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ABSTRACT. A sectional-Anosov flow on a manifold is a C* vector field inwardly
transverse to the boundary for which the maximal invariant is sectional hy-
perbolic [10]. We prove that every attractor of every vector field G close to a
transitive sectional-Anosov flow with singularities on a compact manifold has
a singularity. This extends the three-dimensional result obtained in [9].
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Resumen. Un flujo seccional-Anosov sobre una variedad es un C' campo vec-
torial transversal a la frontera apuntando hacia el interior, para el cual su con-
junto maximal invariante es un conjunto seccional hiperbélico [10]. Probamos
que todo atractor de todo campo vectorial C' préximo a un flujo seccional-
Anosov transitivo con singularidades sobre una variedad compacta tiene una
singularidad. Este resultado extiende el resultado tres-dimensional obtenido
en [9].

Palabras y frases clave. Transitivo, maximal invariante, flujo seccional-Anosov.

1. Introduction

The sectional-Anosov flows were introduced in [10] as a generalization of the
Anosov flows. These also includes the saddle-type hyperbolic attracting sets
and the geometric and multidimensional Lorenz attractors [1, 5, 7]. Some prop-
erties of these flows have been shown in the literature [2, 4]. For instance,
[9] proved that every attractor of every vector field C! close to a transitive

sectional-Anosov flow with singularities on a compact 3-manifold has a sin-

gularity. Moreover, [3] generalized this result from transitive to nonwandering
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ones. In this paper we further extend [9] but now to higher dimensions. More
precisely, we prove that every attractor of every vector field C' close to a
transitive sectional-Anosov flow with singularities of a compact manifold has a
singularity. Let us state our result in a precise way.

Consider a compact Riemannian manifold M of dimension n > 3 (a compact
n-manifold for short). We denote by M the boundary of M. Let X*(M) be the
space of C'! vector fields in M endowed with the C! topology. Fix X € X1(M),
inwardly transverse to the boundary OM and denote by X; the flow of X,
teR.

The w-limit set of p € M is the set wx (p) formed by those ¢ € M such that
q = lim,,_, o X;, (p) for some sequence t,, — 0.

Given A € M compact, we say that A is invariant if X;(A) = A for all
t € R. We also say that A is transitive if A = wx(p) for some p € A; singular
if it contains a singularity and attracting if A = N0 X:(U) for some compact
neighborhood U of it. This neighborhood is often called isolating block. It is
well known that the isolating block U can be chosen to be positively invariant,
ie, X¢(U) C U for all t > 0. An attractor is a transitive attracting set. An
attractor is nontrivial if it is not a closed orbit.

Note that the set formed by a single singularity is a transitive set and in
this case such transitive set is trivial.

The mazimal invariant set of X is defined by M (X) = 1,5 X¢(M).
We denote by m(L) the minimum norm of a linear operator L, i.e., m(L) =

e Ll
infuszo "R -

Definition 1.1. A compact invariant set A is partially hyperbolic if there is a
continuous invariant splitting

TaAM = E° & E°
such that the following properties hold for some positive constants C, A:
(1) E* is contracting, i.e.,

< Ce ™,

| DX, (x)

forallz € A and ¢t > 0.

(2) E® dominates E°, i.e.,

M < Ce M
m(DXt(x) |E;) - ’

for all z € A and ¢ > 0.
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We say that the central subbundle ES of A as above is sectionally expanding
if for all two-dimensional subspace L, of ES

dim (ES) >2 and |J(DXy(z) )| >C7'eM, VaeA and t>0,

where J(+) is the jacobian.

Definition 1.2. A sectional hyperbolic set is a partially hyperbolic set whose
singularities are hyperbolic and whose central subbundle is sectionally-expanding.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of
its linear part have non zero real part.

Definition 1.3. We say that X is a sectional-Anosov flow if M (X) is a sec-
tional hyperbolic set.

Our result is the following.

Theorem 1.4. Let X be a transitive sectional-Anosov flow with singularities
of a compact n-manifold. Then, every attractor of every vector field C' close
to X has a singularity.

The proof of this theorem follows closely that of [9]. More precisely, we
assume by contradiction that there exists a sequence X" of vector fields C!
close to X each one exhibiting a non-singular attractor A™. We then prove
that A™ accumulates on a singularity of X and, consequently, for n large, we
will prove that the corresponding attractor A™ does contain a singularity. This
give us the desired contradiction. To prove such assertions we will extend some
tools in [9] including the definitions of both Lorenz-like singularity and singular
cross-section.

2. Lorenz-Like Singularities and Singular Cross-Sections in Higher
Dimension

Let M be a compact Riemannian n-manifold, n > 3. Fix X € X1(M) inwardly
transverse to OM. Denote by X; the flow of X, ¢t € R, and by M(X) the

maximal invariant of X.

Definition 2.1. A compact invariant set A of X is hyperbolic if there are a
continuous tangent bundle invariant decomposition T\M = E*® EX @ E* and
positive constants C', A such that

e EX is the vector field direction over A.

e E* is contracting, i.e., ||DXt(Jc) < Ce ™, forall z € A and t > 0.

E;

<Ce ™M forallz € Aandt>0.

DX_t(.I‘)

e E" is expanding, i.e., | Eu
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A closed orbit or attractor is hyperbolic if it does as a compact invariant set.

It follows from the stable manifold theory [8] that if p belongs to a hyperbolic
set A, then the sets

W (p) = {z: d(X¢(2), Xi(p)) = 0,t = 00} and
W (p) = {x : d(Xt(x),Xt(p)) —0,t — —oo}

are C'! immersed submanifolds of M which are tangent at p to the subspaces
E; and Ej of T, M respectively. Similarly, the sets

Wx(p) = U W (Xt (p)) and
teR

Wi(p) = |J W (Xi(p))
teR

are also C'' immersed submanifolds tangent to ES & EX and EX & EY at p
respectively. Moreover, for every € > 0 we have that

W3 (pe) = {z: d(Xi(z), Xi(p)) <€Vt >0} and
Wi (p,e) = {z : d(Xy(z), Xi(p)) < €, Vt <0}

are closed neighborhoods of p in W$?(p) and W¥*(p) respectively.

There is also a stable manifold theorem in the case when X is sectional-
Anosov. Indeed, denoting by Tyrx)M = E]SV[( x) @ EJCM( X) the corresponding
sectional-hyperbolic splitting over M (X) we have from [8] that the contracting
subbundle Ej/[( x) can be extended to a contracting subbundle Ef; in M, where
U is a neighborhood of M (X). Moreover, such an extension is tangent to a
continuous foliation denoted by W** (or W§ to indicate dependence on X). By
adding the flow direction to W** we obtain a continuous foliation W* (or W)
now tangent to E3; & E3;. Unlike the Anosov case W* may have singularities,
all of which being the leaves W*¢(o) passing through the singularities o of X.
Note that WW* is transverse to OM because it contains the flow direction (which
is transverse to M by definition).

It turns out that every singularity o of a sectional-Anosov flow X satisfies
W3# (o) C Wi (o). Furthermore, there are two possibilities for such a singular-
ity, namely, either dim (W3$(c)) = dim (W3 (0)) (and so W§ (o) = Wi (o))
or dim (W5 (o)) = dim (W3(c)) + 1. In the later case we call it Lorenz-like
according to the following definition.

Definition 2.2. We say that a singularity o of a sectional-Anosov flow X is
Lorenz-like if dim (W*(c)) = dim (W**(0)) + 1.
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Hereafter, we will denote dim (W3(c)) = s, dim (W% (o)) = u and there-
fore dim (W§(0)) = s+ 1 by definition. Moreover W§*(c) separates W} (o)

in two connected components denoted by W, (¢) and Wlso’f(a) respectively.

Next we define singular cross-section in the higher dimensional context.
First, we will denote a cross-section by ¥ and its boundary by 0X. Also, the

hypercube I* = [f 1, 1] * will be submanifold of dimension k, with k € N.
Thus, we begin by considering B*[0,1] ~ I'* and B**[0, 1] ~ I°® where

B*3[0,1] is the ball centered at zero and radius 1 contained in RIm(W™ (@) —

R?% and

B"[0,1] is the ball centered at zero and radius 1 contained in R¥mW*(@)) —
Rn—s—l = Rv.

Definition 2.3. A singular cross-section of a Lorenz-like singularity o consists
of a pair of submanifolds ¥t, ¥, where ¥, %.¢ are cross-sections and

. .t
Y is transversal to W, (o).
¥? is transversal to W’ ().

loc

Note that every singular cross-section contains a pair singular submanifolds
It, 1’ defined as the intersection of the local stable manifold of o with £t, %t
respectively and additionally dim(1*) = dim (W**(0)) (x =t,b).

Thus, a singular cross-section ¥* will be a hypercube of dimension (n — 1),
i.e., diffeomorphic to B*[0,1] x B*[0,1]. Let f: B*[0,1] x B**[0,1] — X* be
the diffeomorphism, such that

f({0} x B*[0,1]) =I*
and {0} = 0 € R". Define
oxF =9"sru oIS

by

oy = {union of the boundary submanifolds which are transverse to l*}
and

9" = {union of the boundary submanifolds which are parallel to I* }.
From this decomposition we obtain that

oy =
(1 [Uszg (1 x (=1 < 2 U (1% (0328 (17 x {1y x 12707Y)])
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and
PADIE
([uiz (7 s {1y x 1) s 1) (U ([0szg (19 x {1y < 170 < 1),
where I° x I = 1.
Hereafter we denote X* = B*[0, 1] x B*[0, 1].

3. Sectional Hyperbolic Sets in Higher Dimension

In this section we prove a preliminary result for transitive sectional-Anosov
flows. To begin with, we present the following useful property.

Lemma 3.1. Let X be a sectional-Anosov flow, X a C' vector field in M. If
Y is C' close to X, then every nonempty, compact, non singular, invariant set
H of Y is hyperbolic saddle-type (i.e. E* # 0 and E* #0).

Proof. See [11]. The proof in [11] is made in dimension three, but the same
proof yields the same conclusion in any dimension. ™

Lemma 3.2. Let X be a transitive sectional-Anosov flow C' in M. If O C
M(X) is a periodic orbit of X, then O is a hyperbolic saddle-type periodic orbit.
In addition, if p € O then the set

{ae W' (p) : M(X) =wx(q)}

is dense in Wit (p).

Proof. By Lemma 3.1, we have that O is hyperbolic and saddle-type. Let W
be an open set in W¥¥(p). This set W exists since the point p belongs to the
periodic orbit O which is hyperbolic. Define

B= |J xmw).

0<t<1

This set has dimension at least two, and so,

B' = J wg(=)
rEB

contains an open set V with BNV # @.

Since M(X) is the maximal invariant of X, B C W¥(p) and p € O, we
obtain BNV C M(X). Let ¢ € M(X) such that M(X) = wx(q). Then, the
forward orbit of ¢ intersects V' and so it intersects B’ too. It follows from the
definition of B’ that the positive orbit of ¢ is asymptotic to the forward orbit
of some ¢’ € B. In particular, M(X) = wx(q) = wx(q'). This proves that
{qg e W¥(p) : M(X) =wx(q)} is dense in M (X) as desired.
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The following theorem appears in [4].

Theorem 3.3. Let X be a transitive sectional-Anosov flow C' for M. Then,
every o € Sing(X) N M(X) is Lorenz-like and satisfies

M(X)NW(o) = {o}.

Proof. We begin by proving two claims.

Claim 3.4. If z € (M(X) \ Sing(X)), then X () ¢ E3.

Proof. Suppose by contradiction that there is zo € (M (X) \ Sing(X)) such
that X (zo) € B3 . Then, X(z) € EZ for every « in the orbit of ¢ since Ej;
is invariant. So, by continuity,

X(x) € E; for every x € a(xp). (1)

It follows that w(z) is a singularity for all x € a(xg). In particular, a(xg)
contains a singularity ¢ which is necessary hyperbolic of saddle-type.

Now we have two cases: a(xg) = {0} or not.
If a(xg) = {o} then 2y € W* (o). For all t € R define the unitary vector

DX (o) (X(ﬂﬁo))
DX (0) (X (o))

’Ut:

It follows that

Ut c TX,{(mO)Wu(O') n E;t(xo)’ Vvt € R.
Take a sequence t,, — oo such that the sequence v~ converges to v™°. Clearly
v>° is an unitary vector and, since X_; (z9) — o and E® is continuous we

obtain
v e T,W*o)NE;].

Therefore v°° is an unitary vector which is simultaneously expanded and con-
tracted by DXy (o), a contradiction. This contradiction shows the result in the
first case.

For the second case, we assume a(zo) # {o}. Then, (W*(o)~{o})Na(zo) #
@. Pick z; € (W"(o) ~ {o}) Na(zg). It follows from (1) that X(z1) € E3,
and then we get a contradiction as in the first case replacing xzg by x1. This
contradiction proves the claim.

Claim 3.5. If o € Sing(X), then M(X)NW?*3(c) = {o}.
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Proof. Take x € W**(o) \ {o}. Then, E5 = T,W**(c). Moreover, since
W*%(o) is an invariant, we obtain X (x) € T,,W**(0). We conclude that X (z) €
E: for all x € W**(0) and now Claim 3.4 applies.

ol

This theorem implies the following two useful properties.

Proposition 3.6. Let X be a transitive sectional-Anosov flow C' of M. Let
o be a singularity of X in M(X) (so o is Lorenz-like by Theorem 3.3). Then,
there is a singular-cross section X, X of o in M such that.

(M(Y))n ("2 Uy’ = 2,
for every C™ wvector field Y close to X.
Proof. See [9]. v

Let o be a Lorenz-like singularity of a C'! vector field X in X1(M), and ¢,
»® be a singular cross-section of o. Thus for o we recall that,

dim (W$ (o)) = s, then
dim (W (o)) =s+1, and dim (W¥(o)) =n—s—1, (2)
dim(X*)=s+(n—s—1)=n-1.

Since ¥* = B*[0, 1] x B**[0,1], we will set up a family of singular cross-
sections as follows: Given 0 < A < 1 small, we define ©*4 = B*[0,A] x
B#*#[0, 1], such that

Fcye®cyr, e

(1" = {0} x B**[0,1]) C (=% = B“[0,A] x B**[0,1]) C
(¥* = B*[0,1] x B**[0,1]),
where we fix a coordinate system (z*,y*) in * (x = t,b). We will assume that
T =unl
We will use this notation throughout of next lemma and the Theorem 1.4

proof.

Lemma 3.7. Let X be a transitive sectional-Anosov flow C' of M. Let o be a
singularity of X in M(X). Let Y™ be a sequence of vector fields converging to
X in the C! topology. Let O,, be a periodic orbit of Y™ such that the sequence
{0, : n € N} accumulates on o. If 0 < A < 1 and X, X¥ is a singular
cross-section of o, then there is n such that either

O, Nint (B42) £ @
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or
Oy, Nint (%) # 2.

Proof. Since O,, accumulates on o € M(X) and M(X) is maximal invariant,
we have that O,, C M(X) for all n large (recall Y — X as n — 00). Let us fix
a fundamental domain D, of the vector field’s flow X; restricted to the local
stable manifold W} (o) ([12]) for € > 0 as follows (See Figure 1):

D.=S.uUS_uUC,,
where

Se - {1’ S RS+1 . Eizlfxg + (Zs+1 — 6)2 = ]_’ /\, :L's—&-l 2 6},
S_e={z eRT T 2l + (v1 — € =1, A, o410 < —€,
Ce={z eRM %2 27 =1, A, 2,541 € [—€,¢]}.

FIGURE 1. The fundamental domain.

As W (o) is (s+1)-dimensional and D, is homeomorphic to the sphere (s)-
dimensional, by construction D, intersects W§# (o) in Ce,,, ,—o that is a sphere
(s —1)-dimensional. Note that the orbits of all point in C¢|,,,,—o together with
o yields W§?(o). In particular, Cc|,,.,—0 ¢ M(X) by Theorem 3.3. Also note
that for all €, D, is a fundamental domain.

Let D, be a cross section of X such that Wg (o)n D, = D.. Tt follows that

D.isa (n—1)-cylinder, and so we can consider a system coordinated (z, s) with
x € D, and s € I*. Thus, by using this system coordinate we can construct a
family of singular cross-sections X%, 3% (for all § € [—¢, €]) by setting
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Egz{(m,s)eﬁe:xeSg,SeI“},
b= {(z,s) vae:xES,g,SGI“}.

Due to the smooth variation of Wi* (o (Y")) with respect to ¥ close to X we
can assume that o(Y) = o and that W5 o (0(Y)) = Wi (o) for every Y close

to X. By choosing D, so close to ¢ we can further assume that 5; is a cross-
section of Y, for every Y close to X. We claim that there is 6 > 0 such that
the conclusion of the lemma holds for ! = ¥ and X° = X%, Indeed, we first
note that under the cylindrical coordinate system (z,s) one has Y2 = ¥}
for all 0 < A < 4§ (x = t,b). Otherwise, if the conclusion of the claim fails, it
implies that O,, intersects D, ~ (34 Uxh) for all A > 0 small. Further, we
would find a sequence of periodic points such that p, € O, (for all n large)
and p, = (x,, $) with x,, € Ca and s, — 0 as n — 0o0. As A is arbitrary and
sp, — 0, we conclude that p,, converges to a point in Cals,,,—o by passing to a
subsequence if necessary, since if s,, — 0, it implies that the intersection tends
to (s)-dimensional sphere D..

AsO, C M(Y"),Y™ — X and M (Y™) is arbitrarily close to M (X) (indeed,
in the C'-topology, these sets are at least to a distance €) for all n (n € N),
by using the above arguments, there exists a point z € (Ce|ms+1:0) such that

z € M(X). This contradicts Theorem 3.3 and the proof follows.

4. Proof of Theorem 1.4

We prove the theorem by contradiction. Let X be a transitive sectional-Anosov

flow C! of M. Then, we suppose that there exists a sequence X" C—>1 X such
that every X™ exhibits a non-singular attractor A™ € M (X™) arbitrarily close
to M(X) and since A™ also is arbitrarily close to M (X)), we can assume that A™
belongs to M (X)) for all n. It follows from the definition of attractor that each
A™ is compact, invariant and nonempty. As A" is non-singular by hypothesis,
then the Lemma 3.1 and the Lemma 3.2 imply the following;:

A™ is a hyperbolic attractor of type saddle of X™ for all n, and since
A™ is non-singular for all n, obviously A" is not a singularity of X»  (3)
for all n.

We denote by Sing(X) the set of singularities of X, CI(A) the closure of
A, A C M. Moreover, given 6 > 0 and A C M, we define Bs(A) = {x € M :
d(z,A) < §} where d(,+) is the metric on M.

Now, let us consider the following lemma that, as in [9], is useful for the
higher dimension case. The lemma gives one description on behavior of the
attractors.
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Lemma 4.1. The sequence of attractors A™ accumulate on Sing(X), i.e.

Smg(X)ﬂcz< U A”) +@.

neN

Proof. We prove the lemma by contradiction. With that purpose we suppose
that there is § > 0, such that

Bs(Sing(X)) ) ( U A”) =o. (4)

neN

In the same way as in [9], we define

H = (] X¢(M ~ Bs2(Sing(X))).
teR

Note that by definition H is a invariant set and Sing(X)NH = @. Additionally
H is a compact set as it is A and therefore H is a nonempty compact set (see
[9]). By using the Lemma 3.1 we conclude that H is hyperbolic set. So, we
denote by E* @ EX @ E* the corresponding hyperbolic splitting (see Definition
2.1).

By the stability of hyperbolic sets we can fix a neighborhood W of H and
e > 0 such that if Y is a vector field C" close to X and Hy is a compact
invariant set of Y in W then:

Hy is hyperbolic and its hyperbolic splitting E>Y @ EY @ E“Y.
dim(E*) = dim(E%Y), dim(E*) = dim(E*Y). The manifolds (5)
Wit (z,€), x € Hy, have uniform size e.

As X™ — X, we have that:

Nier X7 (M \ Bsj2(Sing(X)) € W, for all n large;

A" C M N Bsz (Sing(X)) for all n, and A™ C W for all n large;

If 2™ € A™ so that 2™ converges to some x € M, then x € H;

If w e Wi (2™, €), the tangent vectors of Wi% (z™, €) in this (6)
point are in E}j;X";

As 2" — x, W¥ (2", €) — W¥“(z,€) in the sense of C*

submanifolds [13] and Z(E“X", E*) — 0, if n — oo [9].

Thus, we fix an open set U C W¥*(x, €) containing the point z.

By (3), it follows that the periodic orbits of X™ in A™ are dense in A"
(Anosov closing Lemma). Particularly, we can assume that each ™ is a periodic
point of A”. As M(X)NSing(X) # @ and M (X) is a transitive set, it follows
from Lemma 3.2 that there exists ¢ € U, 0 < §1 < d2 < g and T > 0 such that

Xr(q) € Bs, (Sing(X)).
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By [12, Tubular Flow Box Theorem], there is an open set V, containing ¢
such that X7(V,) C B, (Sing(X)) and as X" — X it follows that

X7(Vy) C Bs, (Sing(X)) (7)

for all n large (see Figure 2).

FIGURE 2. Tubular Flow Box Theorem for X7 (V).

In addition, W% (2™, €) NV, # @ for n large enough, since W% (2™, €) —
Wit (z,e) and ¢ € U C W¥*(z,¢€). Applying (7) to X™ for n large we have

XE (WL (2", €)) N Bs, (Sing(X)) # @.
In particular W% (™, €) C W, (x™). Then the invariance of W, (z™) implies
Win (2™) N Bs 2 (Sing(X)) # @.

Observe that W, (2™) C A™ since z™ € A™ and A™ is an attractor. We con-
clude that
A" N Bs(Sing(X)) # @.

This contradicts (4) and the proof follows. v
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Proof of Theorem 1.4. By Lemma 4.1 there exists 0 € M (X) such that

o€ Sing(X)ﬂC’l( U A").

neN

By Theorem 3.3 we have that o is Lorenz-like and satisfies
M(X)NWs (o) ={o}.

By Proposition 3.6, we can choose Xf, Y° singular-cross section for o and
M(X) such that
M(X)n (0"sfuohs?) = @.

As X" — X we have that X, X0 is singular-cross section of X™ too, thus we
can assume that o(X™) = o and I! U1’ C W$.. (o) for all n (Implicit function
theorem).

We have that the splitting E° & E°€ persists by small perturbations of X
[8]. The dominance condition (Definition 1.1-(2)) together with [6, Proposition
2.2] imply that for * = ¢, b one has

T,Y° N (B ® BY) = T,0%,

for all z € [*.
Denote by Z(E, F') the angle between two linear subspaces. The last equality
implies that there is p > 0 such that
(T, 2" N ES, TLY) > p,

for all x € I* (x = t,b). In this way, since E™ — E¢ as n — oo we have for n
large enough that

(L2 N Eg T) > £ (8)

for all z € I* (% =t,b).

As in the previous section we fix a coordinate system (x,y) = (z*,y*) in
>* such that

S* = BY[0,1] x B**[0,1],  I* = {0} x B*[0,1]

with respect to (z,y). Also, given A > 0 we define ¥4 = B*[0, A] x B**[0, 1].

Hereafter IT* : ¥* — B*[0, 1] will be the projection such that IT*(z,y) = .
We will denote the line field in ¥*4° by F™, where

Er=T,X*NES",  zexmdo,

Remark 4.2. The continuity of F©™ and (8) imply that there is Ag > 0 such
that for every mn large the line F™ is transverse to II*. By this we mean that
F™(2) is not tangent to the curves (II*)~t(c), for every c € B*[0, Ao].
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Now recall that A™ is a hyperbolic attractor of type saddle of X" for all
n (see (3)) and that the periodic orbits of X™ in A™ are dense in A™ [13]. As
S C’l( Unen A"), we can find a sequence of periodic orbits (O, )nen such
that O,, € A™ and accumulating on o. It follows from Lemma 3.7 applied to
Y™ = X™ that there exists ng € N such that either

Op, Nint (Et’AO) #* 2 or On, Nint (Zb’AO) # .

As O,, C A, we conclude that either

A™ning (SP%) £ @ or  A™ nint (TP40) #£ 2.

We shall assume that A™ N int (Et>A0) # & (Analogous proof for the case
% = b). Note that 9"t C 9"%* by definition. Then, by Proposition 3.6 one
has

Aottt = g,

As A™ and X520 are compact non-empty sets, it follows that A™ N X420
is a compact nonempty subset of %20, and thus there exists p € £t N A™0
such that

dist (IT* (2440 0 A™),0) = dist (IT(p), 0),

where dist denotes the distance in B“[0, Ag]. Note that dist (IT*(p),0) is the
minimum distance of II*($%40 N A"0) to 0 in B*[0, Ag].

As p € A™, we have that W¥%., (p) is a well defined submanifold, since that
A™ ig hyperbolic set (see (3)), and dim(E°) = dim(E*™) (see (5)).

By domination Definition 1.1-(2), T%(W.,(p)) = ES™ for every z €
W, (p) and hence dim (W¥n,(p)) = (n — s — 1) (2). Next, we can ensure
that

T. (Wino (p)) N T.E520 = B0 0T, 5020 = Flo

for every z € W, (p) N SH80.
Note that the last equality shows that W, (p) N »hA0 is transversal, and
therefore there exists some compact submanifold inside of W, (p) N X440,

We denote this compact submanifold by K™. Thus by construction p € K™
(see (3)) and K™ is tangent to F"0, since K™ C Wi, (p) N X80,

Remark 4.3. By construction we have that dim (B“[0,A¢]) = (n — s — 1),
since dim(E®"™) = dim (W, (p)) = (n — s — 1).
We have that W, (p) N340 is a submanifold of M, since W, (p)NXt40

is transversal and nonempty and W, (p), X420 are submanifolds of M. Note
that dim (W, (p)) + dim(Z520) > n.
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FIGURE 3. The projection IT*(K"0) = K°.

Since F™0 is transverse to I, one has that K™ is transverse to IT* (i.e. K™
is transverse to the curves (II*) 71 (c), for every ¢ € B%[0, Ag]). Let us denote the
image of K™ by the projection II* in B“[0, Ag] by K1, i.e., [I'(K™) = K.
Note that K" C B“[0,A¢] and IT*(p) € int(K7*) (See Figure 3).

As dim(K(°) = dim (B*[0, A¢]) (By Remark 4.3), there exists zy € K"
such that

dist (I (20),0) < dist (II(p), 0).

It follows from the property of attractor that Wik, (p,€) C Wn, (p) C Ay, -
Thus, K™ C ©5%0 N A™ and p € A™.

Since, by Proposition 3.6 A" N 9"¥5%0 = @ and, by Remark 4.3
dim (K{°) = dim (B“[0, Ag]), we conclude that

dist (IT ("2 N 4™),0) = 0.
Given that A™ is closed, this last equality implies
AM Nt £ @

Since I C Wi, (o) and A™ is closed invariant set for X™ we conclude that
o € A™. We have proved that A™ contains a singularity of X™0. But A™ is a
hyperbolic attractor of X™ by the Property (3) and this leads to A" = {o}.
Finally, using the Property (3) we obtain a contradiction and the proof follows.

o
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