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Abstract. We show the existence and orthogonality of wave operators nat-
urally associated to a compatible Laplacian on a complete manifold with a
corner of codimension 2. In fact, we prove asymptotic completeness i.e. that
the image of these wave operators is equal to the space of absolutely continu-
ous states of the compatible Laplacian. We achieve this last result using time
dependent methods coming from many-body Schrödinger equations.
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Resumen. Demostramos la existencia y ortogonalidad de operadores de onda
naturalmente asociados a un Laplaciano compatible sobre una variedad com-
pleta con una esquina de codimensión 2. De hecho, probamos su completitud
asintótica, es decir que la imagen de esos operadores de onda es igual al espacio
de estados absolutamente cont́ınuos del Laplaciano compatible. Logramos esto
último usando métodos dependientes del tiempo que provienen del estudio de
operadores de Schrödinger de varios cuerpos.

Palabras y frases clave. Teoŕıa de dispersión cuántica, variedades con esquinas,
operadores de onda, ecuaciones de Schrödinger de varios cuerpos.

1. Introduction

In this paper we use analytic tools to tackle problems of quantum scattering
theory naturally associated to geometric Laplacians, at the same time this
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makes explicit the interactions between the geometry of the manifold and the
quantum dynamics of the Laplacians.

Classical mechanics tells us that the time-asymptotic behavior of n-particles
interacting with a pairwise potential of short range can be described by clusters
whose centers of mass do not “feel” each other. In the papers [22] and [23] it
was proved that a similar phenomenon occurs in quantum mechanics for many-
particle Schrödinger operators with short range potentials. These proofs were
time-dependent and geometric in nature, and they were initially developed in
the papers [7] and [26]. In this article we prove asymptotic completeness for
compatible Laplacians on complete manifolds with corners of codimension 2,
which we abbreviate c.m.w.c.2 through the text, by adapting the proof of [26]
as explained in [11]. Even though the ideas are adapted in a quite direct way, we
believe that this article provides a deeper understanding of the spectral theory
of compatible Laplacians on c.m.w.c.2 and of the geometric insight behind the
proof of the results in [7] and [26], since the spectral analysis of Schrödinger
operators and geometric Laplacians are analogous but not exactly the same.

The motivation to study these manifolds is the same as in [3] and [4]: they
work as toy models for understanding singularities as those that appear on
symmetric spaces of rank greater than 0; they are natural examples of com-
plete manifolds whose spectral theory is well known, since they are a natural
geometric generalization of the Cartesian products of complete manifolds with
cylindrical ends. This last class of manifolds is very important in the study
of the index theorems of the seminal paper [1] and we believe that a deeper
understanding of the spectral theory of compatible Laplacians on c.m.w.c.2
(see Section 1.1) will shed light on the nature of the generalization of such
theorems, specifically in order to complete the method applied in [16]. Gener-
alizations of the index theorems of [1] to c.m.w.c.2 were obtained in [10] using
surgery methods, we believe that these formulas are related to our scattering
operator (see (26)). Finally, our work shows a clear analogy between many–
particle Schrödinger operators and the compatible Laplacians on c.m.w.c.2,
this analogy provides a deeper understanding of the geometric nature of the
spectral theory of the former operators.

1.1. Compatible Laplacians on Complete Manifolds with a Corner
of Codimension 2

Following [16], we explain the notions of compact and complete manifolds with
a corner of codimension 2 as is done in [3] and [4]. Let X0 be a compact
oriented Riemannian manifold with boundary M and suppose that there exists
a hypersurface Y of M that divides M in two manifolds with boundary M1 and
M2, i.e. M = M1 ∪M2 and Y = M1 ∩M2. Assume also that a neighborhood
of Y in M is diffeomorphic to Y × (−ε, ε). We say that the manifold X0 has
a corner of codimension 2 if X0 is endowed with a Riemannian metric g
that is a product metric on small neighborhoods, Mi × (−ε, 0] of the Mi’s and

Volumen 49, Número 1, Año 2015



i
i

“v49n1a06-Cano” — 2015/6/30 — 10:10 — page 107 — #3 i
i

i
i

i
i

QUANTUM SCATTERING THEORY ON MANIFOLDS WITH CORNERS 107

on a small neighborhood Y × (−ε, 0]2 of the corner Y . If X0 has a corner of
codimension 2, we say that X0 is a compact manifold with a corner of
codimension 2 (see Figure 1).

Figure 1. Compact manifold with a corner of codimension 2.

Example 1.1. For i = 1, 2, let Mi be a compact oriented Riemannian manifold
with boundary ∂Mi := Yi. Suppose that on a neighborhood Yi × (−ε, 0] of Yi
the Riemannian metric gi of Mi is a product metric i.e. gi := gYi + du ⊗ du
where u is the coordinate associated to the interval (−ε, 0] in Yi × (−ε, 0] and
gYi is a Riemannian metric on Yi independent of u. Then the Cartesian product
M1 ×M2 is a compact manifold with a corner of codimension 2.

Throughout this article we will denote R+ := [0,∞). From the compact
manifold with a corner X0 we construct a complete manifold X. Let Zi :=
Mi ∪Y (R+×Y ), i=1,2, where the bottom {0}×Y of the half-cylinder R+×Y
is identified with ∂Mi = Y . Then Zi is a complete manifold with cylindrical
end. Let us define the manifolds

W1 := X0 ∪M2

(
R+ ×M2

)
and W2 := X0 ∪M1

(
R+ ×M1

)
.

Observe that Wi is an n-dimensional manifold with boundary Zi that can be
equipped with a Riemannian metric compatible with the product Riemannian
metric of R+ ×M2 and the Riemannian metric of X0. Let

X := W1 ∪Z1

(
R+ × Z1

)
= W2 ∪Z2

(
R+ × Z2

)
,

where we identify {0} × Zi with Zi, the boundary of Wi.

Figure 2 is a sketch, in particular the lines that enclose Figure 2 should not
be thought as boundaries.

Let T ≥ 0 be given and set Zi,T := Mi ∪Y
(
[0, T ] × Y

)
, for i = 1, 2,

where {0} × Y is identified with Y , the boundary of Mi. Zi,T is a family of
manifolds with boundary which exhausts Zi. Next we attach to X0 the manifold
[0, T ]×M1 by identifying {0}×M1 with M1. The resulting manifold W2,T is a
compact manifold with a corner of codimension 2, whose boundary is the union
of M1 and Z2,T . The manifold X has associated a natural exhaustion given by

XT := W2,T ∪Z2,T

(
[0, T ]× Z2,T

)
, T ≥ 0, (1)

Revista Colombiana de Matemáticas
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Figure 2. Sketch of a complete manifold with a corner of codimension 2.

Figure 3. XT , element of the exhaustion of X.

where we identify Z2,T with {0} × Z2,T (see Figure 3).

For each T ∈ [0,∞), X has two submanifolds with cylindrical ends, namely(
{T}×Mi

)
∪
(
{T}× [0,∞)×Y

)
, for i = 1, 2. Here we are considering that the

T is related with the coordinate ui and the interval [0,∞) with the coordinate
uj for i, j ∈ {1, 2}, i 6= j (see Remark 1.2 below). All these submanifolds are
isometric in the Riemannian sense to Zi and we identify their disjoint union
with the Cartesian product Zi × [0,∞).

Let E be a Hermitian vector bundle over a c.m.w.c.2, X. Let ∆ be a gener-
alized Laplacian acting on C∞(X,E), the sections of the vector bundle E. The
operator ∆ is a compatible Laplacian over X if the following properties are
satisfied:

i) There exists a Hermitian vector bundle Ei over Zi such that E|R+×Zi is
the pullback of Ei under the projection π : R+ × Zi → Zi, for i = 1, 2.
We suppose also that the Hermitian metric of E is the pullback of the

Hermitian metric of Ei. On R+×Zi, we have ∆ = − ∂2

∂u2
i

+∆Zi , where ∆Zi

is a compatible Laplacian acting on C∞(Zi, Ei).

Volumen 49, Número 1, Año 2015
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ii) There exists a Hermitian vector bundle S over Y such that E|R2
+×Y is the

pullback of S under the projection π : R2
+ × Y → Y . We assume also

that the Hermitian product on E|R2
+×Y is the pullback of the Hermitian

product on S. Finally we suppose that the operator ∆ restricted to R2
+×Y

satisfies ∆ = − ∂2

∂u2
1
− ∂2

∂u2
2

+∆Y , where ∆Y is a generalized Laplacian acting

on C∞(Y, S).

Examples of compatible Laplacians are given by the Laplacian acting on
forms and Laplacians associated to compatible Dirac operators (see [16]), they
satisfy conditions i) and ii) due to the product structure of the Riemannian
metric on the submanifolds Y × R2

+ and Zi × R+. Since X is a manifold with
bounded geometry and the vector bundle E has bounded Hermitian metric,
the operator ∆ : C∞c (X,E) ⊂ L2(X,E) → L2(X,E) is essentially self-adjoint
(see [21, Corollary 4.2]). Similarly ∆Zi : C∞c (Zi, Ei) ⊂ L2(Zi, Ei)→ L2(Zi, Ei)
is also essentially self-adjoint for i = 1, 2.

Remark 1.2. If j, k ∈ {1, 2} and j 6= k, then we will denote by uj the coor-
dinate in R+ in the cylinder Y ×R+ of the complete manifold with cylindrical
end Zk.

Definition 1.3.

• Let H and H(i) be the self-adjoint extensions of ∆ : C∞c (X,E) →
L2(X,E) and ∆Zi : C∞c (Zi, Ei)→ L2(Zi, Ei) respectively.

• Let bi be the self-adjoint extension of − d2

du2
i

: C∞c
(
R+

)
→ L2

(
R+

)
ob-

tained by imposing Dirichlet boundary conditions at 0.

• Let Hi be the self-adjoint operator bi⊗Id+Id⊗H(i) acting on L2
(
R+

)
⊗

L2(Zi, Ei).

• Let H(3) be the self-adjoint operator associated to the essentially self-
adjoint operator ∆Y : C∞(Y, S) ⊂ L2(Y, S) → L2(Y, S) and let H3 be
the self-adjoint operator H3 := b1⊗Id⊗Id+Id⊗b2⊗Id+Id⊗Id⊗H(3)

acting on L2
(
R+

)
⊗ L2

(
R+

)
⊗ L2(Y, S).

• The operators Hi are called channel operators for i = 1, 2, 3.

The self-adjoint operators H1 and H2 have a free channel of dimension 1
(associated to b1 and b2, respectively); the operator H3 has a free channel of
dimension 2 (associated to b1 ⊗ Id⊗ Id+ Id⊗ b2 ⊗ Id). In some parts of this
text we make an abuse of notation by denoting H, Hi, and H(i) the Laplacians
acting on distributions and the self-adjoint operators previously defined.

It is known that the compatible Laplacian H(k) decomposes the Hilbert
space L2(Zk, E) into the orthogonal H(k)-invariant subspaces L2

pp(Zk, E) and

Revista Colombiana de Matemáticas
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L2
ac(Zk, E) associated to pure point states and absolutely continuous states

(see [9] [13]). We have H(k) = H
(k)
pp ⊕ H

(k)
ac on L2(Zk, E) = L2

pp(Zk, E) ⊕
L2
ac(Zk, E) where H

(k)
pp and H

(k)
ac are self-adjoint operators acting on L2

pp(Zk, E)

and L2
ac(Zk, E). We define the self-adjoint operators Hk,pp := bk⊗ 1 + 1⊗H(k)

pp

acting on L2
(
R+

)
⊗L2

pp(Zk, Ek), for k = 1, 2, that together with H will define
important wave-operators in this article. We notice that the operators Hk,pp

and H
(k)
pp are different operators; to see that we observe that they act in dif-

ferent Hilbert spaces, Hk,pp has only absolutely continuous spectrum and H
(k)
pp

has only pure point spectrum. Similarly, we define the self-adjoint operators

Hk,ac := bk ⊗ 1 + 1 ⊗ H
(k)
ac acting on L2

(
R+

)
⊗ L2

ac(Zk, Ek). The operators
Hk,ac together with H define important wave–operators (see Theorem 1.4).

1.2. Main Results

Our first result is

Theorem 1.4.

1) For k = 1, 2 the following strong limits exist

W±
(
H,Hk,pp

)
:= lim

t→∓∞
eitHe−itHk,pp ,

W±(H,Hk,ac) := lim
t→∓∞

eitHe−itHk,ac ,

W±(H,H3) := lim
t→∓∞

eitHe−itH3 ,

W±(Hk,ac, H3) := lim
t→∓∞

eitHk,ace−itH3 .

2) The images of the operators W±
(
H,H1,pp

)
, W±

(
H,H2,pp

)
and

W±(H,H3) are pairwise orthogonal.

We call the operators defined in part 1) of the theorem wave operators.

Definition 1.5. We say that the wave operators, W±(H,H1,pp), W±(H,H2,pp)
and W±(H,H3), are asymptotically complete if for all ψ ∈ L2

ac(X,E) there
exists ϕk ∈ L2

pp(Zk, Ek) ⊗ L2
(
R+

)
, for k = 1, 2, and ϕ3 ∈ L2(Y, S) ⊗ L2

(
R2

+

)
such that

ψ = W±(H,H3)ϕ3 +

2∑
k=1

W±
(
H,Hk,pp

)
ϕk. (2)

Our second result is

Theorem 1.6. The wave operators W±
(
H,H1,pp

)
, W±

(
H,H2,pp

)
and W±(H,H3)

are asymptotically complete.

Volumen 49, Número 1, Año 2015
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Section 2 provides the first relation between the quantum dynamics of the
compatible Laplacian and the geometry of X; Theorem 1.4 is proved in Sec-
tion 3 using stationary phase methods. We prove Theorem 1.6 in Section 5
based on the methods of [26]. In Appendix A we give a summary of the sta-
tionary phase methods used in Section 3.

1.3. Related Literature

The literature about quantum scattering theory on open manifolds is large.
For that reason we restrict our bibliography to some recent articles on the
subject, where the reader can find references to classic or basic articles, or to
articles that we consider directly related to the topics of this article. Articles on
quantum scattering theory on manifolds with cylindrical ends are [6, 18, 20];
on manifolds asymptotically Euclidean [15]; on SL(3)/SO(3) [14]; on homoge-
neous spaces associated to finite groups on [2]; connections between scattering
theory on compact asymptotically Einstein manifolds and conformal geometry
are studied in [8]; quantum scattering theory on more general open manifolds
can be found in [5, 17]. Relations between the geometry of manifolds with cor-
ners and the quantum dynamics of many–particle Schrödinger operators has
been treated also in [25] but the topics are different to ours, and in particular
the operators studied there are many–particle Schrödinger operators that are
essentially perturbations via potentials of the Laplacian on Rn; here we treat
perturbations associated to the geometry and not to a potential. In [16] the
spectral theory of compatible Laplacians on c.m.w.c.2 is studied near 0 under
the hypothesis that the compatible Laplacian on the corner has kernel 0. In
this article we eliminate this hypothesis and study the whole spectrum of the
compatible Laplacians.

2. Ruelle’s Theorem

In this section we formulate Ruelle’s theorem in the context of compatible
Laplacians on complete manifolds with a corner of codimension 2. Our aim
is to give a first relation between the quantum dynamics of the compatible
Laplacian and the geometry of the manifold X.

Let A be a self-adjoint operator acting on a Hilbert space H . We denote
Hpp(A) the subspace spanned by all eigenvectors of A, Hc(A) := (Hpp)

⊥(A),
Hac(A), Hsc(A) will denote the absolutely continuous and singular continuous
subspaces of H associated to A.

Theorem 2.1. (cf. [11, page 3452]) Let A be a self-adjoint operator acting on
L2(X,E) and suppose that A satisfies

χK(A− λ)−1 is a compact operator, for any compact subset K of X, (3)

Revista Colombiana de Matemáticas



i
i

“v49n1a06-Cano” — 2015/6/30 — 10:10 — page 112 — #8 i
i

i
i

i
i

112 LEONARDO A. CANO G.

for each χK ∈ C∞c (X) such that χK = 1 restricted to K. Then:

ϕ ∈Hpp(A)⇔ lim
R→∞

∥∥(1− χR)eiAtϕ
∥∥ = 0, uniformly in 0 ≤ t <∞.

ϕ ∈Hc(A)⇔ lim
t→∞

t−1

∫ t

0

∥∥ηReiAsϕ∥∥2
ds = 0, for any R <∞,

where ηR is any function in C∞c (X) that is equal to 1 on XR, the compact
manifold with a corner of codimension 2 defined in (1).

It follows from classical results in global analysis (see for example [21]) that
the compatible Laplacian H satisfies (3). Then, intuitively, Theorem 2.1 implies
that the continuous states associated to H are moving away of compact sets as
t→∞. Theorems 1.4 and 1.6 describe in more detail the asymptotic behavior
of this escape.

3. Existence of the Wave Operators

In this section we prove part 1) of Theorem 1.4 using Cook’s criterion as ex-
pressed in the following simple lemma of abstract scattering theory. We will
make use also of stationary phase methods which are summarized in Ap-
pendix A.

Lemma 3.1. [27, page 84] Let B and B0 be self-adjoint operators acting on
Hilbert spaces H and H0 respectively. Let J : H0 →H be a bounded operator
that takes the domain Dom(B0) into the domain Dom(B). Suppose that for
some D0 ⊂ Dom(B0) ∩H0,ac(B0) dense in H0,ac(B0) and for any f ∈ D0,∫ ±∞

0

∥∥(BJ −JB0) exp(∓itB0)f
∥∥ dt <∞. (4)

Then W±(B,B0,J ) := s− limt→∞ exp(±itB)J exp(∓itB0) exists.

We prove first the existence of W±
(
H,Hk,pp

)
, for k ∈ {1, 2}.

Let {ϕk,j}Nkj=1 be an orthonormal collection of L2–eigenfunctions of the op-

erator H
(k)
pp that generates L2

pp(Zk, Ek) for k = 1, 2. Observe that N1 and N2

denote the number of L2–eigenvalues of the Laplacians H(1) and H(2) (counted
with multiplicity). As pointed out in [3] and [4], the number of L2–eigenvalues
of a Laplacian on a manifold with a cylindrical end can be 0, finite or in-
finite. Without lost of generality for our computations we will assume that
there are infinite L2–eigenvalues that is N1 = N2 = ∞. Given a ∈ L2

(
R+

)
,

â(u) :=
∫∞

0
a(v) sin v dv will denote the sine transform of a. Let κ ∈ C∞

(
R+

)
be such that κ(u) = 0 for u ≤ 2 and κ(u) = 1 for u > 3. Let us define
κk ∈ C∞

(
Zk × R+

)
by κk(zk, uk) := κ(uk) for k = 1, 2 and extend it to

C∞(X) by making it 0 on X r
(
Zk × R+

)
. We will show that we can apply

Volumen 49, Número 1, Año 2015
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Lemma 3.1 taking J = κk, B0 = Hk,pp and B = H. It is easy to see that
κk takes Dom(Hk,pp) into Dom(H). Let us denote by S

(
(0,∞)

)
the set of

C∞–functions of [0,∞) whose derivatives decrease faster than any polynomial
and such that all their derivatives at 0 are equal to 0. We take

D0 :=
{
gϕk,j : j ∈ N, g ∈ S

(
(0,∞)

)
and ĝ ∈ C∞c

(
(0,∞)

)}
.

Since S
(
(0,∞)

)
is dense in L2

(
R+

)
, it is easy to see that the set D0 is

dense in Dom
(
Hk,pp

)
.

To prove (4) of Lemma 3.1 observe that for f ∈ D0∥∥(Hκk − κkHk,pp

)
e∓itHk,ppf

∥∥
≤
∥∥∥∥ ∂2

∂u2
k

(κk)e∓itHk,ppf

∥∥∥∥+ 2

∥∥∥∥ ∂

∂uk
(κk)

∂

∂uk
e∓itHk,ppf

∥∥∥∥. (5)

If f = gϕk,j ∈ D0, we have∥∥∥∥ ∂2

∂u2
k

(κk)e∓itHk,ppf

∥∥∥∥ =

∥∥∥∥ d2

du2
k

(κk)e∓itbkg

∥∥∥∥
L2
(
R+

). (6)

We can use Appendix A to see
∫∞
−∞

∥∥∥ d2

du2
k

(κk)e∓itbkg
∥∥∥
L2
(
R+

) dt < ∞. To

estimate ∂
∂uk

(κk) ∂
∂uk

e∓itHk,ppf , observe that∥∥∥∥ ∂

∂uk
(κk)

∂

∂uk
e∓itHk,ppf

∥∥∥∥ =

∥∥∥∥ d

duk
(κk)e∓itbk

d

duk
g

∥∥∥∥
L2
(
R+

), (7)

then we can apply again the methods of Appendix A. Finally, Lemma 3.1 proves
the existence of W±

(
H,Hk,pp, κk

)
.

Proposition 3.2. W±
(
H,Hk,pp

)
exists and W±

(
H,Hk,pp, κk

)
=

W±
(
H,Hk,pp

)
.

Proof. Observe that for f = gϕk,j ∈ D0, we have
∥∥eitH(1 − κk)eitHk,ppf

∥∥ =∥∥(1−κk)eitbkg
∥∥
L2(R+,duk)

. Since 1−κk as a function of uk has compact support,

Appendix A implies s− limt→∞ eitH(1− κk)eitHk,pp = 0. tuX

To prove the existence of W (H,H3) and W (H,Hk,ac) we proceed analo-
gously. Let {φn}∞n=0 be an orthonormal collection of L2–eigenfunctions of the
operator H(3) that generates L2(Y, S). We take as dense sets

D0,H3
:={

fgφn : f ∈ S
(
(0,∞)u1

)
, g ∈ S

(
(0,∞)u2

)
and f̂ , ĝ ∈ C∞c

(
(0,∞)

)}
,

Revista Colombiana de Matemáticas
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and

D0,Hk,ac :={
f(zk)g(uk) : f ∈ Dom

(
H(k)
ac

)
, g ∈ S

(
(0,∞)

)
and ĝ ∈ C∞c

(
(0,∞)

)}
.

It is easy to see that (5)–(7)) generalize and we can apply Lemma 3.1 to
prove the existence of W (H,H3, κ1κ2) and W (H,Hk,ac, κk). Finally, there are
natural generalizations of Proposition 3.2 that show the existence of W (H,H3)
and W (H,Hk,ac).

The existence of W±(H1,ac, H3) follows from the existence of W±

(
H

(1)
ac , b2+

H(3)
)

(see [9]) and the following equality

W±

(
b1 +H(1)

ac , b1 + b2 +H(3)
)

= IdL2(R+,du1) ⊗W±
(
H(1)
ac , b2 +H(3)

)
.

4. Orthogonality of the Wave Operators

We prove part 2) of Theorem 1.4.

4.1. Orthogonality of W (H,H1,pp) and W (H,H2,pp)

In this section we prove that for all fk ∈ L2
pp(Zk, Ek) ⊗ L2

(
R+

)
, k = 1, 2, the

following equality holds〈
W±

(
H,H1,pp

)
f1,W±

(
H,H2,pp

)
f2

〉
L2(X,E)

= 0. (8)

We observe that〈
W±

(
H,H1,pp

)
f1,W±

(
H,H2,pp

)
f2

〉
L2(X,E)

= lim
t→∞

〈
e∓itH1,ppf1, e

∓itH2,ppf2

〉
L2(X,E)

,

hence (8) is satisfied as a consequence of the following lemma.

Lemma 4.1. For all fk ∈ L2
pp(Zk, Ek)⊗ L2

(
R+

)
, k = 1, 2,

lim
t→∞

〈
e∓itH1,ppf1, e

∓itH2,ppf2

〉
L2(X,E)

= 0.

Proof. By continuity of the bilinear form

(f1, f2) 7→
〈
W±(H,H1,pp)f1,W±(H,H2,pp)f2

〉
L2(X,E)

,

it is enough to prove the lemma for the dense set of functions of the form fk =
akϕk, where ϕk ∈ L2(Zk, Ek) is an L2-eigenfunction of H(k) with eigenvalue
γk, ak ∈ S

(
(0,∞)

)
and âk ∈ C∞c

(
(0,∞)

)
.
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In the next computation we use the notation given in definition 1.3 and
explained in Remark 1.2,∣∣∣〈e∓itH1,ppf1, e

∓itH2,ppf2

〉
L2(X,E)

∣∣∣
≤
∫ ∣∣∣∣〈 ∫ ∞

0

ϕ1(u2, y)·e±itb2(a2)(u2) du2,∫ ∞
0

ϕ2(u1, y)·e±itb1(a1)(u1)du1

〉∣∣∣∣ dvol(y), (9)

where the Hermitian product inside the integrals on the right–hand side of the
inequality is the Hermitian product of the vector bundle S → Y . It is well
known that there exists C ∈ R such that

∣∣e±itbk(ak)(uk)
∣∣ ≤ Ct−1/2, for all

t > 1 and for all uk ∈ R+ (see [19, Corollary, page 41]). Cauchy–Schwartz
applied to the last term of (9) and the fact |ϕk(uj , y)| ≤ Ce−cu1 for some c > 0
(see [13, Lemma 1.36]) finish the proof of the lemma. tuX

4.2. Im
(
W±

(
H,H3

))
is orthogonal to Im

(
W±

(
H,Hk,pp

))
Without lost of generality we prove the orthogonality of Im

(
W±(H,H3)

)
and

Im
(
W±

(
H,H1,pp

))
. Let φ ∈ L2(Y, S), ϕ ∈ L2

pp(Z1, E1), c ∈ L2
(
R+, du1

)
and

ai ∈ L2
(
R+, dui

)
for i = 1, 2. It is enough to prove that〈

W±(H,H3)(a1a2φ),W±
(
H,H1,pp

)
(cϕ)

〉
L2(X,E)

= 0. (10)

We have∣∣∣〈e±itH3
(
a1a2φ

)
, e±itH1,pp(cϕ)

〉
L2(X,E)

∣∣∣
≤
∣∣∣∣〈e±it(b2+H(3))(a2φ), e±itH

(1)
pp (ϕ)

〉
L2(Z1,E1)

∣∣∣∣. (11)

Since the wave operator W±
(
H(1), b2 + H(3)

)
is complete, we can find ψ ∈

L2
ac(Z1, E1) such that

lim
t→∞

∥∥∥e±it(b2+H(3))(a2φ)− e±itH
(1)

ψ
∥∥∥
L2(Z1,E1)

= 0.

This together with (11) imply (10), since L2
ac(Z1, E1) is orthogonal to L2

pp(Z1, E1).

5. Asymptotic Clustering: A Time Dependent Approach

In this section we prove asymptotic completeness (Theorem 1.6) using a time
dependent approach. We follow closely [11], and as in this article our main tools
will be Mourre’s inequality and the Yafaev functions (see Section 5.2) properly
adapted to the context of compatible Laplacians on c.m.w.c.2.
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5.1. Mourre Estimate for Compatible Laplacians

First we state Mourre’s inequality which will be used to prove asymptotic
completeness. It was developed in [4] and used to prove the absence of singular
continuous spectrum of compatible Laplacians on c.m.w.c.2 and also to prove
that the pure point spectrum of these operators accumulates only at thresholds.
Let κ ∈ C∞

(
R+

)
be such that κ(u) = 0 for u ≤ 2 and κ(u) = 1 for u > 3.

Let us define κk ∈ C∞
(
Zk × R+

)
by κk(zk, uk) := κ(uk) for k = 1, 2 and the

function r2 ∈ C∞
(
R2

+

)
by r2(u1, u2) := κ(u1)u2

1 + κ(u2)u2
2. The function r2

induces a function on Y × R2
+ by (y, u1, u2) 7→ r2(u1, u2) and this function

extends naturally to X by making it 0 out of Y ×R2
+, by an abuse of notation

we denote this new function by r2 too. We extend κ1 and κ2 to X similarly by
making them 0 out of Z1×R+ and Z2×R+ respectively. Let us define the first
order differential operator A by

A := i[H, r2].

We define the set of thresholds of H, τ(H), by

τ(H) := σpp

(
H(1)

)
∪ σpp

(
H(2)

)
∪ σpp

(
H(3)

)
.

Let Σ := min τ(H), such a minimum exists because H(1), H(2) and H(3) are
bounded from below (see [13, Satz 1.27]) and hence the three sets on the right
are discrete and with a minimum. For λ ∈ R, define the number

θ(λ) :=

{
0, for λ ≤ Σ;

inf{λ− γ : γ ∈ τ(H), γ < λ}, for λ > Σ.

The next theorem is a generalization of Mourre’s inequality to c.m.w.c.2
that was developed in [4].

Theorem 5.1. [4, theorem 5] Given λ ∈ R and ε > 0, there exist an open
interval I 3 λ, and an H-compact operator K such that

EI(H) i[H,A]EI(H) ≥
(
θ(λ)− ε

)
EI(H) +K,

where EI(H) denotes the spectral projection of the operator H on the interval
I ⊂ R.

5.2. Graf-Yafaev Functions

Consider the Schrödinger operators
∑2
i=1

(
− ∂2

∂u2
i

+Vi

)
acting on L2

(
R2
)

where

Vi ∈ C∞
(
R2
)
, Vi depends only of the variable ui and is compactly supported in

this variable. Our Graf-Yafaev functions are constructed in analogy to the Graf–
Yafaev functions associated to these Schrödinger operators following [11, 12]
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and [26]. In this section we will omit some proofs, because we consider that the
analogy is direct once the Graf–Yafaev functions are constructed.

Given ε > 0, we take ε−0 := l0 ≤ ε0 ≤ l0 + ε =: ε−0 , ε−3 := 2ε2 < ε3 < 3ε2 =:
ε+

3 , and ε−i := 2ε < εi < 3ε := ε+
i for i = 1, 2. We call the vectors ε := (ε1, ε2, ε3)

ε–admissible. From now on we will denote
∣∣(u1, u2)

∣∣ :=
√
u2

1 + u2
2.

Let χ be the characteristic function of the interval [0,∞). The functions
g(1), g(2) and g(3) defined below are analogous to the functions m(a) in
[26, equation 3.9].

g(0)(ε, x) :=



ε0χ
(
ε0 −max

{
(1 + ε1)u1, (1 + ε2)u2, (1 + ε3)|u|

})
,

for x = (y, u1, u2) ∈ Y × R2
+;

ε0, if x = (u1, z1) ∈
[
0, ε0

1+ε1

]
× Z1,0;

ε0, if x = (u2, z2) ∈
[
0, ε0

1+ε2

]
× Z2,0;

ε0, if x ∈ X0;

0, otherwise.

g(1)(ε, x) :=
(1 + ε1)u1χ

(
(1 + ε1)u1 −max

{
ε0, (1 + ε2)u2, (1 + ε3) | (u1, u2)|

})
,

for x = (y, u1, u2) ∈ Y × R2
+;

(1 + ε1)u1, for x = (z1, u1) ∈ Z1,0 ×
[
ε0

1+ε1
,∞
)
;

0, otherwise.

g(2)(ε, x) :=
(1 + ε2)u2χ

(
(1 + ε2)u2 −max

{
ε0, (1 + ε1)u1, (1 + ε3)|(u1, u2)|

})
,

for x = (y, u1, u2) ∈ Y × R2
+;

(1 + ε2)u2, for x = (z2, u2) ∈ Z2,0 ×
[
ε0

1+ε2
,∞
)
;

0, otherwise.

g(3)(ε, x) :=
(1 + ε3)|(u1, u2)|χ

(
(1 + ε3) |(u1, u2)| −max

{
ε0, (1 + ε2)u2, (1 + ε1)u1

})
,

for x = (y, u1, u2) ∈ Y × R2
+;

0, otherwise.

The functions g(i)(x, ε) could be defined more directly in our case, for
example for (y, u1, u2) ∈ Y × R2

+, ε ε–admissible and ε small enough,
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g(1)(ε, y, u1, u2) = (1 + ε1)u1 if and only if (1 + ε1)u1 is greater or equal than
ε0, (1 + ε2)u2 and (1 + ε3)|(u1, u2)|, and g(1)(ε, y, u1, u2) = 0 otherwise. How-
ever we used the previous definitions because we would like to point out that
the Graf–Yafaev method could generalize to manifolds with corners of higher
codimension. Let us define the function

g(x, ε) :=


(1 + εi)ui, for x = (zi, ui) ∈ Zi,0 × R+;

max
{
ε0, (1 + ε1)u1, (1 + ε2)u2, (1 + ε3)|u|

}
,

for x = (y, u1, u2) ∈ Y × R2
+;

ε0, for x ∈ X0.

We observe that

g(x, ε) =

3∑
i=0

g(i)(x, ε). (12)

The next functions will be important in the description of the functions g and
g(i).

k1(ε1, ε3) :=
1 + ε3√

(1 + ε2
1)− (1 + ε3)2

,

k2(ε1, ε2) :=
1 + ε2

1 + ε1
,

and

k3(ε2, ε3) :=

√
(1 + ε2)2 − (1 + ε3)2

1 + ε3
.

The next proposition is a consequence of the following limits: limε→0 k1(ε1, ε3) =
∞, limε→0 k2(ε1, ε2) = 1, and limε→0 k3(ε2, ε3) = 0.

Proposition 5.2. Let ε > 0 be small enough and let ε := (ε1, ε2, ε3) be an
ε–admissible vector. Then

k1(ε1, ε3) ≥ k2(ε1, ε2) ≥ k3(ε2, ε3).

Proposition 5.2 implies that (1 + ε1)u1 ≥ max
{
ε0, (1 + ε2)u2,

(1 + ε3)|(u1, u2)|
}

if and only if u1 ≥ ε0
1+ε1

and u1 > k1(ε1, ε3)u2. Reason-
ing in this way we obtain the sketch of the function g(x, ε) given in Figure 4.

Let ϕi ≥ 0, ϕi ∈ C∞c
(
R+

)
, suppϕi ⊂

[
ε−i , ε

+
i

]
and

∫∞
0
ϕi(εi) dεi = 1, for

i = 1, 2, 3. Let ϕ0 ∈ C∞
(
R+

)
be a real function with support in the interval

(l0, l0 + ε) for some l0 > 0, that satisfies also
∫∞

0
ϕ0(ε0) dε0 = 1. We regularize

the function g(i) averaging over the ε–compatible vectors ε

g(i)(x) :=

∫ ∞
−∞

g(i)(x, ε)Π3
i=0

(
ϕi(εi) dεi

)
. (13)
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Figure 4. Sketch of the Graf–Yafaev function g(x, ε).

Definition (13) is inspired by [26, definition 3.12]. For i = 0, 1, 2, 3, define

Φi(ξ) :=
∫ ξ

0
ϕi(εi) dεi. An easy computation shows that

g(1)(x) =

∫ ∞
−∞

(1 + ε1)u1ϕ1(ε1)Φ0

(
(1 + ε1)u1

)
Φ2

(
(1 + ε1)u1u

−1
2 − 1

)·
Φ3

(
(1 + ε1)u1|(u1, u2)|−1 − 1

)
dε1, (14)

for x = (y, u1, u2) ∈ Y × R2
+ or x = (z1, u1) ∈ Z1 × R+. We observe that

g(1)(x) = 0 on X r
(
Z1 × R+

)
. There is a similar formula for g(2)(x). For g(3)

and g(0) we have

g(3)(x) =

∫
(1 + ε3)|u|ϕ3(ε3)Φ0

(
(1 + ε3)|u|

)
Φ1

(
(1 + ε3)|u|

u1
− 1

)
·

Φ2

(
(1 + ε3)|u|

u2
− 1

)
dε3, (15)

g(0)(x) =

∫
ε0ϕ0(ε0)Φ1

(
ε0

u1
− 1

)
Φ2

(
ε0

u2
− 1

)
Φ3

(
ε0

|u|
− 1

)
dε0, (16)

for x = (y, u1, u2) ∈ Y × R2
+.

We define g, the regularization of the function g(x, ε), by taking the average
on ε of g(x, ε).

g(x) :=

∫
max

{
ε0, (1 + ε1)u1, (1 + ε2)u2, (1 + ε3)|u|

}
ϕ0(ε0)ϕ1(ε1)ϕ2(ε2)ϕ3(ε3) dε0 dε1 dε2 dε3.
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Let us define µ0 :=
∫
ε0ϕ0(ε0) dε0 and µi :=

∫
(1 + εi)ϕi(εi) dεi for i =

1, 2, 3. We observe that the maximum of the function k1 in [2ε, 3ε]×
[
2ε2, 3ε2

]
is attained in (ε1, ε2) =

(
2ε, 3ε2

)
and its minimum is attained in (ε1, ε2) =(

3ε, 2ε2
)
. The maximum of the function k2 in [2ε, 3ε]×

[
2ε2, 3ε2

]
is attained in

(ε2, ε3) =
(
3ε, 2ε2

)
and its minimum is obtained in (ε1, ε2) = (2ε, 3ε). Based

on these observations and Proposition 5.2 we obtain Figure 5, a sketch of the
Yafaev function. The arcs in this figure are part of the circles

∣∣(u1, u2)
∣∣ = l0

1+3ε2

and
∣∣(u1, u2)

∣∣ = l0+ε
1+2ε2 .

Figure 5. Sketch of the Graf–Yafaev functions.

The next lemma summarize the main properties of g that we will use in
this article.

Lemma 5.3. (cf. [26, page 538]) g satisfies the following properties:

1) g ∈ C∞(X) and g(x) is real homogeneous of degree 1 in the sense that:

g(tu1, z1) = tg(u1, z1), for z1 ∈ Z1, u1 ≥ 4; and,

g(tu1, tu2, y) = tg(u1, u2, y), for (y, u1, u2) ∈ Y × [4,∞)2,

for t ≥ 0.

2) g(x) ≥ 1 for x ∈ X rX4.

3) g(x) is convex in the sense that for (y, u1, u2) and (y, v1, v2) Y × R2
+ :

g
(
(y, t(u1, u2) + s(v1, v2)

)
≤ sg

(
(y, u1, u2)

)
+ tg(y, v1, v2),

for s, t ∈ [0, 1], s+ t = 1.
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4) The functions g(i)’s are related to g by the equality g(x) =
∑3
i=0 g

(i)(x).

Proof. (14), (15) and (16) prove that the functions g(i) are smooth. 4) follows
from (12) and these results imply that g is smooth and it is convex because it
is the integral of the maximum of convex functions. The other properties follow
from direct calculations. tuX

Definition 5.4. A function g satisfying Properties 1), 2), 3) and 4) of the
above lemma is called Yafaev function.

Let f : X → R be a C∞-function. Let us denote by f ′′ the matrix valued
function

f ′′ :=

[
∂2

∂u2
1
f ∂2

∂u1∂u2
f

∂2

∂u1∂u2
f ∂2

∂u2
2
f

]
, (17)

defined on Y × R2
+. We observe that the matrix of functions

(
g(i)
)′′

can be
extended to X making it 0 out of Y × R2

+; we will make this type of natural
extension without to explicitly mention them for other functions. We remark
that (f)′′ is not the Hessian of f .

According to the previous lemma, the functions g(i) are Yafaev functions,
but they do not satisfy 3), yet in any case they are bounded by suitable convex
functions, as it is shown in the next lemma.

Lemma 5.5. (cf. [11, lemma 7.4]) For each i ∈ {1, 2, 3} there exists g̃i a Yafaev

function such that
(
g̃(i)
)′′

(x) ≥
(
g(i)
)′′

(x), for all x ∈ X.

Proof. We prove the lemma for i = 1, the cases i = 2 and i = 3 can be treated
similarly. Let us define the set

Γ :=

{
(y, u1, u2) ∈ Y × R2

+ :
l0

1 + 2ε
≤ u1 ≤

l0 + ε

1 + 3ε
and

k1

(
3ε, 2ε2

)
u2 ≤ u1 ≤ k1

(
2ε, 3ε2

)
u2

}
.

Let x0 ∈ Γ and let δx0
be a positive function in C∞c (R) such that

δx0

(
g(x0)

)
6= 0. Taking ε small enough and l0 suitable we can find a Yafaev

function g such that (g)′′(x0) = (r)′′(x0) > 0. Let us define the function

g̃x0
(x) :=

∫ ∞
g(x)

sδx0
(s) ds+ g(x)

∫ g(x)

−∞
δx0

(s) ds.
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We have

g̃′′x0
(x) = g′′(x)

∫ g(x)

−∞
δx0

(s) ds +

δx0

(
g(x)

) [ ∂
∂u1

(g)2 ∂
∂u1

(g) ∂
∂u2

(g)
∂
∂u1

(g) ∂
∂u2

(g) ∂
∂u2

(g)2

]
(x).

Since (g)′′(x) is positive and
∫ g(x)

−∞ δx0
(s) ds > 0 for x ∈ Γ near enough to x0,

we have that〈
g̃′′x0

(x0)

[
v1

v2

]
,

[
v1

v2

]〉

> δx0

(
g(x0)

)〈[ ∂
∂u1

(g)2 ∂
∂u1

(g) ∂
∂u2

(g)
∂
∂u1

(g) ∂
∂u2

(g) ∂
∂u2

(g)2

]
(x0)

[
v1

v2

]
,

[
v1

v2

]〉
≥ 0.

This proves g̃′′x0
(x) is strictly positive in an open ball Ux0

around x0 and

multiplying g̃′′x0
by a constant, if it is necessary, we have g̃′′x0

(x) ≥ g′′(i)(x),
for all x ∈ Ux0

. Since Γ is compact there exists a finite covering {Uxi}Ni=1

of Γ, with associated functions
{
g̃xi
}N
i=1

. Let us define g̃ :=
∑N
i=1 g̃xi . To see

that g̃ satisfies the lemma, it is enough to prove it for x in the set
A :=

{
(y, u1, u2) ∈ Y × R2

+ : k1

(
3ε, 2ε2

)
u2 ≤ u1 ≤ k1

(
2ε, 3ε2

)
u2

}
. Observe

that for x ∈ Γ, it follows by construction of g̃. Let (y, u1, u2) ∈ A, then
there exists λ ∈ (0,∞), such that (y, λu1, λu2) ∈ Γ. Then, by homogene-

ity,
(
g(1)

)′′(
(y, u1, u2)

)
= 1/λ

(
g(1)

)′′(
(y, λu1, λu2)

)
≤ 1/λg̃′′(y, λu1, λu2) =

g̃′′(y, u1, u2). tuX

5.3. Propagation Observables

Let g be a Yafaev function. All our propagation observables are derived from
the following scaling of g, defined for t > 0 and 0 < δ < 1,

gt(x) :=


tδg
(
y, t−δu1, t

−δu2

)
, x = (y, u1, u2) ∈ Y × R2

+;

tδg
(
zi, t

−δui
)
, x = (zi, ui) ∈ Zi,0 × R+;

tδ
∫
ε0ϕ0(ε0) dε0, x ∈ X0.

We will be more precise about the value of δ later on. The next results
about the derivatives of gt are the basis of forthcoming estimates of propagation
observables.
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Lemma 5.6. (cf. [11, equation 7.18]) For each
(
(k1, k2), l

)
∈ N2×N and t > 0

large enough, there exist C1 > 0 and C2 > 0 such that:

κ(u1)κ(u2)
∂k1

∂uk11

∂k2

∂uk22

g
(j)
t (x) ≤ C1t

δ(1−|k|), and

∂l

∂tl
g

(j)
t (x) ≤ C2t

δ−l,

for j = 1, 2, 3, for all x ∈ X and k1 ≥ 1 or k2 ≥ 1.

Proof. We prove the lemma for g(1). The functions g(2) and g(3) are treated in
a similar form. Observe that the integrand of (14) has support in [2ε, 3ε]. Using
Lebesgue dominated convergence theorem, it is easy to see that there exists a
C > 0 depending only on k1 and k2 such that∣∣∣∣∣ ∂k2∂uk22

∂k1

∂uk11

(
g(1)

)∣∣∣∣∣ ≤ C ∑
|(j,s)|=k1+k2

∣∣∣∣∣
∫ 3ε

2ε

∂j1

∂uj11

(
(1 + ε1)u1

)
ϕ1(ε1) ·

∂j0

∂uj01

(
Φ0

(
(1 + ε1)t−δu1

)) ∂s1
∂us12

∂j2

∂uj21

(
Φ2

(
(1 + ε1)

u1

u2
− 1)

))
·

∂s2

∂us22

∂j3

∂uj31

(
Φ3

(
(1 + ε1)

u1

|u|
− 1)

))
dε1

∣∣∣∣∣. (18)

We notice that the sum on the right-hand side of the above inequality runs
over the finite set of multi-indexes (j, s) ∈ N3 ×N2 such that |(j, s)| = k1 + k2,
where |(j, s)| := j0 + j1 + j2 + s1 + s2. We will denote by Bj,s the terms of
that sum and we will show that they are uniformly bounded by tδ(1−k1−k2).

Since g(1)(z1, u1) = 0 for u1 ≤ l0t
δ

1+3ε , the term Bj,s(y, u1, u2) = 0. Out of

k1

(
3ε, 2ε2

)
u2 ≤ u1 ≤ k1

(
2ε, 3ε2

)
u2 and u1 ≥ l0t

δ

1+3ε , the function g(1) is constant
or linear and the lemma follows easily. Hence we estimate the terms Bj,s only
for (y, u1, u2) ∈ Y ×R+×R+ such that k1

(
3ε, 2ε2

)
u2 ≤ u1 ≤ k1

(
2ε, 3ε2

)
u2 and

u1 ≥ l0t
δ

1+3ε .

A direct computation shows that there exists a constant C(j0) such that

∂j0

∂uj01

(
Φ0

(
(1 + ε1)t−δu1

))
≤ C(j0)t−j0δ. (19)

We use above that ϕ0 has compact support and hence all its derivatives are
bounded in R. Observe that taking h(u1, u2) := (1 + ε1)u1

u2
− 1 and f(v) :=

dj2

dvj2
(ϕ2)(v), one obtains

(1 + ε1)j2

uj22
f ◦ h(u1, u2) =

∂j2

∂uj21

(
Φ2

(
(1 + ε1)

u1

u2
− 1

))
.
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Let l ∈ N, let us define Ml :=
{

(k1, . . . , kl) ∈ Nl :
∑l
i=1 iki = l

}
. We can

conclude from Faà di Bruno’s formula that for all l ∈ N and α ∈Ml there exist
constants al,k,α ∈ R and C > 0 such that∣∣∣∣∣ ∂s1∂us12

(
1

uj22
f ◦ h

)
(u1, u2)

∣∣∣∣∣ ≤ C
s1∑
l=0

∣∣∣∣∣ ∂l∂ul2 (f ◦ h)(u1, u2)
1

uj2+s1−l
2

∣∣∣∣∣
≤ C

s1∑
l=0

l∑
k=0

∑
α∈Ml

∣∣∣∣∣al,k,α(∂k(f) ◦ h
)
(u1, u2)

l∏
i=0

(
∂i

∂ui2
(h)

)αi
(u1, u2)

1

uj2+s1−l
2

∣∣∣∣∣
≤ C

s1∑
l=0

l∑
k=0

∑
α∈Ml

∣∣∣∣∣al,k,α(∂k(f) ◦ h
)
(u1, u2)

l∏
i=0

uαi1

u
(i+1)αi
2

1

uj2+s1−l
2

∣∣∣∣∣. (20)

For u1 ≥ l0t
δ

1+3ε and u1 ≤ k1

(
2ε, 3ε2

)
u2, there exists a constant C(s1, j2) > 0

such that the last term of (20) is lower or equal than

C

s1∑
l=0

l∑
k=0

∑
α∈Nn

(
∂k(f) ◦ h

)
(u1, u2)

l∏
i=0

1

uiαi+j2+s1−l
2

≤ C(s1, j2)t−δ(j2+s1), (21)

where we obtain the last inequality, since j2 + s1 − l +
∑l
i=0 iαi = j2 + s1

because the vectors (αi) ∈Ml and the functions ∂k(f) have compact support.

Similar estimates can be done to obtain∣∣∣∣∣ ∂s2∂us22

∂j3

∂uj31

(
Φ3

(
(1 + ε1)

u1

|u|
− 1

))∣∣∣∣∣ ≤ Ct−δ(j3+s2). (22)

We observe that (19), (20), (21) and (22) together with (5.3) imply the first
estimate of the lemma for the function g(1).

Next we will prove the second estimate of the lemma for the function g(1).
Let N 3 j ≥ 1; we proceed by induction in j. The basis case, j = 1, follows
easily deriving with respect to t the scaling of expression (14). For j ≥ 1, one
uses Faà di Bruno’s formula for f = ϕ0 and g(v) = (1 + ε1)t−δv, in a similar
way as it was used in (20). One can adapt the proof of the lemma for g(1) to
the functions g(2) and g(3). tuX

We define the Heisenberg derivative of a function h ∈ C∞
(
R+ ×X

)
by

Dth := i[H,h] +
∂

∂t
h. (23)

Now we estimate the first Heisenberg derivative γt of gt i.e.

γt := Dtgt = i[H, gt] +
∂

∂t
gt.
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We will denote W1(X,E) the domain of the self–adjoint operator |H|1/2.
Using an interpolation argument one can see that W1(X,E) coincides with the
first Sobolev space (see [24, Chapter 2]). Let us define the first order differential

operator p := i

[
∂
∂u1
∂
∂u2

]
acting on sections f ∈ C∞

(
Y × R+ × R+, S

)
by pf :=

i

[
∂
∂u1

f
∂
∂u2

f

]
. We will denote pT the operator i

(
∂
∂u1

, ∂
∂u2

)
. The next lemma shows

that the asymptotic behavior of γt is described by the matrix function g′′t (x)
defined in (17), it is a consequence of lemma 5.6.

Lemma 5.7. (cf. [11, equation (7.22)]) For all 2 > δ > 0 and all ψ ∈ W1(X,E)〈
Dt

(
γt − 2

∂

∂t
gt

)
ψt, ψt

〉
L2(X,E)

=
〈(
− 4pT g′′t p+O

(
t−3δ

)
+O

(
tδ−2

))
ψt, ψt

〉
L2(X,E)

Proof. Observe that ∂
∂t [H, gt] =

[
H, ∂∂tgt

]
, hence Dt

(
γt − 2 ∂

∂tgt
)

=

−
[
H, [H, gt]

]
− ∂2

∂t2 gt. Using Leibnitz rule for Laplacians and straightforward
computations [

H, [H, gt]
]

= 4pT g′′t (x)p+

2∑
i,j=1

∂jjii(gt).

According to Lemma 5.6, ∂jjii(gt) = O
(
t−3δ

)
and ∂2

∂t2 gt ≤ tδ−2, which implies

the lemma. tuX

The next lemma is consequence of Lemma 5.7.

Lemma 5.8. (cf. [11, theorem 7.5]) For 1 > δ > 1/3 there exists C > 0 such
that ∣∣∣∣ ∫ ∞

1

〈
pT g′′t pψt, ψt

〉
L2(X,E)

dt

∣∣∣∣ ≤ C‖ψ‖21,
for all ψ ∈ W1(X,E).

Proof. Using lemma 5.7 we have that∣∣∣∣ ∫ ∞
1

〈
pT g′′t pψt, ψt

〉
L2(X,E)

dt

∣∣∣∣
≤

∣∣∣∣∣
∫ ∞

1

〈
Dt

(
γt − 2

∂

∂t
gt

)
ψt, ψt

〉
L2(X,E)

dt

∣∣∣∣∣+K‖ψ‖2L2(X,E)
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where K > 0 is a constant. Next we estimate the first term in the right side of
the above inequality,

∣∣∣∣∣
∫ t0

1

〈
Dt

(
γt − 2

∂

∂t
gt

)
ψt, ψt

〉
L2(X,E)

dt

∣∣∣∣∣
=

∣∣∣∣〈(γt − 2∂tgt

)
ψt, ψt

〉
L2(X,E)

∣∣∣∣t0
t=1

≤
∣∣∣∥∥(γt − 2∂tgt)ψt

∥∥
L2(X,E)

∣∣∣t0
t=1
·‖ψ‖L2(X,E) ≤ C‖ψ‖21,

where the last inequality is true because Lemma 5.6 implies that the first order
differential operator γt−2 ∂

∂tgt has bounded coefficients for t ∈ [1,∞) and hence
it is continuous from L2(X,E) to W1(X,E). Since the above inequality is true
for arbitrary t0 we have proved the lemma. tuX

We introduce and recall some notation:

gi,t(x) := tδg(i)
(
t−δx

)
, gt :=

3∑
i=0

gi,t, γi,t := Dtgi,t, γt =

3∑
i=0

γi,t,

where Dt denotes the Heisenberg derivative defined in (23).

From part 3) of Lemma 5.3, it is easy to see that g′′t (x) is a positive matrix
for all t ∈ [1,∞) and x ∈ X. Therefore the matrix B(x, t) :=

√
g′′t (x) is well

defined. It is straightforward to prove the following proposition.

Proposition 5.9. For ϕ,ψ ∈ W1(X,E), the following equality holds∫
X

〈
pT g′′t pψ, ϕ

〉
(x) dvol(x) =

∫
X

〈
Bpψ,Bpϕ

〉
(x) dvol(x).

Let Dom(r) be the maximal domain in L2(X,E) of the operator defined by
multiplication by the function r defined at the beginning of Section 5.1.

Proposition 5.10. The domain W1(X,E) ∩ Dom(r) is invariant under the
action of eiHt.

Proof. Let ϕ ∈ W1(X,E) ∩ Dom(r). Since eiHt and H1/2 commute, eiHtϕ ∈
W1(X,E), for all t ∈ R. We have to show that reiHtϕ ∈ L2(X,E). Let χn ∈
C∞c (X) be such that χn(x) = 1 for x ∈ Xn, and such that its gradient ∇(χn)
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and Laplacian ∆(χn) are bounded uniformly. We have∫
X

〈
eiHtχnr

2e−iHtϕ,ϕ
〉

(x) dvol(x) =

i

∫
X

∫ t

0

〈
eiHs

[
H,χnr

2
]
e−iHsϕ,ϕ

〉
(x) ds dvol(x) +∫

X

χnr
2〈ϕ,ϕ

〉
(x) dvol(x).

Let us see that the last integral is finite. By hypothesis rϕ ∈ L2(X,E),
hence we can apply Lebesgue convergence theorem to obtain

i lim
n→∞

∫
X

χnr
2〈ϕ,ϕ〉(x) dvol(x) =

∫
X

r2〈ϕ,ϕ〉(x) dvol(x) <∞.

Using that
[
H,χnr

2
]

is a first order differential operator with uniformly bounded
coefficients and Fubini’s Theorem we can prove that

i

∫
X

∫ t

0

〈
eiHs

[
H,χnr

2
]
e−iHsϕ,ϕ

〉
(x) ds dvol(x) ≤ Ct‖ϕ‖1.

Lebesgue convergence theorem implies

i

∫
X

∫ t

0

〈
eiHs

[
H, r2

]
e−iHsϕ,ϕ

〉
(x) ds dvol(x)

= lim
n→∞

i

∫
X

∫ t

0

〈
eiHs

[
H,χnr

2
]
e−iHsϕ,ϕ

〉
(x) ds dvol(x) <∞. tuX

The above proposition shows that the Heisenberg observables eiHtγte
−iHt

and eiHtgte
−iHt are defined in the dense domain W1(X,E) ∩Dom(r).

Theorem 5.11. (cf. [11, theorem 7.6])

(1) The strong limits

γ+ := s− lim
t→∞

eiHtγte
−iHt,

γ+
k := s− lim

t→∞
eiHtγk,te

−iHt

exist on W1(X,E) with respect to L2-norm.

(2) γ+ and γ+
k have the following properties:

γ+
0 = [γ+, H] = [γ+

k , H] = 0,

γ+ = s− lim
t→∞

eiHtgte
−iHt

t
≥ 0,

γ+
k = s− lim

t→∞

eiHtgk,te
−iHt

t
≥ 0,
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and

γ+ =
∑
k

γ+
k

where the last strong limits are taken over W1(X,E)∩Dom(r) with respect
to the norm ‖·‖L2(X,E).

(3) γ+ and γ+
k are independent of δ ∈ (1/3, 1). Moreover, we have

γ+ = s− lim
t→∞

eiHt
g(x)

t
e−iHt,

where the strong limit is taken over W1(X,E) ∩Dom(r), and where g(x)
is the unscaled Graf-Yafaev function (similar roles play the functions g(k)

for the operators γ+
k ).

Theorem 5.11 will be proved later on. We observe for the moment that from
Property 2) we can deduce γ+

0 = 0. Intuitively, the importance of the operators
γ+

1 , γ+
2 and γ+

3 is that they allow us to localize the absolutely continuous states
of H into the regions Z1×R+, Z2×R+ and Y ×R2

+ associated with the domains
of the operators H1, H2 and H3.

We will use the following proposition to prove the existence of γ+.

Proposition 5.12. If one of the following limits exists, then

s− lim
t→∞

eiHtγte
−iHt(H − λ)−2 = s− lim

t→∞
(H − λ)−1eiHtγte

−iHt(H − λ)−1

Proof. We have that

(H − λ)−1eiHtγte
−iHt(H − λ)−1 = eiHt(H − λ)−1γt(H − λ)−1e−iHt

= eiHtγt(H − λ)−2e−iHt − eiHt(H − λ)−1[γt, H]e−iHt(H − λ)−2.

Then, to prove the proposition it is enough to prove

s− lim
t→∞

eiHt(H − λ)−1[γt, H]e−iHt(H − λ)−2 = 0. (24)

By Lemma 5.6,
∥∥ ∂
∂t (gt)

∥∥
0,0

= O
(
tδ−1

)
, where ‖·‖0,0 denotes the norm of the

bounded linear operators acting in L2(X,E). Then we have

s− lim
t→∞

eiHt(H − λ)−1[γt, H]e−iHt(H − λ)−2

= s− lim
t→∞

eiHt
[
(H − λ)−1, γt −

∂

∂t
(gt)

]
e−iHt(H − λ)−1.
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Let ψ := (H − λ)−1ϕ, for ϕ ∈ L2(X,E). We have∥∥∥∥∥
[
(H − λ)−1, γt −

∂

∂t
(gt)

]
ψ

∥∥∥∥∥ =
∥∥∥[(H − λ)−1, [H, gt]

]∥∥∥
L2(X,E)

≤

∥∥∥∥∥(H − λ)−1

[
H,

2∑
i=1

{
− ∂ii(gt)− 2∂i(gt)∂i

}]
(H − λ)−1ψ

∥∥∥∥∥
L2(X,E)

≤
2∑

j,i=1

∥∥∥(H − λ)−1
{
∂jjii(gt) + 2∂ji(gt)∂ij

}
(H − λ)−1ψ

∥∥∥
L2(X,E)

.

Using Lemma 5.6, one can prove
∥∥∂iijj(gt)∥∥0,0

≤ Ct−3δ; that implies∥∥(H − λ)−1∂jjii(gt)(H − λ)−1ψ
∥∥
L2(X,E)

≤ Ct−3δ.

Now we analyze the term
∥∥(H − λ)−1∂ji(gt)∂ij(H − λ)−1ψ

∥∥
L2(X,E)

. Since

∂ji(gt)∂ij is a second order differential operator with coefficients bounded uni-
formly in x ∈ X and t ∈ R, it defines a continuous operator from W2(X,E) to
L2(X,E). Hence

∥∥(H − λ)−1∂ji(gt)∂ij(H − λ)−1ψ
∥∥
L2(X,E)

≤
∥∥(H − λ)−1

∥∥
0,2·
∥∥∂ij(gt)∂ij∥∥2,0·

∥∥(H − λ)−1
∥∥

0,2·‖ψ‖L2(X,E),

where ‖·‖k,l denotes the operator norm from Wk(X,E) to Wl(X,E). We observe
that, by Lemma 5.6, we have

∥∥∂ij(gt)∂ij∥∥2,0
≤ Ctδ−1. This finishes the proof

of the proposition. tuX

Proof of Theorem 5.11.

1. Existence of γ+ and γ+
k : Lemma 5.6 implies that

(
[H, gt]

)
t∈R+

and(
∂
∂t (gt)

)
t∈R+

have coefficients bounded uniformly in t ∈ R+ and x ∈ X
and then we can deduce the inequalities∥∥∥∥eiHt ∂∂t (gt)e−iHtϕ

∥∥∥∥
L2(X,E)

≤ Ctδ−1‖ϕ‖L2(X,E)∥∥eiHt[H, gt]e−iHtϕ∥∥L2(X,E)
≤ C‖ϕ‖1,

for all ϕ ∈ W4(X,E) ⊂ W1(X,E). The previous estimates show that, as-
suming the existence of the limit, the function ϕ 7→ limt→∞ eiHtγte

−iHtϕ
would be a continuous linear map

(
as a function from W1(X,E)
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to L2(X,E)
)
. Since W2(X,E) ⊂ W1(X,E) is dense with respect to the

first Sobolev norm ‖·‖1, it is enough to prove that the limit
limt→∞ eiHtγte

−iHt(H−λ)−2 exists and hence, by Proposition 5.12, it is
enough to prove the existence of the limit s−limt→∞(H−λ)−1eiHtγte

−iHt

(H−λ)−1 with respect to the norm ‖·‖L2(X,E). Since
∥∥ ∂
∂tgt

∥∥
0,0

= O(tδ−1),

we have

s− lim
t→∞

(H − λ)−1eiHtγte
−iHt(H − λ)−1 =

s− lim
t→∞

(H − λ)−1eiHt
(
γt − 2

∂

∂t
(gt)

)
e−iHt(H − λ)−1.

We will show the existence of the last limit with respect to the L2-norm.
We denote γ̃t := γt − 2 ∂

∂t (gt).

Define ϕt := (H−λ)−1eiHtγ̃te
−iHt(H−λ)−1ψ for ψ ∈ L2(X,E). We will

prove that
∫∞

1

∥∥ ∂
∂tϕt

∥∥
L2(X,E)

dt is finite. Observe that

∂

∂t
ϕt := (H − λ)−1eiHtDtγ̃te

−iHt(H − λ)−1ψ.

From Lemma 5.7, for δ > 1/3, we can deduce

Dtγ̃t = pT g′′t p+ L2-norm integrable in t terms.

Therefore it remains to prove that ut := (H − λ)−1eiHtpT g′′t pe
−iHt

(H − λ)−1ψ is L2-norm integrable in [1,∞). We use Cauchy–Schwarz
inequality and Proposition 5.9 to prove∫ s

1

‖ut‖2L2(X,E) dt =

∫ s

1

sup
‖v‖L2(X,E)=1

∣∣〈v, ut〉L2(X,E)

∣∣2 dt
≤ sup
‖v‖L2(X,E)=1

∫ s

1

∥∥Btpe−iHt(H − λ)−1v
∥∥2

L2(X,E)
dt ·∫ s

1

∥∥Btpe−iHt(H − λ)−1ψ
∥∥2

L2(X,E)
dt.

By Lemma 5.8 the last two integrals are bounded; hence ut is L2–norm
integrable in t. We have proved the existence of γ+, the existence of γ+

k

is proved following a very similar reasoning.

2. Proof of parts 2) and 3) of Theorem 5.11: Since γ+ exists on
W1(X,E), it follows from (24) that γ+(H − λ)−1 = (H − λ)−1γ+. Hence
[γ+, H] = (H + λ)

{
(H + λ)−1γ+ − γ+(H + λ)−1

}
(H + λ) = 0. A similar

proof applies for γ+
k .
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Now we prove that limt→∞
eiHtgte

−iHt

t ϕ = γ+ϕ for ϕ ∈ Dom(r) ∩
W1(X,E) and where the limit is considered in the L2-norm. Using that
eiHtγte

−iHt = ∂
∂te

iHtgte
−iHt, we have

γ+ = s− lim
t→∞

1

t

∫ t

1

∂

∂s
eiHsgse

−iHsds = s− lim
t→∞

eiHtgte
−iHt

t
≥ 0.

Finally we prove part 3) of Theorem 5.11. Observe that gt = g for x ∈
X rXR and for R > l0+ε

1+2ε2 ; hence t−1‖gt − g‖L2(X,E) ≤ Ctδ−1. Part 3)

follows from part 2) of the theorem and this fact. tuX

5.4. Propagation Observables and Mourre’s Inequality

Next we discuss the connection between the operator γ+ and Mourre’s inequal-
ity enunciated in theorem 5.1.

Definition 5.13. (cf. [11, (6.17)])

A finite, open interval I ⊂ R will be called a Mourre interval if for all
ψ ∈ EI(H) ∩Dom(r),〈
EI(H)i

[
H, i

[
H, r2

]]
EI(H)ψ,ψ

〉
L2(X,E)

≥ C〈ψ,ψ〉L2(X,E), for some C > 0.

Lemma 5.14. (cf. [11, lemma 7.7]) Let HI := EI(H) be the spectral subspace

of H associated to a Mourre interval I. Then γ+2
reduces to a strictly positive

operator HI →HI . In particular HI ⊂ Im(γ+).

Proof. According to Theorem 5.11, γ+ is H-bounded and commutes with H,
then it reduces to HI →HI . Let ψ ∈HI . By Theorem 5.11 we have〈

ψ, γ+2
ψ
〉
L2(X,E)

= lim
t→∞

1

t2

〈
e2iHtψ, g2

t e
2iHtψ

〉
L2(X,E)

≥ lim
t→∞

1

t2

〈
e2iHtψ, r2e2iHtψ

〉
L2(X,E)

.

Define the function h(t) :=
〈
e2iHtψ, r(x)2e2iHtψ

〉
L2(X,E)

. Since I is a Mourre

interval, there exists c > 0 such that h′′(t) ≥ c > 0. Then, there exist c1 ∈ R
and c2 ∈ R such that h(t) ≥ ct2 + c1t+ c2 and

lim
t→∞

1

t2

〈
e2iHtψ, r(x)2e2iHtψ

〉
L2(X,E)

≥ c > 0. tuX

As a consequence of Theorem 5.1 we have that if λ ∈ R is not an L2–
eigenvalue nor a threshold of H, then λ belongs to some Mourre interval I. In
[4] and [3] it is proved by different methods that the set of L2–eigenvalues of
H is countable and it accumulates only in the set of thresholds σpp(H

(1)) ∪
σpp(H

(2)) ∪ σpp(H(3)). The next corollary follows from these facts.
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Corollary 5.15. (cf. [11, page 3480]) The sum of eigenspaces EI(H), associ-
ated to Mourre intervals I, is a L2-dense set on the absolutely continuous part
of H.

5.5. Deift-Simon Wave Operators

The proof of the following theorem follows the same lines of the proof of the
existence of γ+ and γ+

k in Theorem 5.11 and the proof of similar facts given in
[11, page 3492], because of this we omit the proof here.

Theorem 5.16. (cf. [11, page 3492]) For k = 1, 2, 3, the Deift-Simon wave
operators,

ωk := s− lim
t→∞

eiHktγk,te
−iHt,

exist, with respect to the L2-norm, on W1(X,E) for δ satisfying
min(3δ, 2− δ) < 1.

As we explained below Theorem 5.11, intuitively the importance of the
operators γk,t is that they allow us to localize in the domains of the operators
Hk the absolutely continuous states of H. In Theorem 5.16 we find states whose
dynamics under Hk behave asimptotically as the dynamic of these localizations
under H. We will formalize these intuitions in the next section.

5.6. Proof of Asymptotic Clustering

In this section we prove asymptotic clustering witch finishes the proof of The-
orem 1.6. We say that ψ ∈ L2

ac(X,E) clusters asymptotically, if there exist
ϕk ∈ L2

pp(Zk, Ek) ⊗ L2
(
R+

)
for k = 1, 2 and ϕ3 ∈ L2

(
Y × R2

+, E
)

such that
(2) holds.

Let ψ ∈ EI(H) ∩ W2(X,E) for I a Mourre interval as defined in defini-
tion 5.13. By Lemma 5.14 and Theorem 5.11, we have

ψ =

3∑
k=1

γ+
k ϕ ≈

3∑
k=1

eiHtγk,te
−iHtϕ,

where ≈ means that the difference of the two related expressions vanishes in
L2-norm as t→∞. Theorem 5.16 implies

ψt ≈
3∑
i=1

e−iHktϕk, for ϕk := ω+
k ϕ; (25)

that, with Corollary 5.15, imply that the wave operators W±(Hk, H) exist, for
k = 1, 2, 3.
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Proposition 5.17. For all ψ ∈ L2
ac(X,E) there exist ϕk ∈ L2

(
Zk × R+, E

)
,

for k = 1, 2, 3, such that

lim
t→∞

∥∥∥∥∥e±iHtψ −
3∑
k=1

e±iHktϕk

∥∥∥∥∥
L2(X,E)

= 0.

Proposition 5.17 is a kind of asymptotic completeness, however the sum of
the wave operators W±(H,Hk) (k = 1, 2, 3) is not a direct sum, since their
images are not necessarily orthogonal.

For k = 1, 2 and the ϕk’s of (25), we have ϕk = Πk,ppϕk + Πk,acϕk, where
Πk,pp and Πac,d denote the orthogonal projection over the closed subspaces of
L2(X,E), L2

pp(Zk, Ek) ⊗ L2
(
R+

)
and L2

ac(Zk, Ek) ⊗ L2
(
R+

)
. It is easy to see

that e±itHkϕk = e±itHk,ppΠk,ppϕk + e±itHk,acΠk,acϕk.

Since Πk,acϕk ∈ L2
ac(Zk, Ek) ⊗ L2

(
R+

)
and W±(Hk, H3) is an isometry,

there exists ϕ̃k ∈ L2
(
Y × R2

+, E
)

such that Πk,acϕk = W±(Hk, H3)ϕ̃k. We
conclude

e±iHtψ −
3∑
k=1

e±iHktϕk =

e±iHtψ −
2∑
k=1

{
e±iHk,actW±(Hk, H3)ϕ̃k − e±iHk,pptΠk,ppϕk

}
− ei±H3tϕ3.

Observe that

lim
t→∞

∥∥∥e±iHk,actW±(Hk, H3)ϕ̃k − e±iH3tϕ̃k

∥∥∥
L2(X,E)

= 0,

for k = 1, 2. The above computations imply

Proposition 5.18. For all ψ ∈ L2
ac(X,E) there exist φk ∈ L2

pp(Zk, Ek) ⊗
L2
(
R+

)
, for k = 1, 2, and ϕ ∈ L2

(
Y × R2

+, E
)
, such that

lim
t→∞

∥∥∥∥∥e±iHtψ − e±iH3tϕ−
2∑
k=1

e±iHk,ppφk

∥∥∥∥∥
L2(X,E)

= 0.

Let ϕ ∈ L2
(
Y × R2

+, E
)
, we can calculate

e±iH3tϕ = e±iH3tϕ− e±iH1,acW±(H1, H3)ϕ+ e±iH3tϕ −

e±iH2,acW±(H2, H3)ϕ− e±iH3tϕ+

2∑
k=1

e±iHk,acW±(Hk, H3)ϕ.
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Observe that for all ϕ ∈ L2
(
Y × R2

+, E
)
, we have

lim
t→∞

∥∥∥e±iH3tϕ− e±iHk,acW±(Hk, H3)ϕ
∥∥∥
L2(X,E)

= 0,

for k = 1, 2. Hence,

e±iH3tϕ ≈ −e±iH3tϕ+

2∑
k=1

e±iHk,acW±(Hk, H3)ϕ.

Proposition 5.18 and the previous computation imply asymptotic clustering
and hence Theorem 1.6.

Let us denote

W± := W±(H,H3)⊕
2⊕
k=1

W±
(
H,Hk,pp

)
,

acting from L2
(
Y ×R2

+

)
⊕
⊕(

L2
pp(Zk, Ek)⊗L2

(
R+

))
to L2

ac(X,E). We define
the scattering operator

S :=
(
W−
)−1

W+ (26)

In a forthcoming article, we plan to study how the scattering operator S
encodes geometric information, particularly we would like to generalize the
approach of [16] to prove a signature formula that would be closely related
with the formulas of [10].

A. Stationary Phase Methods

Let V ∈ C∞c (R). In this appendix we prove
∫∞
−∞

∥∥∥V eit̃bu∥∥∥ dt <∞ where b̃ is the

self–adjoint operator associated to − d2

dx2 : C∞c (R)→ L2(R). We use stationary
phase methods as explained in [19]. Let u ∈ S (R) be such that û has compact
support contained in an interval [a, d]. Here û denotes the Fourier transform of
u. Let

ut(x) := eit̃bu = (
1

2π
)1/2

∫
exp

[
it(xk − tk2)

]
û(k) dk.

From [19, Corollary, page 38] we see that for all m there exists a c depending
on m, u and the interval [a, b] such that

|ut(x)| ≤ c(1 + |x|+ t)−m

for all x, t such that x/t /∈ [a, d]. From this we deduce that(∫ at

−∞
+

∫ ∞
dt

)∣∣V (x)
∣∣2∣∣ut(x)

∣∣2 dx ≤ c(1 + t)−2. (27)
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[19, Corollary, page 41] proves
∣∣u±t(x)

∣∣2 ≤ Ct−1 for t > 1, then∫ ∞
1

(∫ dt

at

∣∣V (x)
∣∣2∣∣ut(x)

∣∣2 dx) dt ≤ c∫ ∞
1

t−1/2

(∫ dt

at

∣∣V (x)
∣∣2 dx) dt.

Making the change of variables x = xt we obtain that, for all m ∈ N, there

exists a C such that
∣∣∣ ∫ dtat ∣∣V (x)

∣∣2 dx∣∣∣ ≤ Ct
1+tm . Then

∫ dt

at

∣∣V (x)
∣∣2∣∣ut(x)

∣∣2 dx ≤ C t1/2

1 + t5
. (28)

(27) and (28) show that
∫∞
−∞

∥∥∥V eit̃bu∥∥∥ dt <∞.

Next we make some classical comments in order to extend the previous

estimates to
∥∥V eitbϕ∥∥ where b is the self–adjoint operator associated to − d2

dx2 :

C∞c
(
R+

)
→ L2

(
R+

)
with Dirichlet boundary conditions at 0. We observe that

for all u ∈ S
(
(0,∞)

)
such that û ∈ C∞

(
(0,∞)

)
, the function

ũ(x) :=


u(x), x ∈ (0,∞),

0, x = 0;

−u(−x), otherwise.

is an odd function in S (R) such that ̂̃u has compact support. Since ũ is odd,̂̃u = 2i
∫∞

0
sin(xy)u(y) dy. From these observations, (27) and (28), we deduce∫∞

−∞

∥∥V eitbu∥∥ dt <∞.
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