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ApsTrACT. In this work, the nonexistence of limit cycles for classes of p — g-
quasi-homogeneous polynomial planar systems of weighted degree [ is estab-
lished. Furthermore, we rule out the existence of limits cycles for certain per-
turbations of such planar systems. We present applications and examples in
order to illustrate our results.
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RESUMEN. En este trabajo, se establece la no existencia de ciclos limite para
la clase de sistemas bidimensionales, polinomiales p — g-cuasi-homogeneos de
grado ponderado I. Ademsds, se descarta la existencia de ciclos limite para
ciertas perturbaciones de tales sistemas. Finalmente, se presentan aplicaciones
y ejemplos para ilustrar los resultados obtenidos.

Palabras y frases clave. Factores Integrantes, Factores integrantes inversos, cic-
los limite, sistemas p — g-cuasi-homogeneos.

1. Introduction

The qualitative theory of differential equations deals with the local and global
properties of solutions of autonomous differential systems. The principal aim
of this theory is the geometrical description of solutions of these systems. In
the planar case, the existence (or nonexistence) of limit cycles is an important

261



262 L. R. GONZALEZ-RAMIREZ, O. OSUNA & R. SANTAELLA-FORERO

property that is used to characterize differential systems. Given an open set
U C R? | we consider a system given by

{ = fi(z1, 22),

&y = fa(x1,x2),

(1)

where f; : U C R? - R, and 1 < i < 2 are C! functions. Consider the vector
field F := fla% + fgé%, then the system (1) can be rewritten in the form

T = F(x), x:= (z1,72) € U. (2)

Inverse integrating factors (IIFs) are useful tools in the study of qualitative
properties of differential systems. In particular, the relationship of IIFs with
limit cycles, integrability, symmetries, center problems, bifurcations and other
properties has been extensively studied (see [1, 6, 5, 7, 8]). We now recall the
definition of an inverse integrating factor:

Definition 1.1. A C! function V : U — R, is said to be an inverse integrating
factor (IIF') of the system (1) if it is not locally null and satisfies the following
partial differential equation:
% % 0 0
f187+f27 = ( f —i—f2) V.

X1 5‘:52

81'1 8x2 (3)

The name inverse integrating factor for the function V arises from the fact
that 1/V is an integrating factor for the vector field F, that is, F//V restricted
to U\V71(0) is divergence-free. Note that the vector field F' is tangent to the
curve V(z1,x3) = 0, so the set V(z1,22) = 0 is formed by solutions of (1). An
important class of trajectories of (1) are given by

Definition 1.2. A limit cycle of the system (1) is a periodic orbit v € U for
which there is at least one other solution tending towards « when ¢t — +o00 or
t — —oo.

It is well known that for a polynomial vector field a limit cycle is a periodic
orbit which has an annulus-like neighborhood free of other periodic solutions.

The aim of this paper is to study the link between limit cycles and IIF's to
rule out the existence of limit cycles for certain classes of differential systems,
namely, p — g-quasi-homogeneous systems. Furthermore, we prove nonexistence
of limit cycles for certain perturbations of such planar systems. We present
applications and examples in order to illustrate our results.

2. p — g-quasi-homogeneous systems

A useful relationship between limit cycles and inverse integrating factors is
established in the following theorem (see [8]), that relates limit cycles with the
zero level curve of an IIF.
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Theorem 2.1. ([8], th. 9) Let V : U — R be an inverse integrating factor of
the system (1). If v C U is a limit cycle of (1), then v is contained in the set
V=0) := {(x1,22) € U | V(21,22) = 0}.

Thus, one of the most important applications of IIF's is the localization of
limit cycles. We take advantage of this link to study the existence of limit cycles
of certain systems whose inverse integrating factors can be explicitly obtained.
In particular, we focus on systems whose IIF is given by quasi-homogeneous
polynomials.

Definition 2.2. Let p,q,k,l € Z*. A real function f : R? — R is called
a p — g-quasi-homogeneous function of weighted degree k if f(aPzq, alzy) =
ok f(z1,72), Ya € R\ {0}. A vector field F = f16%1 + fza%z is called a
p — g-quasi-homogeneous vector field of weighted degree [, if f; and f; are
p — g-quasi-homogeneous functions of weighted degree p+1—1and g+1— 1,
respectively. A p — g-quasi-homogeneous differential system of weighted degree
l, is determined by a p — g-quasi-homogeneous vector field.

For our purposes, we focus most of our results on p — g-quasi-homogeneous
polynomials. We note however, that any p — g-quasi-homogeneous differential
system of degree [ is invariant under the similarity transformation:

(z1,22,t) = (@Px1, 0z, T1t), Va € R\ {0},

a fact that can be readily seen from the definition of a quasi-homogeneous
system.

A nice property of quasi-homogenous differential systems is that there is
an explicit formula for the IIF of the system. This fact is established in the
following proposition:

Proposition 2.3. Given a p — g-quasi-homogeneous vector field F' = fla%l +
fg%, then V = qxa fi — px1fo is an IIF of the system.

The previous result follows from the use of the generalized Euler’s theorem
[3] for quasi-homogeneous functions which states that given f; a p — ¢-quasi-
homogeneous function, we can obtain the equality

0f1 ofi
pxl% +q$28732 =(@+i-1)f.

Similarly, it is possible to obtain an expression for a p — ¢ quasi-homogenous
function fs.

Definition 2.4. Let R[zq, 23] be the polynomial ring over R in two variables.
Given P € R[zq,z2], define its zero set by

V(P) := {(x1,72) € R* | P(z1,22) = 0}.
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Definition 2.5. If S C Rz, z2], then let V(S) be the set of common zeros

V(5) =NpesV(P).

The set V(P) is known to be an algebraic curve, and the set NpegV (P) is
called an algebraic set. These sets will be important in the following study of
properties of the zero sets of IIFs of quasi-homogeneous polynomials.

Lemma 2.6. If P is a non-zero p—q-quasi-homogeneous polynomial of weighted
degree k, then its zero set V(P) contains no subset homeomorphic to St.

Proof. Let P be a non-zero p — g-quasi-homogeneous polynomial of weighted
degree k. Then it satisfies P(A\Pz, \1y) = \FP(x,y).

Suppose that V (P) contains a subset v which is homeomorphic to S!, then
we have that P(zg,yo) = 0 for all (zg, yo) € «. For each point (x,yo) € y there
is a curve given by C'(A, (zo,y0)) := {(Nxzo, A\yp) : A € R}.

Evaluating P at C(X, (zo,¥0)), we obtain that

P(NPaxg, Nyo) = /\kP(xo,yo) = 0 for all (zg,y0) € 7.

Thus, for all A € R and any point (z,y) € v we have that C (A, (z,y)) € V(P).

Consider a line L not totally contained in V(P) such that it intersects an
infinite number of curves C(\, (z,y)) in V(P). Since the degrees of P and L are
finite, using a theorem by Bezout (see [9]) we obtain that L can only intersect
V(P) at a finite number of points, leading to a contradiction. Thus, V(P) does
not have subsets homeomorphic to S'.

As a direct consequence of the previous Lemma, we obtain the following
Theorem:

Theorem 2.7. If a non-zero p — q-quasi-homogeneous polynomial of weighted
degree k is an IIF of the system (1), then it has no limit cycles.

Proof. Let V be a p — g-quasi-homogeneous polynomial which is an IIF of the
system (1). Suppose that (1) admits a limit cycle 4. By Theorem 2.1 we obtain
that v € V(V), contradicting Lemma 2.6. Therefore, the system (1) does not
contain limit cycles. o]

Using Theorem 2.7 it is possible to establish the non-existence of limit cycles
for quasi-homogeneous polynomial vector fields, as follows:

Proposition 2.8. Given a p — g-quasi-homogeneous polynomial vector field of
weighted degree | given by F' = fla%l + f26%2, then the system (1) has no
limit cycles.
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Proof. By Proposition 2.3 the function V = gxsf1 — px1fe is an IIF of the
vector field F. Since V is a p—¢-quasi-homogeneous function of weighted degree
p+q+1—1, the result follows from Theorem 2.7.

3. Perturbed quasi-homogeneous systems

We now extend our results to perturbed quasi-homogeneous systems, where
the perturbation is given by quasi-homogeneous polynomials.

Definition 3.1. A quasidegenerate infinite system is a planar polynomial sys-
tem of the form
{ -,1'71 :P(xlax2)+px1A<x17$2)a (4)

&y = Q(x1,22) + qraA(x1, 22),

where P + QaT is a p — ¢g-quasi-homogeneous polynomial vector field of
weighted degree [ and A is given by a p — g-quasi-homogeneous polynomial of
weighted degree a.

Theorem 3.2. ([4], Th. 8) Assume that H is a p— q quasi-homogeneous poly-
nomial of weighted degree d such that H is a first integral of the p — q quasi-
homogeneous vector field Pa%l + Q(?%?. Then, the function

V= (pr1Q — Qlﬂﬁzp)Hai‘§+1 (w1, 2),
is an IIF of (4).

Having determined an ITF for these perturbed systems, we can use Theo-
rem 2.7 and Theorem 3.2 to extend the nonexistence of limit cycles for such
perturbed systems, as follows:

Proposition 3.3. Suppose the hypotheses of Theorem 3.2 are satisfied, if
a—Il+1

H™—a~ is a p — g-quasi-homogeneous polynomial, then the system (4) admits
no limit cycles.

Proof. Since H™ @ (ml, x9)isap— q quasi-homogeneous polynomial, it fol-
lows that the IIF V := (ple—quP)H = (21, x2) is a p—q quasi-homogeneous

polynomial. The result follows directly from Theorem 2.7. of
4. Examples and applications

We now explore examples and applications of quasi-homogeneous differential
systems and pertinent perturbations of such systems. Using our previous results
we can establish the nonexistence of limit cycles in these examples.

Example 4.1. The differential system given by

()

i = 223 + 223 — xy25 + 828,
By = —aiwo + w23 + Tal,
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is a 2—1-quasi-homogeneous polynomial system of weighted degree 5. By Propo-
sition 2.8 the system (5) admits no limit cycles.

Example 4.2. Consider the system

(6)

i = xiwe + xiad + 2i?,

o —5 + 3323 + To230.
This system is a 5 — 2-quasi-homogeneous system of weighted degree 21. Using
Proposition 2.8 we conclude that the system (6) admits no limit cycles.

Example 4.3. Consider p = ¢ = 1. In this case, a p — ¢g-quasi-homogeneous
vector field reduces to a classical homogeneous system. Hence, we recover a
well-known result:

Corollary 4.4. If f1 and fa are homogeneous polynomials of the same degree,
then the system (1) has no limit cycles.

Example 4.5. The differential system given by

1 —4aixd + Trdzy — x3xd — 1027,
g = 37 — 28zo + 82jw3 + Tw1a§,

(7)

is a homogeneous polynomial system of degree 7. By Corollary 4.4 we obtain
that the system (8) admits no limit cycles.

Example 4.6. In the case that ¢ is odd; and p and [ are even; the p — ¢-
quasi-homogeneous vector field includes some types of time-reversible systems.
In particular, we obtain the following result:

Corollary 4.7. If a polynomial vector field (1) is invariant under the symmetry
(x1,x9,t) = (21, —x2,—t), then the system has no limit cycles.

Example 4.8. The classical Lotka-Volterra system [2], is used to model inter-
actions between two species, namely, predators (x2) and preys (x1). The system
is given by

(®)

where a, b, c and d are parameters describing the interaction of the two species.
An IIF of this system is given by V = x1xs, which is a p — ¢-quasi-homogenous
polynomial of degree p 4+ g. Hence, by Theorem 2.7 we obtain that the system
has no limit cycles.

{ jfl :$1(a—b$2),

i?Q = SCQ(CZL‘l — d)7

Example 4.9. Let H(z1,x2) = 2323 + 2z12) — 232, then H is a 3 — 1-quasi-
homogeneous polynomial of weighted degree d = 12. Thus, the Hamiltonian
system given by:

OH OH

Xy =(+—,———
H (6562’ 31’1

) = (3x3x2 + 18z 25 — 12231, —32%23 — 22),
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is a 3 — 1-quasi-homogeneous polynomial vector field of weighted degree [ = 9.
Consider A(zy,xs) = 2523 + 2525. A is a 3 — 1-quasi-homogeneous polynomial
of weighted degree a@ = 20. We now consider the perturbed system composed
by

i1 = 3ufad + 180125 — 128! + 32 (2503 + 2ia}), (9)
do = —3x3x3 — 229 + xo(2¥22 + 2923),

For this quasidegenerate infinite system we have that O‘*Tm = 1. Using Propo-
sition 3.3 we obtain that system (9) admits no limit cycles.
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