DOI: https://doi.org/10.15446/recolma.v49n2.60440

Analysis of a Fourier-Galerkin numerical scheme for a 1D Benney-Luke-Paumond equation

Análisis de un esquema numérico Fourier-Galerkin para una ecuación unidimensional Benney-Luke-Paumond

Juan Carlos Muñoz Grajales1

1 Universidad del Valle, Cali, Colombia
e-mail: jcarlmz@yahoo.com


Abstract

We study convergence of the semidiscrete and fully discrete formulations of a Fourier-Galerkin numerical scheme to approximate solutions of a nonlinear Benney-Luke-Paumond equation that models long water waves with small amplitude propagating over a shallow channel with flat bottom. The accuracy of the numerical solver is checked using some exact solitary wave solutions. In order to apply the Fourier-spectral scheme in a non periodic setting, we approximate the initial value problem with x ∈ ℝ by the corresponding periodic Cauchy problem for x ∈ [0,L], with a large spatial period L.

Key words and phrases. Solitary waves, water waves, spectral methods.


2010 Mathematics Subject Classification. 35Q35, 35B35, 76B25, 65N35.


Resumen

Estudiamos la convergencia de las formulaciones semidiscreta y completamente discreta de un método espectral Fourier-Galerkin para aproximar las soluciones de una ecuación no lineal Benney-Luke-Paumond que modela ondas largas con pequeña amplitud que se propagan sobre un canal raso con fondo plano. La precisión del método numérico se verifica usando algunas soluciones de onda solitaria exactas. A fin de aplicar el esquema Fourier-espectral en un contexto no periódio, aproximamos el problema de valor inicial con x ∈ ℝ por el correspondiente problema de Cauchy periódico para x ∈ [0,L], con un periodo espacial L grande.

Palabras y frases clave: Ondas solitarias, ondas acuáticas, métodos espectrales.


Texto completo disponible en PDF


References

[1] U. M. Asher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995), no. 3, 797-823.

[2] D. J. Benney and J. C. Luke, Interactions of permanent waves of finite amplitude, J. Math. Phys. 43 (1964), 309-313.

[3] T. F. Chan and T. Kerkhoven, Fourier methods with extended stability intervals for the Korteweg-de Vries equation, SIAM J. Numer. Anal. 22 (1985), no. 3, 441-454.

[4] J. C. Muñoz Grajales, Instability and long-time evolution of cnoidal wave solutions for a Benney-Luke equation, Int. J. Non. Lin. Mech. 44 (2009), 999-1010.

[5] ________, Decay of solutions of a Boussinesq-type system with variable coefficients, Waves in Random and Complex Media 22 (2012), no. 4, 589-612.

[6] ________, Existence and numerical approximation of solutions of an improved internal wave model, Math. Model. Anal. 19 (2014), no. 3, 309-333.

[7] ________, Error estimates for a Galerkin numerical scheme applied to a variable coeficient BBM equation, Appl. Anal. 94 (2015), no. 7, 1405- 1419.

[8] J. C. Muñoz Grajales and L. F. Vargas, Analysis of a Galerkin approach applied to a system of coupled Schrödinger equations, Appl. Anal. (2014), DOI: 10.1080/00036811.2014.999767.

[9] Y. Maday and A. Quarteroni, Error analysis for spectral approximation of the Korteweg de Vries equation, Model. Math. Anal. Numer. 22 (1988), no. 3, 499-529.

[10] B. Mercier, An Introduction to the Numerical Analysis of Spectral Methods, Lecture Notes in Physics 318 (1983), Springer, New York.

[11] L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq. 16 (2003), 1039-1064.

[12] J. R. Quintero, Stability of 2D solitons for a sixth order Boussinesq type model, Commun. Math. Sci. 13 (2015), no. 6, 1379-1406.

[13] J. R. Quintero and J. C. Muñoz Grajales, Instability of solitary waves for a generalized Benney-Luke equation, Nonlinear Anal. 68 (2008), no. 10, 3009-3033.

[14] ________, Instability of periodic travelling waves with mean zero for a 1D Boussinesq system, Commun. Math. Sci. 10 (2012), no. 4, 1173-1205.

[15] ________, Analytic and numerical nonlinear stability/instability of solitons for a Kawahara-like model, Analysis and Applications (2015), DOI: 10.1142/S0219530515500141.

[16] J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke Equation, Physica D. 45 (1999), 476-496.


(Recibido en junio de 2015. Aceptado en octubre de 2015)