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Andrés Mauricio Lópeza
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Abstract. A sectional-Anosov flow on a manifold is a C1 vector field inwardly
transverse to the boundary for which the maximal invariant is sectional hy-
perbolic [10]. We prove that every attractor of every vector field C1 close to a
transitive sectional-Anosov flow with singularities on a compact manifold has
a singularity. This extends the three-dimensional result obtained in [9].
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Resumen. Un flujo seccional-Anosov sobre una variedad es un C1 campo vec-
torial transversal a la frontera apuntando hacia el interior, para el cual su con-
junto maximal invariante es un conjunto seccional hiperbólico [10]. Probamos
que todo atractor de todo campo vectorial C1 próximo a un flujo seccional-
Anosov transitivo con singularidades sobre una variedad compacta tiene una
singularidad. Este resultado extiende el resultado tres-dimensional obtenido
en [9].

Palabras y frases clave. Transitivo, maximal invariante, flujo seccional-Anosov.

1. Introduction

The sectional-Anosov flows were introduced in [10] as a generalization of the
Anosov flows. These also includes the saddle-type hyperbolic attracting sets
and the geometric and multidimensional Lorenz attractors [1, 5, 7]. Some prop-
erties of these flows have been shown in the literature [2, 4]. For instance,
[9] proved that every attractor of every vector field C1 close to a transitive
sectional-Anosov flow with singularities on a compact 3-manifold has a sin-
gularity. Moreover, [3] generalized this result from transitive to nonwandering
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40 ANDRÉS MAURICIO LÓPEZ

ones. In this paper we further extend [9] but now to higher dimensions. More
precisely, we prove that every attractor of every vector field C1 close to a
transitive sectional-Anosov flow with singularities of a compact manifold has a
singularity. Let us state our result in a precise way.

Consider a compact Riemannian manifold M of dimension n ≥ 3 (a compact
n-manifold for short). We denote by ∂M the boundary of M . Let X 1(M) be the
space of C1 vector fields in M endowed with the C1 topology. Fix X ∈ X 1(M),
inwardly transverse to the boundary ∂M and denote by Xt the flow of X,
t ∈ R.

The ω-limit set of p ∈M is the set ωX(p) formed by those q ∈M such that
q = limn→∞Xtn(p) for some sequence tn →∞.

Given Λ ∈ M compact, we say that Λ is invariant if Xt(Λ) = Λ for all
t ∈ R. We also say that Λ is transitive if Λ = ωX(p) for some p ∈ Λ; singular
if it contains a singularity and attracting if Λ = ∩t>0Xt(U) for some compact
neighborhood U of it. This neighborhood is often called isolating block. It is
well known that the isolating block U can be chosen to be positively invariant,
i.e., Xt(U) ⊂ U for all t > 0. An attractor is a transitive attracting set. An
attractor is nontrivial if it is not a closed orbit.

Note that the set formed by a single singularity is a transitive set and in
this case such transitive set is trivial.

The maximal invariant set of X is defined by M(X) =
⋂
t≥0Xt(M).

We denote by m(L) the minimum norm of a linear operator L, i.e., m(L) =

infv 6=0
‖Lv‖
‖v‖ .

Definition 1.1. A compact invariant set Λ is partially hyperbolic if there is a
continuous invariant splitting

TΛM = Es ⊕ Ec

such that the following properties hold for some positive constants C, λ:

(1) Es is contracting, i.e., ∥∥DXt(x) |Es
x

∥∥ ≤ Ce−λt,
for all x ∈ Λ and t > 0.

(2) Es dominates Ec, i.e., ∥∥DXt(x) |Es
x

∥∥
m
(
DXt(x) |Ec

x

) ≤ Ce−λt,
for all x ∈ Λ and t > 0.

Volumen 49, Número 1, Año 2015
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SECTIONAL-ANOSOV FLOWS IN HIGHER DIMENSIONS 41

We say that the central subbundle Ecx of Λ as above is sectionally expanding
if for all two-dimensional subspace Lx of Ecx

dim
(
Ecx
)
≥ 2 and

∣∣J(DXt(x) |Lx

)∣∣ ≥ C−1eλt, ∀x ∈ Λ and t > 0,

where J(·) is the jacobian.

Definition 1.2. A sectional hyperbolic set is a partially hyperbolic set whose
singularities are hyperbolic and whose central subbundle is sectionally-expanding.

Recall that a singularity of a vector field is hyperbolic if the eigenvalues of
its linear part have non zero real part.

Definition 1.3. We say that X is a sectional-Anosov flow if M(X) is a sec-
tional hyperbolic set.

Our result is the following.

Theorem 1.4. Let X be a transitive sectional-Anosov flow with singularities
of a compact n-manifold. Then, every attractor of every vector field C1 close
to X has a singularity.

The proof of this theorem follows closely that of [9]. More precisely, we
assume by contradiction that there exists a sequence Xn of vector fields C1

close to X each one exhibiting a non-singular attractor An. We then prove
that An accumulates on a singularity of X and, consequently, for n large, we
will prove that the corresponding attractor An does contain a singularity. This
give us the desired contradiction. To prove such assertions we will extend some
tools in [9] including the definitions of both Lorenz-like singularity and singular
cross-section.

2. Lorenz-Like Singularities and Singular Cross-Sections in Higher
Dimension

Let M be a compact Riemannian n-manifold, n ≥ 3. Fix X ∈ X 1(M) inwardly
transverse to ∂M . Denote by Xt the flow of X, t ∈ R, and by M(X) the
maximal invariant of X.

Definition 2.1. A compact invariant set Λ of X is hyperbolic if there are a
continuous tangent bundle invariant decomposition TΛM = Es⊕EX ⊕Eu and
positive constants C, λ such that

• EX is the vector field direction over Λ.

• Es is contracting, i.e.,
∥∥DXt(x) |Es

x

∥∥ ≤ Ce−λt, for all x ∈ Λ and t > 0.

• Eu is expanding, i.e.,
∥∥DX−t(x) |Eu

x

∥∥ ≤ Ce−λt, for all x ∈ Λ and t > 0.

Revista Colombiana de Matemáticas
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42 ANDRÉS MAURICIO LÓPEZ

A closed orbit or attractor is hyperbolic if it does as a compact invariant set.

It follows from the stable manifold theory [8] that if p belongs to a hyperbolic
set Λ, then the sets

W ss
X (p) =

{
x : d

(
Xt(x), Xt(p)

)
→ 0, t→∞

}
and

Wuu
X (p) =

{
x : d

(
Xt(x), Xt(p)

)
→ 0, t→ −∞

}
are C1 immersed submanifolds of M which are tangent at p to the subspaces
Esp and Eup of TpM respectively. Similarly, the sets

W s
X(p) =

⋃
t∈R

W ss
X

(
Xt(p)

)
and

Wu
X(p) =

⋃
t∈R

Wuu
X

(
Xt(p)

)
are also C1 immersed submanifolds tangent to Esp ⊕ EXp and EXp ⊕ Eup at p
respectively. Moreover, for every ε > 0 we have that

W ss
X (p, ε) =

{
x : d

(
Xt(x), Xt(p)

)
≤ ε,∀t ≥ 0

}
and

Wuu
X (p, ε) =

{
x : d

(
Xt(x), Xt(p)

)
≤ ε, ∀t ≤ 0

}
are closed neighborhoods of p in W ss

X (p) and Wuu
X (p) respectively.

There is also a stable manifold theorem in the case when X is sectional-
Anosov. Indeed, denoting by TM(X)M = EsM(X) ⊕ E

c
M(X) the corresponding

sectional-hyperbolic splitting over M(X) we have from [8] that the contracting
subbundle EsM(X) can be extended to a contracting subbundle EsU in M , where

U is a neighborhood of M(X). Moreover, such an extension is tangent to a
continuous foliation denoted by W ss (or W ss

X to indicate dependence on X). By
adding the flow direction to W ss we obtain a continuous foliation W s (or W s

X)
now tangent to EsM ⊕EXM . Unlike the Anosov case W s may have singularities,
all of which being the leaves W ss(σ) passing through the singularities σ of X.
Note that W s is transverse to ∂M because it contains the flow direction (which
is transverse to ∂M by definition).

It turns out that every singularity σ of a sectional-Anosov flow X satisfies
W ss
X (σ) ⊂W s

X(σ). Furthermore, there are two possibilities for such a singular-
ity, namely, either dim

(
W ss
X (σ)

)
= dim

(
W s
X(σ)

) (
and so W ss

X (σ) = W s
X(σ)

)
or dim

(
W s
X(σ)

)
= dim

(
W ss
X (σ)

)
+ 1. In the later case we call it Lorenz-like

according to the following definition.

Definition 2.2. We say that a singularity σ of a sectional-Anosov flow X is
Lorenz-like if dim

(
W s(σ)

)
= dim

(
W ss(σ)

)
+ 1.

Volumen 49, Número 1, Año 2015
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SECTIONAL-ANOSOV FLOWS IN HIGHER DIMENSIONS 43

Hereafter, we will denote dim
(
W ss
X (σ)

)
= s, dim

(
Wu
X(σ)

)
= u and there-

fore dim
(
W s
X(σ)

)
= s + 1 by definition. Moreover W ss

X (σ) separates W s
loc(σ)

in two connected components denoted by W s,t
loc(σ) and W s,b

loc (σ) respectively.

Next we define singular cross-section in the higher dimensional context.
First, we will denote a cross-section by Σ and its boundary by ∂Σ. Also, the

hypercube Ik =
[
− 1, 1

]k
will be submanifold of dimension k, with k ∈ N.

Thus, we begin by considering Bu[0, 1] ≈ Iu and Bss[0, 1] ≈ Is where

Bss[0, 1] is the ball centered at zero and radius 1 contained in Rdim(W ss(σ)) =
Rs and

Bu[0, 1] is the ball centered at zero and radius 1 contained in Rdim(Wu(σ)) =
Rn−s−1 = Ru.

Definition 2.3. A singular cross-section of a Lorenz-like singularity σ consists
of a pair of submanifolds Σt, Σb, where Σt, Σb are cross-sections and

Σt is transversal to W s,t
loc(σ).

Σb is transversal to W s,b
loc (σ).

Note that every singular cross-section contains a pair singular submanifolds
lt, lb defined as the intersection of the local stable manifold of σ with Σt, Σb

respectively and additionally dim(l∗) = dim
(
W ss(σ)

)
(∗ = t, b).

Thus, a singular cross-section Σ∗ will be a hypercube of dimension (n− 1),
i.e., diffeomorphic to Bu[0, 1]×Bss[0, 1]. Let f : Bu[0, 1]×Bss[0, 1] −→ Σ∗ be
the diffeomorphism, such that

f
(
{0} ×Bss[0, 1]

)
= l∗

and {0} = 0 ∈ Ru. Define

∂Σ∗ = ∂hΣ∗ ∪ ∂vΣ∗

by

∂hΣ∗ =
{

union of the boundary submanifolds which are transverse to l∗
}

and

∂vΣ∗ =
{

union of the boundary submanifolds which are parallel to l∗
}
.

From this decomposition we obtain that

∂hΣ∗ =(
Iu ×

[
∪s−1
j=0

(
Ij × {−1} × Is−j−1

)])⋃(
Iu ×

[
∪s−1
j=0

(
Ij × {1} × Is−j−1

)])
Revista Colombiana de Matemáticas
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44 ANDRÉS MAURICIO LÓPEZ

and

∂vΣ∗ =([
∪u−1
j=0

(
Ij ×{−1}× Iu−j−1

)]
× Is

)⋃([
∪u−1
j=0

(
Ij ×{1}× Iu−j−1

)]
× Is

)
,

where I0 × I = I.

Hereafter we denote Σ∗ = Bu[0, 1]×Bss[0, 1].

3. Sectional Hyperbolic Sets in Higher Dimension

In this section we prove a preliminary result for transitive sectional-Anosov
flows. To begin with, we present the following useful property.

Lemma 3.1. Let X be a sectional-Anosov flow, X a C1 vector field in M . If
Y is C1 close to X, then every nonempty, compact, non singular, invariant set
H of Y is hyperbolic saddle-type (i.e. Es 6= 0 and Eu 6= 0).

Proof. See [11]. The proof in [11] is made in dimension three, but the same
proof yields the same conclusion in any dimension. �X

Lemma 3.2. Let X be a transitive sectional-Anosov flow C1 in M . If O ⊂
M(X) is a periodic orbit of X, then O is a hyperbolic saddle-type periodic orbit.
In addition, if p ∈ O then the set{

q ∈Wuu
X (p) : M(X) = ωX(q)

}
is dense in Wuu

X (p).

Proof. By Lemma 3.1, we have that O is hyperbolic and saddle-type. Let W
be an open set in Wuu

X (p). This set W exists since the point p belongs to the
periodic orbit O which is hyperbolic. Define

B =
⋃

0≤t≤1

Xt(W ).

This set has dimension at least two, and so,

B′ =
⋃
x∈B

W ss
X (x)

contains an open set V with B ∩ V 6= ∅.

Since M(X) is the maximal invariant of X, B ⊂ Wu
X(p) and p ∈ O, we

obtain B ∩ V ⊂ M(X). Let q ∈ M(X) such that M(X) = ωX(q). Then, the
forward orbit of q intersects V and so it intersects B′ too. It follows from the
definition of B′ that the positive orbit of q is asymptotic to the forward orbit
of some q′ ∈ B. In particular, M(X) = ωX(q) = ωX(q′). This proves that{
q ∈Wuu

X (p) : M(X) = ωX(q)
}

is dense in M(X) as desired. �X

Volumen 49, Número 1, Año 2015



i
i

“v49n1a02-Lopez” — 2015/6/30 — 9:59 — page 45 — #7 i
i

i
i

i
i

SECTIONAL-ANOSOV FLOWS IN HIGHER DIMENSIONS 45

The following theorem appears in [4].

Theorem 3.3. Let X be a transitive sectional-Anosov flow C1 for M . Then,
every σ ∈ Sing(X) ∩M(X) is Lorenz-like and satisfies

M(X) ∩W ss
X (σ) = {σ}.

Proof. We begin by proving two claims.

Claim 3.4. If x ∈
(
M(X) r Sing(X)

)
, then X(x) /∈ Esx.

Proof. Suppose by contradiction that there is x0 ∈
(
M(X) r Sing(X)

)
such

that X(x0) ∈ Esx0
. Then, X(x) ∈ Esx for every x in the orbit of x0 since EsM(X)

is invariant. So, by continuity,

X(x) ∈ Esx for every x ∈ α(x0). (1)

It follows that ω(x) is a singularity for all x ∈ α(x0). In particular, α(x0)
contains a singularity σ which is necessary hyperbolic of saddle-type.

Now we have two cases: α(x0) = {σ} or not.

If α(x0) = {σ} then x0 ∈Wu(σ). For all t ∈ R define the unitary vector

vt =
DXt(x0)

(
X(x0)

)
‖DXt(x0)

(
X(x0)

)
‖
.

It follows that

vt ∈ TXt(x0)W
u(σ) ∩ EsXt(x0), ∀t ∈ R.

Take a sequence tn →∞ such that the sequence v−tn converges to v∞. Clearly
v∞ is an unitary vector and, since X−tn(x0) → σ and Es is continuous we
obtain

v∞ ∈ TσWu(σ) ∩ Esσ.

Therefore v∞ is an unitary vector which is simultaneously expanded and con-
tracted by DXt(σ), a contradiction. This contradiction shows the result in the
first case.

For the second case, we assume α(x0) 6= {σ}. Then,
(
Wu(σ)r{σ}

)
∩α(x0) 6=

∅. Pick x1 ∈
(
Wu(σ) r {σ}

)
∩ α(x0). It follows from (1) that X(x1) ∈ Esx1

and then we get a contradiction as in the first case replacing x0 by x1. This
contradiction proves the claim. �X

Claim 3.5. If σ ∈ Sing(X), then M(X) ∩W ss(σ) = {σ}.

Revista Colombiana de Matemáticas
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Proof. Take x ∈ W ss(σ) r {σ}. Then, Esx = TxW
ss(σ). Moreover, since

W ss(σ) is an invariant, we obtain X(x) ∈ TxW ss(σ). We conclude that X(x) ∈
Esx for all x ∈W ss(σ) and now Claim 3.4 applies. �X

�X

This theorem implies the following two useful properties.

Proposition 3.6. Let X be a transitive sectional-Anosov flow C1 of M . Let
σ be a singularity of X in M(X) (so σ is Lorenz-like by Theorem 3.3). Then,
there is a singular-cross section Σt, Σb of σ in M such that.(

M(Y )
)
∩
(
∂hΣt ∪ ∂hΣb

)
= ∅,

for every Cr vector field Y close to X.

Proof. See [9]. �X

Let σ be a Lorenz-like singularity of a C1 vector field X in X 1(M), and Σt,
Σb be a singular cross-section of σ. Thus for σ we recall that,

dim
(
W ss
X (σ)

)
= s, then

dim
(
W s
X(σ)

)
= s+ 1, and dim

(
Wu
X(σ)

)
= n− s− 1,

dim(Σ∗) = s+ (n− s− 1) = n− 1.

(2)

Since Σ∗ = Bu[0, 1] × Bss[0, 1], we will set up a family of singular cross-
sections as follows: Given 0 < ∆ ≤ 1 small, we define Σ∗,∆ = Bu[0,∆] ×
Bss[0, 1], such that

l∗ ⊂ Σ∗,∆ ⊂ Σ∗, i.e.

(
l∗ = {0} ×Bss[0, 1]

)
⊂
(
Σ∗,∆ = Bu[0,∆]×Bss[0, 1]

)
⊂(

Σ∗ = Bu[0, 1]×Bss[0, 1]
)
,

where we fix a coordinate system (x∗, y∗) in Σ∗ (∗ = t, b). We will assume that
Σ∗ = Σ∗,1.

We will use this notation throughout of next lemma and the Theorem 1.4
proof.

Lemma 3.7. Let X be a transitive sectional-Anosov flow C1 of M . Let σ be a
singularity of X in M(X). Let Y n be a sequence of vector fields converging to
X in the C1 topology. Let On be a periodic orbit of Y n such that the sequence
{On : n ∈ N} accumulates on σ. If 0 < ∆ ≤ 1 and Σt, Σb is a singular
cross-section of σ, then there is n such that either

On ∩ int
(
Σt,∆

)
6= ∅

Volumen 49, Número 1, Año 2015
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or
On ∩ int

(
Σb,∆

)
6= ∅.

Proof. Since On accumulates on σ ∈ M(X) and M(X) is maximal invariant,
we have that On ⊂M(X) for all n large (recall Y n → X as n→∞). Let us fix
a fundamental domain Dε of the vector field’s flow Xt restricted to the local
stable manifold W s

loc(σ) ([12]) for ε > 0 as follows (See Figure 1):

Dε = Sε ∪ S−ε ∪ Cε,

where

Sε =
{
x ∈ Rs+1 : Σsi=1x

2
i + (xs+1 − ε)2 = 1, ∧, xs+1 ≥ ε

}
,

S−ε =
{
x ∈ Rs+1 : Σsi=1x

2
i + (xs+1 − ε)2 = 1, ∧, xs+1 ≤ −ε

}
,

Cε =
{
x ∈ Rs+1 : Σsi=1x

2
i = 1, ∧, xs+1 ∈ [−ε, ε]

}
.

Figure 1. The fundamental domain.

As W s
loc(σ) is (s+1)-dimensional and Dε is homeomorphic to the sphere (s)-

dimensional, by construction Dε intersects W ss
X (σ) in Cε|xs+1=0 that is a sphere

(s−1)-dimensional. Note that the orbits of all point in Cε|xs+1=0 together with
σ yields W ss

X (σ). In particular, Cε|xs+1=0 /∈ M(X) by Theorem 3.3. Also note
that for all ε, Dε is a fundamental domain.

Let D̃ε be a cross section of X such that W s
loc(σ)∩ D̃ε = Dε. It follows that

D̃ε is a (n−1)-cylinder, and so we can consider a system coordinated (x, s) with
x ∈ Dε and s ∈ Iu. Thus, by using this system coordinate we can construct a
family of singular cross-sections Σtδ, Σbδ (for all δ ∈ [−ε, ε]) by setting

Revista Colombiana de Matemáticas
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Σtδ =
{

(x, s) ∈ D̃ε : x ∈ Sδ, s ∈ Iu
}
,

Σbδ =
{

(x, s) ∈ D̃ε : x ∈ S−δ, s ∈ Iu
}
.

Due to the smooth variation of W ss
Y

(
σ(Y )

)
with respect to Y close to X we

can assume that σ(Y ) = σ and that W ss
loc,Y

(
σ(Y )

)
= W ss

loc(σ) for every Y close

to X. By choosing Dε so close to σ we can further assume that D̃ε is a cross-
section of Y , for every Y close to X. We claim that there is δ > 0 such that
the conclusion of the lemma holds for Σt = Σtδ and Σb = Σbδ. Indeed, we first
note that under the cylindrical coordinate system (x, s) one has Σ∗,∆ = Σ∗∆
for all 0 < ∆ ≤ δ (∗ = t, b). Otherwise, if the conclusion of the claim fails, it

implies that On intersects D̃ε r
(
Σt∆ ∪ Σb∆

)
for all ∆ > 0 small. Further, we

would find a sequence of periodic points such that pn ∈ On (for all n large)
and pn = (xn, sn) with xn ∈ C∆ and sn → 0 as n→∞. As ∆ is arbitrary and
sn → 0, we conclude that pn converges to a point in C∆|xs+1=0 by passing to a
subsequence if necessary, since if sn → 0, it implies that the intersection tends
to (s)-dimensional sphere Dε.

As On ⊂M(Y n), Y n → X and M(Y n) is arbitrarily close to M(X) (indeed,
in the C1-topology, these sets are at least to a distance ε) for all n (n ∈ N),
by using the above arguments, there exists a point z ∈

(
Cε|xs+1=0

)
such that

z ∈M(X). This contradicts Theorem 3.3 and the proof follows. �X

4. Proof of Theorem 1.4

We prove the theorem by contradiction. Let X be a transitive sectional-Anosov

flow C1 of M . Then, we suppose that there exists a sequence Xn C1

→ X such
that every Xn exhibits a non-singular attractor An ∈M(Xn) arbitrarily close
to M(X) and since An also is arbitrarily close to M(X), we can assume that An

belongs to M(X) for all n. It follows from the definition of attractor that each
An is compact, invariant and nonempty. As An is non-singular by hypothesis,
then the Lemma 3.1 and the Lemma 3.2 imply the following:

An is a hyperbolic attractor of type saddle of Xn for all n, and since
An is non-singular for all n, obviously An is not a singularity of Xn

for all n.

(3)

We denote by Sing(X) the set of singularities of X, Cl(A) the closure of
A, A ⊂ M . Moreover, given δ > 0 and A ⊂ M , we define Bδ(A) = {x ∈ M :
d(x,A) < δ} where d(·, ·) is the metric on M .

Now, let us consider the following lemma that, as in [9], is useful for the
higher dimension case. The lemma gives one description on behavior of the
attractors.

Volumen 49, Número 1, Año 2015
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Lemma 4.1. The sequence of attractors An accumulate on Sing(X), i.e.

Sing(X)
⋂
Cl

( ⋃
n∈N

An

)
6= ∅.

Proof. We prove the lemma by contradiction. With that purpose we suppose
that there is δ > 0, such that

Bδ
(
Sing(X)

)⋂( ⋃
n∈N

An

)
= ∅. (4)

In the same way as in [9], we define

H =
⋂
t∈R

Xt

(
M rBδ/2(Sing(X))

)
.

Note that by definition H is a invariant set and Sing(X)∩H = ∅. Additionally
H is a compact set as it is Λ and therefore H is a nonempty compact set (see
[9]). By using the Lemma 3.1 we conclude that H is hyperbolic set. So, we
denote by Es⊕EX ⊕Eu the corresponding hyperbolic splitting (see Definition
2.1).

By the stability of hyperbolic sets we can fix a neighborhood W of H and
ε > 0 such that if Y is a vector field Cr close to X and HY is a compact
invariant set of Y in W then:

HY is hyperbolic and its hyperbolic splitting Es,Y ⊕ EY ⊕ Eu,Y .
dim(Eu) = dim(Eu,Y ), dim(Es) = dim(Es,Y ). The manifolds
Wuu
Y (x, ε), x ∈ HY , have uniform size ε.

(5)

As Xn → X, we have that:⋂
t∈RX

n
t

(
M rBδ/2(Sing(X)

)
⊂W , for all n large;

An ⊂M rBδ/2
(
Sing(X)

)
for all n, and An ⊂W for all n large;

If xn ∈ An so that xn converges to some x ∈M , then x ∈ H;
If w ∈Wuu

Xn(xn, ε), the tangent vectors of Wuu
Xn(xn, ε) in this

point are in Eu,X
n

w ;
As xn → x, Wuu

Xn(xn, ε)→Wuu
X (x, ε) in the sense of C1

submanifolds [13] and ∠(Eu,X
n

, Eu) −→ 0, if n→∞ [9].

(6)

Thus, we fix an open set U ⊂Wuu
X (x, ε) containing the point x.

By (3), it follows that the periodic orbits of Xn in An are dense in An

(Anosov closing Lemma). Particularly, we can assume that each xn is a periodic
point of An. As M(X)∩ Sing(X) 6= ∅ and M(X) is a transitive set, it follows
from Lemma 3.2 that there exists q ∈ U , 0 < δ1 < δ2 <

δ
2 and T > 0 such that

XT (q) ∈ Bδ1
(
Sing(X)

)
.
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50 ANDRÉS MAURICIO LÓPEZ

By [12, Tubular Flow Box Theorem], there is an open set Vq containing q
such that XT (Vq) ⊂ Bδ1

(
Sing(X)

)
and as Xn → X it follows that

Xn
T (Vq) ⊂ Bδ2

(
Sing(X)

)
(7)

for all n large (see Figure 2).

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

Figure 2. Tubular Flow Box Theorem for XT (Vq).

In addition, Wuu
Xn(xn, ε) ∩ Vq 6= ∅ for n large enough, since Wuu

Xn(xn, ε) →
Wuu
X (x, ε) and q ∈ U ⊂Wuu

X (x, ε). Applying (7) to Xn for n large we have

Xn
T

(
Wuu
Xn(xn, ε)

)
∩Bδ2

(
Sing(X)

)
6= ∅.

In particular Wuu
Xn(xn, ε) ⊂Wu

Xn(xn). Then the invariance of Wu
Xn(xn) implies

Wu
Xn(xn) ∩Bδ/2

(
Sing(X)

)
6= ∅.

Observe that Wu
Xn(xn) ⊂ An since xn ∈ An and An is an attractor. We con-

clude that

An ∩Bδ
(
Sing(X)

)
6= ∅.

This contradicts (4) and the proof follows. �X
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Proof of Theorem 1.4. By Lemma 4.1 there exists σ ∈M(X) such that

σ ∈ Sing(X)
⋂
Cl

( ⋃
n∈N

An

)
.

By Theorem 3.3 we have that σ is Lorenz-like and satisfies

M(X) ∩W ss
X (σ) = {σ}.

By Proposition 3.6, we can choose Σt, Σb, singular-cross section for σ and
M(X) such that

M(X) ∩
(
∂hΣt ∪ ∂hΣb

)
= ∅.

As Xn → X we have that Σt, Σb is singular-cross section of Xn too, thus we
can assume that σ(Xn) = σ and lt ∪ lb ⊂ W s

Xn(σ) for all n (Implicit function
theorem).

We have that the splitting Es ⊕ Ec persists by small perturbations of X
[8]. The dominance condition (Definition 1.1-(2)) together with [6, Proposition
2.2] imply that for ∗ = t, b one has

TxΣ∗ ∩
(
Esx ⊕ EXx

)
= Txl

∗,

for all x ∈ l∗.
Denote by ∠(E,F ) the angle between two linear subspaces. The last equality

implies that there is ρ > 0 such that

∠
(
TxΣ∗ ∩ Ecx, Txl∗

)
> ρ,

for all x ∈ l∗ (∗ = t, b). In this way, since Ec,n → Ec as n→∞ we have for n
large enough that

∠
(
TxΣ∗ ∩ Ec,nx , Txl

∗) > ρ

2
, (8)

for all x ∈ l∗ (∗ = t, b).

As in the previous section we fix a coordinate system (x, y) = (x∗, y∗) in
Σ∗ such that

Σ∗ = Bu[0, 1]×Bss[0, 1], l∗ = {0} ×Bss[0, 1]

with respect to (x, y). Also, given ∆ > 0 we define Σ∗,∆ = Bu[0,∆]×Bss[0, 1].

Hereafter Π∗ : Σ∗ → Bu[0, 1] will be the projection such that Π∗(x, y) = x.
We will denote the line field in Σ∗,∆0 by Fn, where

Fnx = TxΣ∗ ∩ Ec,nx , x ∈ Σ∗,∆0 .

Remark 4.2. The continuity of Ec,n and (8) imply that there is ∆0 > 0 such
that for every n large the line Fn is transverse to Π∗. By this we mean that
Fn(z) is not tangent to the curves (Π∗)−1(c), for every c ∈ Bu[0,∆0].

Revista Colombiana de Matemáticas
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Now recall that An is a hyperbolic attractor of type saddle of Xn for all
n (see (3)) and that the periodic orbits of Xn in An are dense in An [13]. As
σ ∈ Cl

(
∪n∈N An

)
, we can find a sequence of periodic orbits (On)n∈N such

that On ∈ An and accumulating on σ. It follows from Lemma 3.7 applied to
Y n = Xn that there exists n0 ∈ N such that either

On0
∩ int

(
Σt,∆0

)
6= ∅ or On0

∩ int
(
Σb,∆0

)
6= ∅.

As On0
⊂ An0

we conclude that either

An0 ∩ int
(
Σt,∆0

)
6= ∅ or An0 ∩ int

(
Σb,∆0

)
6= ∅.

We shall assume that An0 ∩ int
(
Σt,∆0

)
6= ∅ (Analogous proof for the case

∗ = b). Note that ∂hΣt,∆0 ⊂ ∂hΣt by definition. Then, by Proposition 3.6 one
has

A ∩ ∂hΣt,∆0 = ∅.

As An0 and Σt,∆0 are compact non-empty sets, it follows that An0 ∩ Σt,∆0

is a compact nonempty subset of Σt,∆0 , and thus there exists p ∈ Σt,∆0 ∩ An0

such that

dist
(
Πt
(
Σt,∆0 ∩An0

)
, 0
)

= dist
(
Πt(p), 0

)
,

where dist denotes the distance in Bu[0,∆0]. Note that dist
(
Πt(p), 0

)
is the

minimum distance of Πt
(
Σt,∆0 ∩An0

)
to 0 in Bu[0,∆0].

As p ∈ An0 , we have that Wu
Xn0 (p) is a well defined submanifold, since that

An0 is hyperbolic set (see (3)), and dim(Ec) = dim(Ec,n0) (see (5)).

By domination Definition 1.1-(2), Tz
(
Wu
Xn0 (p)

)
= Ec,n0

z for every z ∈
Wu
Xn0 (p) and hence dim

(
Wu
Xn0 (p)

)
= (n − s − 1) (2). Next, we can ensure

that

Tz
(
Wu
Xn0 (p)

)
∩ TzΣt,∆0 = Ec,n0

z ∩ TzΣt,∆0 = Fn0
z

for every z ∈Wu
Xn0 (p) ∩ Σt,∆0 .

Note that the last equality shows that Wu
Xn0 (p) ∩ Σt,∆0 is transversal, and

therefore there exists some compact submanifold inside of Wu
Xn0 (p) ∩ Σt,∆0 .

We denote this compact submanifold by Kn0 . Thus by construction p ∈ Kn0

(see (3)) and Kn0 is tangent to Fn0 , since Kn0 ⊂Wu
Xn0 (p) ∩ Σt,∆0 .

Remark 4.3. By construction we have that dim
(
Bu[0,∆0]

)
= (n − s − 1),

since dim(Ec,n0) = dim
(
Wu
Xn0 (p)

)
= (n− s− 1).

We have that Wu
Xn0 (p)∩Σt,∆0 is a submanifold of M , since Wu

Xn0 (p)∩Σt,∆0

is transversal and nonempty and Wu
Xn0 (p), Σt,∆0 are submanifolds of M . Note

that dim
(
Wu
Xn0 (p)

)
+ dim(Σt,∆0) ≥ n.
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Figure 3. The projection Πt(Kn0) = Kn0
1 .

Since Fn0 is transverse to Πt, one has that Kn0 is transverse to Πt (i.e. Kn0

is transverse to the curves (Πt)−1(c), for every c ∈ Bu[0,∆0]). Let us denote the
image of Kn1 by the projection Πt in Bu[0,∆0] by Kn1

1 , i.e., Πt(Kn1) = Kn1
1 .

Note that Kn1
1 ⊂ Bu[0,∆0] and Πt(p) ∈ int(Kn1

1 ) (See Figure 3).

As dim(Kn0
1 ) = dim

(
Bu[0,∆0]

)
(By Remark 4.3), there exists z0 ∈ Kn0

such that
dist

(
Πt(z0), 0

)
< dist

(
Πt(p), 0

)
.

It follows from the property of attractor that Wuu
Xn0 (p, ε) ⊂Wu

Xn0 (p) ⊂ An0
.

Thus, Kn0 ⊂ Σt,∆0 ∩An0 and p ∈ An0 .

Since, by Proposition 3.6 An0 ∩ ∂hΣt,∆0 = ∅ and, by Remark 4.3
dim

(
Kn0

1

)
= dim

(
Bu[0,∆0]

)
, we conclude that

dist
(
Πt
(
Σt,∆0 ∩An0

)
, 0
)

= 0.

Given that An0 is closed, this last equality implies

An0 ∩ lt 6= ∅.

Since lt ⊂ W s
Xn0 (σ) and An0 is closed invariant set for Xn0 we conclude that

σ ∈ An0 . We have proved that An0 contains a singularity of Xn0 . But An0 is a
hyperbolic attractor of Xn0 by the Property (3) and this leads to An0 = {σ}.
Finally, using the Property (3) we obtain a contradiction and the proof follows.

�X
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[8] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, vol. 583,
Springer Berlin, 1977.

[9] C. A. Morales, The Explosion of Singular-Hyperbolic Attractors, Ergodic
Theory and Dynamical Systems 24 (2004), no. 2, 577–591.

[10] , Sectional-Anosov Flows, Monatshefte für Mathematik 159 (2010),
no. 3, 253–260.
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