Topology of Random Real Hypersurfaces

Topología de hipersuperficies reales aleatorias

JEAN-YVES WELSCHINGER1

1Université de Lyon, CNRS, Université Lyon 1, Lyon, France. Email: welschinger@math.univ-lyon1.fr


Abstract

These are notes of the mini-course I gave during the CIMPA summer school at Villa de Leyva, Colombia, in July 2014. The subject was my joint work with Damien Gayet on the topology of random real hypersurfaces, restricting myself to the case of projective spaces and focusing on our lower estimates. Namely, we estimate from (above and) below the mathematical expectation of all Betti numbers of degree d random real projective hypersurfaces. For any closed connected hypersurface Σ of Rn, we actually estimate from below the mathematical expectation of the number of connected components of these degree d random real projective hypersurfaces which are diffeomorphic to Σ.

Key words: Random polynomials, Real algebraic manifolds, Random matrices.


2000 Mathematics Subject Classification: 14P25, 60D05.

Resumen

Las siguientes son las notas de un mini curso que dí durante la escuela de verano CIMPA en Villa de Leyva, Colombia, en julio de 2014. El tema fue el trabajo que en conjunto se desarrolló con Damien Gayet sobre la topología de las hipersuperficies reales aleatorias, restringiéndonos al caso de los espacios proyectivos y enfocándonos en nuestras estimaciones inferiores. Particularmente, estimamos (por arriba y) por abajo la esperanza matemática de todos los números de Betti de las hipersuperficies reales proyectivas aleatorias de grado d. De hecho, para cualquier hipersuperficie cerrada y conexa Σ de Rn, estimamos por abajo la esperanza del número de componentes conexas de éstas hipersuperficies reales proyectivas aleatorias de grado d, las cuales son difeomorfas a Σ.

Palabras clave: Polinomos aleatorios, variedades algebraicas reales, matrices aleatorias.


Texto completo disponible en PDF


References

[1] G. Ben Arous and A. Guionnet, `Large Deviations for Wigner's Law and Voiculescu's Non-Commutative Entropy´, Probab. Theory Related Fields 108, 4 (1997), 517-542.

[2] Jean-Pierre Demailly, Complex Analytic and Differential Geometry, `online book´, (2015). http://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf

[3] S. K. Donaldson, `Symplectic Submanifolds and Almost-Complex Geometry´, J. Differential Geom. 44, 4 (1996), 666-705.

[4] A. Edelman and E. Kostlan, `How Many Zeros of a Random Polynomial Are Real?´, Bull. Amer. Math. Soc. (N.S.) 32, 1 (1995), 1-37.

[5] D. Gayet and Jean-Yves Welschinger, `Betti Numbers of Random Real Hypersurfaces and Determinants of Random Symmetric Matrices´, To appear in J. Eur. Math. Soc., arXiv:1207.1579, (2012).

[6] D. Gayet and Jean-Yves Welschinger, `Lower Estimates for the Expected Betti Numbers of Random Real Hypersurfaces´, J. London Math. Soc. 90, 1 (2014), 105-120.

[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original

[8] M. Gromov, `Pseudoholomorphic Curves in Symplectic Manifolds´, Invent. Math. 82, 2 (1985), 307-347.

[9] A. Harnack, `Ueber Die Vieltheiligkeit Der Ebenen Algebraischen Curven´, Math. Ann. 10, 2 (1876), 189-198.

[10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966.

[11] M. Kac, `On the Average Number of Real Roots of a Random Algebraic Equation´, Bull. Amer. Math. Soc. 49, (1943), 314-320.

[12] G. R. Kempf, Algebraic Varieties, Vol. 172 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1993.

[13] F. Klein, `Ueber Den Verlauf Der Abel'schen Integrale Bei Den Curven Vierten Grades´, Math. Ann. 10, 3 (1876), 365-397.

[14] E. Kostlan, On the Distribution of Roots of Random Polynomials, `From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990)´, 1993, Springer, New York, USA, p. 419-431.

[15] X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, Vol. 254 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2007.

[16] D. McDuff and L. Polterovich, `Symplectic Packings and Algebraic Geometry´, Invent. Math. 115, 3 (1994), 405-434. With an appendix by Yael Karshon

[17] M. L. Mehta, Random Matrices, Vol. 142 of Pure and Applied Mathematics, Third edn, Elsevier/Academic Press, Amsterdam, Holland, 2004.

[18] J. Milnor, Morse Theory, Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, USA, 1963.

[19] J. Nash, `Real Algebraic Manifolds´, Ann. of Math. (2) 56, (1952), 405-421.

[20] F. Nazarov and M. Sodin, `On the Number of Nodal Domains of Random Spherical Harmonics´, Amer. J. Math. 131, 5 (2009), 1337-1357.

[21] H. Seifert, `Algebraische Approximation Von Mannigfaltigkeiten´, Math. Z. 41, 1 (1936), 1-17.

[22] M. Shub and S. Smale, Complexity of Bezout's Theorem. II. Volumes and Probabilities, `Computational algebraic geometry (Nice, 1992)´, 1993, Vol. 109 of Progr. Math., Birkhäuser Boston, USA, p. 267-285.

[23] R. Thom, Sur L'homologie Des Variétés Algébriques Réelles, `Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)´, 1965, Princeton Univ. Press, Princeton, USA, p. 255-265.


(Recibido en septiembre de 2014. Aceptado en diciembre de 2014)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv49n1a07,
    AUTHOR  = {Welschinger, Jean-Yves},
    TITLE   = {{Topology of Random Real Hypersurfaces}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2015},
    volume  = {49},
    number  = {1},
    pages   = {139--160}
}