof. We begin by proving two claims.

Claim 3.4. If $x \in (M(X) \setminus Sing(X))$, then $X(x) \notin E_x^s$.

Proof. Suppose by contradiction that there is $x_0 \in (M(X) \setminus Sing(X))$ such that $X(x_0) \in E_{x_0}^s$. Then, $X(x) \in E_x^s$ for every x in the orbit of x_0 since $E_{M(X)}^s$ is invariant. So, by continuity,

$$
X(x) \in E_x^s \text{ for every } x \in \alpha(x_0). \tag{1}
$$

It follows that $\omega(x)$ is a singularity for all $x \in \alpha(x_0)$. In particular, $\alpha(x_0)$ contains a singularity σ which is necessary hyperbolic of saddle-type.

Now we have two cases: $\alpha(x_0) = {\sigma}$ or not.

If $\alpha(x_0) = \{\sigma\}$ then $x_0 \in W^u(\sigma)$. For all $t \in \mathbb{R}$ define the unitary vector

$$
v^{t} = \frac{DX_{t}(x_{0})(X(x_{0}))}{\|DX_{t}(x_{0})(X(x_{0}))\|}.
$$

It follows that

 \rightarrow

 \rightarrow

✐

✐

$$
v^t \in T_{X_t(x_0)} W^u(\sigma) \cap E^s_{X_t(x_0)}, \qquad \forall t \in \mathbb{R}.
$$

Take a sequence $t_n \to \infty$ such that the sequence v^{-tn} converges to v^{∞} . Clearly v^{∞} is an unitary vector and, since $X_{-t_n}(x_0) \to \sigma$ and E^s is continuous we obtain

$$
v^\infty\in T_\sigma W^u(\sigma)\cap E^s_\sigma.
$$

Therefore v^{∞} is an unitary vector which is simultaneously expanded and contracted by $DX_t(\sigma)$, a contradiction. This contradiction shows the result in the first case.

For the second case, we assume $\alpha(x_0) \neq \{\sigma\}$. Then, $(W^u(\sigma) \setminus {\sigma}) \cap \alpha(x_0) \neq$ \emptyset . Pick $x_1 \in (W^u(\sigma) \setminus {\sigma}) \cap \alpha(x_0)$. It follows from (1) that $X(x_1) \in E_{x_1}^s$ and then we get a contradiction as in the first case replacing x_0 by x_1 . This contradiction proves the claim.

Claim 3.5. If $\sigma \in Sing(X)$, then $M(X) \cap W^{ss}(\sigma) = {\sigma}.$

Revista Colombiana de Matemáticas

✐

✐

✐

46 ANDRÉS MAURICIO LÓPEZ

Proof. Take $x \in W^{ss}(\sigma) \setminus {\sigma}$. Then, $E_x^s = T_x W^{ss}(\sigma)$. Moreover, since $W^{ss}(\sigma)$ is an invariant, we obtain $X(x) \in T_xW^{ss}(\sigma)$. We conclude that $X(x) \in E^s$ for all $x \in W^{ss}(\sigma)$ and now Claim 3.4 applies. E_s^s for all $x \in W^{ss}(\sigma)$ and now Claim 3.4 applies.

X

✐

✐

✐

✐

This theorem implies the following two useful properties.

Proposition 3.6. Let X be a transitive sectional-Anosov flow C^1 of M. Let σ be a singularity of X in $M(X)$ (so σ is Lorenz-like by Theorem 3.3). Then, there is a singular-cross section Σ^t , Σ^b of σ in M such that.

$$
(M(Y)) \cap (\partial^h \Sigma^t \cup \partial^h \Sigma^b) = \varnothing,
$$

for every C^r vector field Y close to X.

Proof. See [9].

 \rightarrow

 \rightarrow

✐

✐

Let σ be a Lorenz-like singularity of a C^1 vector field X in $\mathcal{X}^1(M)$, and Σ^t , Σ^b be a singular cross-section of σ. Thus for σ we recall that,

$$
\dim(W_X^{ss}(\sigma)) = s, \text{ then}
$$

\n
$$
\dim(W_X^s(\sigma)) = s + 1, \text{ and } \dim(W_X^u(\sigma)) = n - s - 1,
$$
\n
$$
\dim(\Sigma^*) = s + (n - s - 1) = n - 1.
$$
\n(2)

Since $\Sigma^* = B^u[0,1] \times B^{ss}[0,1]$, we will set up a family of singular crosssections as follows: Given $0 < \Delta \leq 1$ small, we define $\Sigma^{*,\Delta} = B^u[0,\Delta] \times$ $B^{ss}[0, 1]$, such that

$$
l^* \subset \Sigma^{*,\Delta} \subset \Sigma^*, \quad \text{i.e.}
$$

$$
(l^* = \{0\} \times B^{ss}[0,1]) \subset (\Sigma^{*,\Delta} = B^u[0,\Delta] \times B^{ss}[0,1]) \subset
$$

$$
(\Sigma^* = B^u[0,1] \times B^{ss}[0,1]),
$$

where we fix a coordinate system (x^*, y^*) in Σ^* $(* = t, b)$. We will assume that $\Sigma^* = \Sigma^{*,1}.$

We will use this notation throughout of next lemma and the Theorem 1.4 proof.

Lemma 3.7. Let X be a transitive sectional-Anosov flow C^1 of M. Let σ be a singularity of X in $M(X)$. Let Y^n be a sequence of vector fields converging to X in the C^1 topology. Let O_n be a periodic orbit of Y^n such that the sequence ${O_n : n \in \mathbb{N}}$ accumulates on σ . If $0 < \Delta \leq 1$ and Σ^t , Σ^b is a singular cross-section of σ , then there is n such that either

$$
O_n \cap \text{int}(\Sigma^{t,\Delta}) \neq \varnothing
$$

Volumen 49, Número 1, Año 2015

or

 \rightarrow

 \rightarrow

✐

✐

$$
O_n \cap \mathrm{int} \left(\Sigma^{b,\Delta} \right) \neq \varnothing.
$$

Proof. Since O_n accumulates on $\sigma \in M(X)$ and $M(X)$ is maximal invariant, we have that $O_n \subset M(X)$ for all n large (recall $Y^n \to X$ as $n \to \infty$). Let us fix a fundamental domain D_{ϵ} of the vector field's flow X_t restricted to the local stable manifold $W^s_{loc}(\sigma)$ ([12]) for $\epsilon > 0$ as follows (See Figure 1):

$$
D_{\epsilon} = S_{\epsilon} \cup S_{-\epsilon} \cup C_{\epsilon},
$$

where

$$
S_{\epsilon} = \{ x \in \mathbb{R}^{s+1} : \sum_{i=1}^{s} x_i^2 + (x_{s+1} - \epsilon)^2 = 1, \land, x_{s+1} \ge \epsilon \},
$$

\n
$$
S_{-\epsilon} = \{ x \in \mathbb{R}^{s+1} : \sum_{i=1}^{s} x_i^2 + (x_{s+1} - \epsilon)^2 = 1, \land, x_{s+1} \le -\epsilon \},
$$

\n
$$
C_{\epsilon} = \{ x \in \mathbb{R}^{s+1} : \sum_{i=1}^{s} x_i^2 = 1, \land, x_{s+1} \in [-\epsilon, \epsilon] \}.
$$

FIGURE 1. The fundamental domain.

As $W^s_{loc}(\sigma)$ is $(s+1)$ -dimensional and D_{ϵ} is homeomorphic to the sphere (s) dimensional, by construction D_{ϵ} intersects $W_X^{ss}(\sigma)$ in $C_{\epsilon}|_{x_{s+1}=0}$ that is a sphere $(s-1)$ -dimensional. Note that the orbits of all point in $C_{\epsilon}|_{x_{s+1}=0}$ together with σ yields $W_X^{ss}(\sigma)$. In particular, $C_{\epsilon}|_{x_{s+1}=0} \notin M(X)$ by Theorem 3.3. Also note that for all ϵ , D_{ϵ} is a fundamental domain.

Let $\overline{D_{\epsilon}}$ be a cross section of X such that $W_{loc}^s(\sigma) \cap \overline{D_{\epsilon}} = D_{\epsilon}$. It follows that $\widetilde{D_{\epsilon}}$ is a $(n-1)$ -cylinder, and so we can consider a system coordinated (x, s) with $x \in D_{\epsilon}$ and $s \in I^u$. Thus, by using this system coordinate we can construct a family of singular cross-sections Σ_{δ}^{t} , Σ_{δ}^{b} (for all $\delta \in [-\epsilon, \epsilon]$) by setting

Revista Colombiana de Matemáticas

✐

✐

✐

✐

✐

✐

48 ANDRÉS MAURICIO LÓPEZ

$$
\Sigma_{\delta}^{t} = \left\{ (x, s) \in \widetilde{D_{\epsilon}} : x \in S_{\delta}, s \in I^{u} \right\},\
$$

$$
\Sigma_{\delta}^{b} = \left\{ (x, s) \in \widetilde{D_{\epsilon}} : x \in S_{-\delta}, s \in I^{u} \right\}.
$$

Due to the smooth variation of $W^{ss}_Y(\sigma(Y))$ with respect to Y close to X we can assume that $\sigma(Y) = \sigma$ and that $W_{loc,Y}^{ss}(\sigma(Y)) = W_{loc}^{ss}(\sigma)$ for every Y close to X. By choosing D_{ϵ} so close to σ we can further assume that $\overline{D_{\epsilon}}$ is a crosssection of Y, for every Y close to X. We claim that there is $\delta > 0$ such that the conclusion of the lemma holds for $\Sigma^t = \Sigma_{\delta}^t$ and $\Sigma^b = \Sigma_{\delta}^b$. Indeed, we first note that under the cylindrical coordinate system (x, s) one has $\Sigma^{*, \Delta} = \Sigma_{\Delta}^*$ for all $0 < \Delta \leq \delta$ (* = t, b). Otherwise, if the conclusion of the claim fails, it implies that O_n intersects $\widetilde{D_{\epsilon}} \setminus (\Sigma_{\Delta}^t \cup \Sigma_{\Delta}^b)$ for all $\Delta > 0$ small. Further, we would find a sequence of periodic points such that $p_n \in O_n$ (for all n large) and $p_n = (x_n, s_n)$ with $x_n \in C_{\Delta}$ and $s_n \to 0$ as $n \to \infty$. As Δ is arbitrary and $s_n \to 0$, we conclude that p_n converges to a point in $C_{\Delta}|_{x_{s+1}=0}$ by passing to a subsequence if necessary, since if $s_n \to 0$, it implies that the intersection tends to (s)-dimensional sphere D_{ϵ} .

As $O_n \subset M(Y^n)$, $Y^n \to X$ and $M(Y^n)$ is arbitrarily close to $M(X)$ (indeed, in the C¹-topology, these sets are at least to a distance ϵ) for all $n (n \in \mathbb{N})$, by using the above arguments, there exists a point $z \in (C_{\epsilon}|_{x_{s+1}=0})$ such that $z \in M(X)$. This contradicts Theorem 3.3 and the proof follows.

4. Proof of Theorem 1.4

We prove the theorem by contradiction. Let X be a transitive sectional-Anosov flow C^1 of M. Then, we suppose that there exists a sequence $X^n \overset{C^1}{\to} X$ such that every X^n exhibits a non-singular attractor $A^n \in M(X^n)$ arbitrarily close to $M(X)$ and since A^n also is arbitrarily close to $M(X)$, we can assume that A^n belongs to $M(X)$ for all n. It follows from the definition of attractor that each $Aⁿ$ is compact, invariant and nonempty. As $Aⁿ$ is non-singular by hypothesis, then the Lemma 3.1 and the Lemma 3.2 imply the following:

 A^n is a hyperbolic attractor of type saddle of X^n for all n, and since A^n is non-singular for all n, obviously A^n is not a singularity of X^n for all n. (3)

We denote by $Sing(X)$ the set of singularities of X, $Cl(A)$ the closure of A, $A \subset M$. Moreover, given $\delta > 0$ and $A \subset M$, we define $B_{\delta}(A) = \{x \in M :$ $d(x, A) < \delta$ where $d(\cdot, \cdot)$ is the metric on M.

Now, let us consider the following lemma that, as in [9], is useful for the higher dimension case. The lemma gives one description on behavior of the attractors.

Volumen 49, Número 1, Año 2015

 \rightarrow

 \rightarrow

✐

Lemma 4.1. The sequence of attractors A^n accumulate on $Sing(X)$, i.e.

$$
Sing(X)\bigcap Cl\bigg(\bigcup_{n\in\mathbb{N}}A^n\bigg)\neq\varnothing.
$$

Proof. We prove the lemma by contradiction. With that purpose we suppose that there is $\delta > 0$, such that

$$
B_{\delta}(Sing(X))\bigcap \left(\bigcup_{n\in\mathbb{N}}A^{n}\right)=\varnothing.
$$
\n(4)

In the same way as in [9], we define

 \rightarrow

 \rightarrow

✐

✐

$$
H = \bigcap_{t \in \mathbb{R}} X_t \big(M \setminus B_{\delta/2}(Sing(X)) \big).
$$

Note that by definition H is a invariant set and $Sing(X)\cap H = \emptyset$. Additionally H is a compact set as it is Λ and therefore H is a nonempty compact set (see [9]). By using the Lemma 3.1 we conclude that H is hyperbolic set. So, we denote by $E^s \oplus E^X \oplus E^u$ the corresponding hyperbolic splitting (see Definition 2.1).

By the stability of hyperbolic sets we can fix a neighborhood W of H and $\epsilon > 0$ such that if Y is a vector field C^r close to X and H_Y is a compact invariant set of Y in W then:

 H_Y is hyperbolic and its hyperbolic splitting $E^{s,Y} \oplus E^Y \oplus E^{u,Y}$. $\dim(E^u) = \dim(E^{u,Y}), \dim(E^s) = \dim(E^{s,Y}).$ The manifolds $W_Y^{uu}(x,\epsilon)$, $x \in H_Y$, have uniform size ϵ . (5)

As $X^n \to X$, we have that:

 $\bigcap_{t\in\mathbb{R}}X_t^n\big(M\setminus B_{\delta/2}(Sing(X)\big)\subset W,$ for all n large; $A^n \subset M \setminus B_{\delta/2}(\text{Sing}(X))$ for all n, and $A^n \subset W$ for all n large; If $x^n \in A^n$ so that x^n converges to some $x \in M$, then $x \in H$; If $w \in W^{uu}_{X^n}(x^n, \epsilon)$, the tangent vectors of $W^{uu}_{X^n}(x^n, \epsilon)$ in this point are in $E_w^{u,X^{n}}$; As $x^n \to x$, $W^{uu}_{X^n}(x^n, \epsilon) \to W^{uu}_{X}(x, \epsilon)$ in the sense of C^1 submanifolds [13] and $\angle (E^{u,\hat{X}^n}, E^u) \longrightarrow 0$, if $n \to \infty$ [9]. (6)

Thus, we fix an open set $U \subset W_X^{uu}(x, \epsilon)$ containing the point x.

By (3), it follows that the periodic orbits of X^n in A^n are dense in A^n (Anosov closing Lemma). Particularly, we can assume that each x^n is a periodic point of A^n . As $M(X) \cap Sing(X) \neq \emptyset$ and $M(X)$ is a transitive set, it follows from Lemma 3.2 that there exists $q \in U$, $0 < \delta_1 < \delta_2 < \frac{\delta}{2}$ and $T > 0$ such that $X_T(q) \in B_{\delta_1}(Sing(X)).$

Revista Colombiana de Matemáticas

✐

✐

✐

50 ANDRÉS MAURICIO LÓPEZ

By [12, Tubular Flow Box Theorem], there is an open set V_q containing q such that $X_T(V_q) \subset B_{\delta_1}(Sing(X))$ and as $X^n \to X$ it follows that

$$
X_T^n(V_q) \subset B_{\delta_2}(Sing(X))\tag{7}
$$

for all n large (see Figure 2).

 \rightarrow

 \rightarrow

✐

✐

FIGURE 2. Tubular Flow Box Theorem for $X_T(V_q)$.

In addition, $W^{uu}_{X^n}(x^n, \epsilon) \cap V_q \neq \emptyset$ for n large enough, since $W^{uu}_{X^n}(x^n, \epsilon) \rightarrow$ $W_X^{uu}(x,\epsilon)$ and $q \in U \subset W_X^{uu}(x,\epsilon)$. Applying (7) to X^n for n large we have

$$
X_{T}^{n}(W_{X^{n}}^{uu}(x^{n},\epsilon)) \cap B_{\delta_{2}}(Sing(X)) \neq \varnothing.
$$

In particular $W^{uu}_{X^n}(x^n, \epsilon) \subset W^u_{X^n}(x^n)$. Then the invariance of $W^u_{X^n}(x^n)$ implies

$$
W^u_{X^n}(x^n) \cap B_{\delta/2}(Sing(X)) \neq \emptyset.
$$

Observe that $W_{X^n}^u(x^n) \subset A^n$ since $x^n \in A^n$ and A^n is an attractor. We conclude that

$$
A^n \cap B_{\delta}(Sing(X)) \neq \varnothing.
$$

This contradicts (4) and the proof follows. \Box

Volumen 49, Número 1, Año 2015

✐

✐

✐

Proof of Theorem 1.4. By Lemma 4.1 there exists $\sigma \in M(X)$ such that

$$
\sigma \in Sing(X) \bigcap Cl\bigg(\bigcup_{n \in \mathbb{N}} A^n\bigg).
$$

By Theorem 3.3 we have that σ is Lorenz-like and satisfies

$$
M(X) \cap W_X^{ss}(\sigma) = \{\sigma\}.
$$

By Proposition 3.6, we can choose Σ^t , Σ^b , singular-cross section for σ and $M(X)$ such that

$$
M(X) \cap \left(\partial^h \Sigma^t \cup \partial^h \Sigma^b\right) = \varnothing.
$$

As $X^n \to X$ we have that Σ^t , Σ^b is singular-cross section of X^n too, thus we can assume that $\sigma(X^n) = \sigma$ and $l^t \cup l^b \subset W_{X^n}^s(\sigma)$ for all n (Implicit function theorem).

We have that the splitting $E^s \oplus E^c$ persists by small perturbations of X [8]. The dominance condition (Definition 1.1-(2)) together with [6, Proposition 2.2] imply that for $* = t, b$ one has

$$
T_x \Sigma^* \cap \left(E_x^s \oplus E_x^X \right) = T_x l^*,
$$

for all $x \in l^*$.

 \rightarrow

 \rightarrow

✐

✐

Denote by $\angle (E, F)$ the angle between two linear subspaces. The last equality implies that there is $\rho > 0$ such that

$$
\angle(T_x\Sigma^* \cap E_x^c, T_x l^*) > \rho,
$$

for all $x \in l^*$ (* = t, b). In this way, since $E^{c,n} \to E^c$ as $n \to \infty$ we have for n large enough that

$$
\angle(T_x \Sigma^* \cap E_x^{c,n}, T_x l^*) > \frac{\rho}{2},\tag{8}
$$

for all $x \in l^*$ $(* = t, b)$.

As in the previous section we fix a coordinate system $(x, y) = (x^*, y^*)$ in Σ^* such that

$$
\Sigma^* = B^u[0,1] \times B^{ss}[0,1], \qquad l^* = \{0\} \times B^{ss}[0,1]
$$

with respect to (x, y) . Also, given $\Delta > 0$ we define $\Sigma^{*, \Delta} = B^u[0, \Delta] \times B^{ss}[0, 1]$.

Hereafter $\Pi^* : \Sigma^* \to B^u[0,1]$ will be the projection such that $\Pi^*(x,y) = x$. We will denote the line field in Σ^{*,Δ_0} by F^n , where

$$
F_x^n = T_x \Sigma^* \cap E_x^{c,n}, \qquad x \in \Sigma^{*,\Delta_0}.
$$

Remark 4.2. The continuity of $E^{c,n}$ and (8) imply that there is $\Delta_0 > 0$ such that for every *n* large the line F^n is *transverse to* Π^* . By this we mean that $F^{n}(z)$ is not tangent to the curves $(\Pi^{*})^{-1}(c)$, for every $c \in B^{u}[0, \Delta_{0}].$

Revista Colombiana de Matemáticas

✐

✐

✐

✐

✐

✐

52 ANDRÉS MAURICIO LÓPEZ

Now recall that A^n is a hyperbolic attractor of type saddle of X^n for all n (see (3)) and that the periodic orbits of X^n in A^n are dense in A^n [13]. As $\sigma \in Cl(\cup_{n\in\mathbb{N}} A^n)$, we can find a sequence of periodic orbits $(O_n)_{n\in\mathbb{N}}$ such that $O_n \in A^n$ and accumulating on σ . It follows from Lemma 3.7 applied to $Y^n = X^n$ that there exists $n_0 \in \mathbb{N}$ such that either

$$
O_{n_0}\cap\operatorname{int}\left(\Sigma^{t,\Delta_0}\right)\neq\varnothing\qquad\text{or}\qquad O_{n_0}\cap\operatorname{int}\left(\Sigma^{b,\Delta_0}\right)\neq\varnothing.
$$

As $O_{n_0} \subset A_{n_0}$ we conclude that either

 \rightarrow

 \rightarrow

✐

✐

$$
A^{n_0} \cap \text{int} \left(\Sigma^{t, \Delta_0} \right) \neq \varnothing
$$
 or $A^{n_0} \cap \text{int} \left(\Sigma^{b, \Delta_0} \right) \neq \varnothing$.

We shall assume that $A^{n_0} \cap \text{int}(\Sigma^{t,\Delta_0}) \neq \emptyset$ (Analogous proof for the case $* = b$). Note that $\partial^h \Sigma^{t,\Delta_0} \subset \partial^h \Sigma^t$ by definition. Then, by Proposition 3.6 one has

$$
A \cap \partial^h \Sigma^{t,\Delta_0} = \varnothing.
$$

As A^{n_0} and Σ^{t,Δ_0} are compact non-empty sets, it follows that $A^{n_0} \cap \Sigma^{t,\Delta_0}$ is a compact nonempty subset of Σ^{t,Δ_0} , and thus there exists $p \in \Sigma^{t,\Delta_0} \cap A^{n_0}$ such that

$$
\text{dist}\left(\Pi^t(\Sigma^{t,\Delta_0} \cap A^{n_0}),0\right) = \text{dist}\left(\Pi^t(p),0\right),
$$

where dist denotes the distance in $B^u[0,\Delta_0]$. Note that dist $(\Pi^t(p),0)$ is the minimum distance of $\Pi^t(\Sigma^{t,\Delta_0} \cap A^{n_0})$ to 0 in $B^u[0,\Delta_0]$.

As $p \in A^{n_0}$, we have that $W^u_{X^{n_0}}(p)$ is a well defined submanifold, since that A^{n_0} is hyperbolic set (see (3)), and $\dim(E^c) = \dim(E^{c,n_0})$ (see (5)).

By domination Definition 1.1-(2), $T_z(W_{X^{n_0}}^u(p)) = E_z^{c,n_0}$ for every $z \in$ $W_{X^{n_0}}^u(p)$ and hence dim $(W_{X^{n_0}}^u(p)) = (n-s-1)$ (2). Next, we can ensure that

$$
T_z\big(W_{X^{n_0}}^u(p)\big) \cap T_z \Sigma^{t,\Delta_0} = E_z^{c,n_0} \cap T_z \Sigma^{t,\Delta_0} = F_z^{n_0}
$$

for every $z \in W^u_{X^{n_0}}(p) \cap \Sigma^{t,\Delta_0}$.

Note that the last equality shows that $W^u_{X^{n_0}}(p) \cap \Sigma^{t,\Delta_0}$ is transversal, and therefore there exists some compact submanifold inside of $W_{X^{n_0}}^u(p) \cap \Sigma^{t,\Delta_0}$. We denote this compact submanifold by K^{n_0} . Thus by construction $p \in K^{n_0}$ (see (3)) and K^{n_0} is tangent to F^{n_0} , since $K^{n_0} \subset W^{u}_{X^{n_0}}(p) \cap \Sigma^{t,\Delta_0}$.

Remark 4.3. By construction we have that dim $(B^u[0,\Delta_0]) = (n-s-1)$, since $\dim(E^{c,n_0}) = \dim(W^u_{X^{n_0}}(p)) = (n-s-1).$

We have that $W^u_{X^{n_0}}(p) \cap \Sigma^{t,\Delta_0}$ is a submanifold of M, since $W^u_{X^{n_0}}(p) \cap \Sigma^{t,\Delta_0}$ is transversal and nonempty and $W^u_{X^{n_0}}(p), \Sigma^{t,\Delta_0}$ are submanifolds of M. Note that dim $(W^u_{X^{n_0}}(p)) + \dim(\Sigma^{t,\Delta_0}) \geq n$.

Volumen 49, Número 1, Año 2015

 \rightarrow

 \rightarrow

✐

✐

SECTIONAL-ANOSOV FLOWS IN HIGHER DIMENSIONS 53

FIGURE 3. The projection $\Pi^t(K^{n_0}) = K_1^{n_0}$.

Since F^{n_0} is transverse to Π^t , one has that K^{n_0} is transverse to Π^t (i.e. K^{n_0} is transverse to the curves $(\Pi^t)^{-1}(c)$, for every $c \in B^u[0,\Delta_0]$). Let us denote the image of K^{n_1} by the projection Π^t in $B^u[0,\Delta_0]$ by $K_1^{n_1}$, i.e., $\Pi^t(K^{n_1}) = K_1^{n_1}$. Note that $K_1^{n_1} \subset B^u[0, \Delta_0]$ and $\Pi^t(p) \in \text{int}(K_1^{n_1})$ (See Figure 3).

As $\dim(K_1^{n_0}) = \dim(B^u[0,\Delta_0])$ (By Remark 4.3), there exists $z_0 \in K^{n_0}$ such that

$$
dist\left(\Pi^t(z_0),0\right)
$$

It follows from the property of attractor that $W^{uu}_{X^{n_0}}(p, \epsilon) \subset W^u_{X^{n_0}}(p) \subset A_{n_0}$. Thus, $K^{n_0} \subset \Sigma^{t,\Delta_0} \cap A^{n_0}$ and $p \in A^{n_0}$.

Since, by Proposition 3.6 $A^{n_0} \cap \partial^h \Sigma^{t,\Delta_0} = \emptyset$ and, by Remark 4.3 $\dim(K_1^{n_0}) = \dim(\overline{B^n[0,\Delta_0]})$, we conclude that

$$
\text{dist}\left(\Pi^t\big(\Sigma^{t,\Delta_0}\cap A^{n_0}\big),0\right)=0.
$$

Given that A^{n_0} is closed, this last equality implies

$$
A^{n_0} \cap l^t \neq \varnothing.
$$

Since $l^t \subset W_{X^{n_0}}^s(\sigma)$ and A^{n_0} is closed invariant set for X^{n_0} we conclude that $\sigma \in A^{n_0}$. We have proved that A^{n_0} contains a singularity of X^{n_0} . But A^{n_0} is a hyperbolic attractor of X^{n_0} by the Property (3) and this leads to $A^{n_0} = {\sigma}.$ Finally, using the Property (3) we obtain a contradiction and the proof follows. Δ

Revista Colombiana de Matemáticas

✐

✐

✐

✐

✐

✐

54 ANDRÉS MAURICIO LÓPEZ

References

- [1] V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, On Structurally Unstable Attracting Limit Sets of Lorenz Attractor Type, Trudy Moskov. Mat. Obshch. 44 (1982), no. 2, 150–212.
- [2] V. Araújo and M. J. Pacífico, Ergebnisse der mathematik und ihrer grenzgebiete. 3. folge. a series of modern surveys in mathematics, Threedimensional flows., vol. 53, Springer, 2010 (ge).
- [3] A. Arbieto, C. A. Morales, and L. Senos, On the Sensitivity of Sectional-Anosov Flows, Mathematische Zeitschrift 270 (2012), no. 1-2, 545–557.
- [4] S. Bautista and C. A. Morales, Lectures on Sectional-Anosov Flows, http://preprint.impa.br/Shadows/SERIE D/2011/86.html.
- [5] C. Bonatti, A. Pumariño, and M. Viana, *Lorenz Attractors with Arbitrary* Expanding Dimension, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 8, 883–888.
- [6] C. I. Doering, Persistently Transitive Vector Fields on Three-Dimensional Manifolds, Dynamical Systems and Bifurcation Theory (Rio de Janeiro, 1985), Pitman Res. Notes Math. Ser. 160 (1987), 59–89.
- [7] J. Guckenheimer and R. F. Williams, Structural Stability of Lorenz Attractors, Publications Mathématiques de l'IHÉS 50 (1979), no. 1, 59–72.
- [8] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, vol. 583, Springer Berlin, 1977.
- [9] C. A. Morales, The Explosion of Singular-Hyperbolic Attractors, Ergodic Theory and Dynamical Systems 24 (2004), no. 2, 577–591.
- $[10]$, Sectional-Anosov Flows, Monatshefte für Mathematik 159 (2010), no. 3, 253–260.
- [11] C. A. Morales, M. J. Pacífico, and E. R. Pujals, *Singular Hyperbolic Sys*tems, Proceedings of the American Mathematical Society 127 (1999), no. 11, 3393–3401.
- [12] J. Palis and W. De Melo, Geometric Theory of Dynamical Systems, Springer, 1982.
- [13] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors in Dynamics, Cambridge University Press, 1993.

Volumen 49, Número 1, Año 2015

 \rightarrow

 \rightarrow

✐

 \rightarrow

 \rightarrow

✐

 \oplus

 \oplus

 \oplus

✐

✐

SECTIONAL-ANOSOV FLOWS IN HIGHER DIMENSIONS $\hspace{2cm}$ 55

(Recibido en agosto de 2013. Aceptado en noviembre de 2014)

INSTITUTO DE MATEMÁTICA Universidade Federal do Rio de Janeiro P. O. Box 68530, 21941-909 Rio de Janeiro, Brazil Av. Athos da Silveira Ramos 149 Rio de Janeiro, Brazil e - $mail:$ barragan@im.ufrj.br

Revista Colombiana de Matemáticas

Esta página aparece intencionalmente en blanco

 \bigoplus

 \bigoplus

✐

 \bigoplus

✐

 \bigoplus

 \bigoplus