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Volumen 50(2016)1, páginas 1-15
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2Universidad Nacional de Colombia, Medelĺın, Colombia

Abstract. We explore the class of triples (M,∇, P ) where M is a manifold,
∇ is an affine connection in M and P is a G-structure in M . Inside this
class there are infinitesimally homogeneous manifolds, characterized by hav-
ing G-constant curvature, torsion and inner torsion. For each matrix Lie group
G ⊆ GL(Rn) there is a class of infinitesimally homogeneous manifolds with
structure group G. In this paper we characterize the classes of infinitesimally
homogeneous manifolds for some specific values of the structure group G in-
cluding: identity group, finite groups, diagonal group, special linear group,
orthogonal group and unitary group.
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Resumen. Exploramos la clase de las ternas (M,∇, P ) en las cuales M es
una variedad, ∇ una conexión af́ın en M y P una G-estructura en M . Den-
tro de esta clase están las variedades infinitesimalmente homogéneas, que se
caracterizan porque su curvatura, torsión y torsión interna son G-constantes.
Para cada grupo de Lie de matrices G ⊆ GL(Rn) hay una clase de variedades
infinitesimalmente homogéneas con grupo estructural G. En este art́ıculo car-
acterizamos las clases de las variedades infinitesimalmente homogéneas para
ciertos valores espećıficos del grupo estructural G entre los que se incluyen: el
grupo identidad, los grupos finitos, el grupo diagonal, el grupo especial lineal,
el grupo ortogonal y el grupo unitario.

Palabras y frases clave. Variedad infinitesimalmente homogénea, torsión interna,
G-estructura.
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1. Introduction

Let G ⊂ GL(Rn) be a Lie subgroup. By a manifold with affine connection and
G-structure we mean a triple (M,∇, P ) in which M is an n-dimensional man-
ifold, ∇ is an affine connection on M and P ⊂ FR(TM) is a G-structure on
M . Throughout this paper, by an affine connection on M we mean a linear
connection on the tangent bundle TM . The geometry of a manifold with affine
connection and G-structure (M,∇, P ) is described by three tensors: the curva-
ture tensor (R) of ∇, the torsion tensor (T ) of ∇ and the inner torsion (JP ) of
P , see [5].

In the case of a manifold endowed with a G-structure P , the notion of P -
constant tensor field makes sense, and it refers to a tensor field whose represen-
tation in frames that belong to P is constant; in the sense of being independent
of the particular frame and the point on the manifold.

A manifold with affine connection and G-structure (M,∇, P ) is said to be
infinitesimally homogeneous if R, T and JP are all P -constant. That is, there
exist multilinear maps R0 : Rn × Rn × Rn → Rn, T0 : Rn × Rn → Rn and a
linear map J0 : Rn → gl(Rn)/g, g being the Lie algebra of G such that

p∗Rx = R0, p∗Tx = T0,

Adp ◦ J0 = JPx ◦ p,
(1)

for each x ∈M , and each p ∈ Px. The maps R0, T0 and J0 are collectively called
the characteristic tensors of (M,∇, P ), because they provide a local charac-
terization of infinitesimally homogeneous manifolds in the sense that two of
these having the same characteristic tensors are locally equivalent by means
of a connection and G-structure preserving diffeomorphism. Infinitesimally ho-
mogeneous manifolds have been studied thoroughly by Piccione and Tausk in
[5], in the aforementioned paper the authors proved an existence result for lo-
cal and global immersions into infinitesimally homogeneous manifolds. This is
a very general result and includes several isometric immersions theorems that
appear in the literature. From now on, by infinitesimally homogeneous mani-
fold we mean infinitesimally homogeneous manifold with affine connection and
G-structure.

In [4], the first author gave necessary and sufficient conditions for maps R0,
T0 and J0 to be the characteristic tensors of an infinitesimally homogeneous
manifold (M,∇, P ). More specifically, given a Lie subgroup G ⊂ GL(Rn), the
main result of [4] is an algebraic characterization (involving both the group
G and its Lie algebra g) for the possible characteristic tensors of an infinites-
imally homogeneous manifold (M,∇, P ) with structure group G. Therefore,
for a given Lie subgroup G ⊂ GL(Rn), the problem of classifying the infinitesi-
mally homogeneous manifolds with structure group G is reduced to the problem
of classifying all the maps R0, T0 and J0 that satisfy the algebraic conditions
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INFINITESIMALLY HOMOGENEOUS MANIFOLDS 3

given in [4]. As an application, in this paper we give specific characterizations
of infinitesimally homogeneous manifolds for certain Lie groups.

2. Notation and Preliminaries

2.1. Inner torsion

Let G ⊂ GL(Rn) be a Lie subgroup whose Lie algebra will be denoted by g,
and let (M,∇, P ) be a manifold with affine connection and G-structure. If ω
denotes the gl(Rn)-valued connection form on FR(TM) associated with ∇, it
is clear that ∇ is compatible with the subbundle P if ω|P is g-valued. In order
to handle the general case in which ∇ is not compatible with P , the concept
of inner torsion was introduced in [5]. It is a tensor that measures the lack
of compatibility of ∇ with P . This tensor may be defined in a briefly way
as follows: for each x ∈ M , let Gx be the subgroup of GL(TxM) consisting
of all G-structure preserving maps, i.e., maps σ : TxM → TxM such that
σ ◦ p ∈ Px for some p ∈ Px. Clearly, Gx = Ip(G), for each p ∈ Px where Ip :
GL(Rn)→ GL(TxM) denotes the Lie groups isomorphism given by conjugation
by p, so that Gx is a Lie subgroup of GL(TxM) whose Lie algebra we denote
by gx. Note that the linear isomorphism dIp(1) = Adp carries g onto gx, so it
induces an isomorphism of the quotients Adp : gl(Rn)/g → gl(TxM)/gx. Let
s : U ⊂ M → P be a smooth local section of P around a point x and set
ω = s∗ω, s(x) = p. The map

TxM gl(Rn) gl(Rn)/g gl(TxM)/gx
ωx q Adp

IP
x (2)

does not depend on the choice of the local section s (see [5]). The linear map
IPx defined by (2) is called the inner torsion of the G-structure P at the point
x ∈M with respect to the connection ∇. If Γ denotes the Christoffel tensor of
the connection ∇ with respect to the local frame s, then Γx = Adp ◦ωx, where
p = s(x). Thus the inner torsion IPx : TxM → gl(Ex)/gx of the G-structure P
at the point x is given by the composition of the Christoffel tensor Γx : TxM →
gl(TxM) of ∇ with respect to s and the quotient map gl(TxM)→ gl(TxM)/gx.

2.2. Invariance properties of characteristic tensors

Let (M,∇, P ) be a manifold with affine connection and G-structure and let g be
the Lie algebra of G. Let T0, R0, J0 be its characteristic tensors. By definition,
T0, R0, J0 are invariant for the natural action of G. That is, they satisfy the
following relations:
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R0(u, v) = Adg ·R0(g−1 · u, g−1 · v); (3)

T0(u, v) = g · T0(g−1 · u, g−1 · v); (4)

Adg

(
λ(u)

)
− λ(g · u) ∈ g, (5)

for all g ∈ G and u, v ∈ Rn. Here λ : Rn → gl(Rn) is an arbitrary lift of J0.
Taking g = exp(tL) and differentiating the above expressions with respect to t
we obtain the following relations:

[L,R0(u, v)]−R0(L · u, v)−R0(u, L · v) = 0; (6)

L ◦ T0(u, v)− T0(L · u, v)− T0(u, L · v) = 0; (7)

[L, λ(u)]− λ(L · u) ∈ g. (8)

that hold for each L ∈ g and u, v ∈ Rn. If G is a connected Lie group then
relations eqs. (3) to (5) and (6) to (8) are mutually equivalent.

Algebraic necessary and sufficient conditions for multilinear maps T0, R0

and J0 to be the characteristic tensors of an infinitesimally homogeneous man-
ifold, as well as some additional relations and properties, are given in [4, The-
orems 1 and 2].

3. Infinitesimally homogeneous manifolds with prescribed structure
groups

Here we explore the classes of infinitesimally homogeneous manifolds with spe-
cific structure groups. This means that for a given Lie group G ⊂ GL(Rn) we
find the possible characteristic tensors R0, T0 and J0 of infinitesimally homo-
geneous manifolds with structure group G. This allows us to characterize the
class of infinitesimally homogeneous manifolds with structure group G is terms
of the language of classical differential geometry. From the facts mentioned in
section 2.2 we know that a first step is to find all the possible multilinear maps
T0, R0, J0 satisfying eqs. (3) to (5).

Lemma 3.1. Let (M,∇, P ) be an infinitesimally homogeneous manifold with
characteristic tensors T0, R0, J0 and structure group G ⊂ GL(Rn). The fol-
lowing statements hold:

(1) If G contains more than one scalar matrices, then the multilinear map T0

necessarily vanish.

(2) If G contains more than two scalar matrices, then the multilinear maps
R0 and T0 necessarily vanish.

(3) If −1 ∈ G then the multilinear maps T0 and J0 necessarily vanish.
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Proof. Everything follows directly from relations (3), (4) and (5). In order to
illustrate this idea we give a complete proof of (3). Taking g = −1 in (4) we
obtain T0(u, v) = −T0(u, v) and thus T0 = 0. Also, if λ : Rn → gl(Rn) is an
arbitrary lift of J0 then from (5) it follows:

λ (g(u))− g ◦ λ(u) ◦ g−1 ∈ g

for all g ∈ G and u ∈ Rn. In particular, for g = −1 we obtain −2λ(u) ∈ g for
any u ∈ Rn. That is, J0 = 0. �X

3.1. Trivial structures

Let us consider the case G = GL(Rn). Here, there is no choice for the G-
structure, it is the whole frame bundle FR(TM). Let (M,∇,FR(TM)) be an
infinitesimally homogeneous manifold. Its inner torsion automatically vanish.
Moreover, there are no non zero G-invariant tensors T0 and R0 so that ∇ is flat
and torsion free. Finally, (M,∇,FR(TM)) is an infinitesimally homogeneous
manifold if and only if (M,∇) is an affine manifold in the sense of Thurston
(see [2]).

3.2. Infinitesimally homogeneous structures over the identity

Let us consider the case {1} ⊂ GL(Rn). By definition, a {1}-structure in M
is a global frame P = {X1, . . . , Xn}. Let ∇ be a linear connection in M , and
let us assume that (M,∇, P ) is an infinitesimally homogeneous manifold with
structure group {1}. The inner torsion JPx : TxM → gl(TxM) coincides with
the Christoffel tensor Γx : TxM → gl(TxM) of the connection ∇ with respect
to the frame Px. Let us consider {θ1, . . . , θn} the dual co-frame associated to
P . The expression in coordinates of the inner torsion is:

JP = Γk
ijθi ⊗ θj ⊗Xk,

where the functions Γk
ij are the so called Christoffel symbols of ∇ in the frame

P . The infinitesimal homogeneity implies that the Γk
ij are constant.

Since P is a global frame, we can find structure functions λkij such that,

[Xi, Xj ] = λkijXk. The expression in coordinates of the torsion T of ∇ yields:

T = (Γk
ij − Γk

ji − λkij)θi ∧ θj ⊗Xk.

As before, the infinitesimal homogeneity implies that the components of T are
constant functions, and thus the λkij are also constant. Thus, the frame P is a
paralellism of M modeled over a n-dimensional Lie algebra. It is also clear that
if Christoffel symbols Γk

ij and the structure functions λkij are constants, then
the curvature tensor R is also P -constant. Let us denote by h the Lie algebra
of vector fields spanned by X1, . . . , Xn. The Christoffel tensor can be seen as a
linear map from h to End(h). Summarizing:
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Proposition 3.2. A infinitesimally homogeneous manifold (M,∇, P ) with struc-
ture group {1} is characterized by the following data on the manifold M :

(1) A global frame P = {X1, . . . , Xn} such that the vector fields X1, . . . , Xn

span a n-dimensional Lie algebra h of vector fields in M .

(2) A linear map Γ: h→ End(h).

The standard model for an infinitesimally homogeneous manifold with struc-
ture group {1} is a Lie group H, endowed of a basis of its Lie algebra h of left
invariant vector fields and an endomorphism from h to End(h). In particular,
if H is semisimple and we consider the adjoint action as such linear map, we
obtain the Levi-Civita connection of the Killing metric in the Lie group. Also,
by the third Lie theorem we know that any n-dimensional manifold with a
transitive action of an n-dimensional Lie algebra is locally isomorphic to a Lie
group with the action of its Lie algebra. Thus, any infinitesimally homogeneous
affine manifold with structure group {1} is locally isomorphic to a Lie group
H, with a given basis of its Lie algebra h and a given linear map from h to
End(h).

3.3. Infinitesimally homogeneous structures over finite groups

Let us consider G ⊂ GL(Rn) a finite matrix group and (M,∇, P ) an infinitesi-
mally homogeneous manifold with structure group G. By definiton, the projec-
tion π : P → M is a covering space. The group G acts freely and transitively
in each fiber of π, the quotient P/G is identified with M , and π is a Galois
cover space modeled over the finite group G. Let us consider P̄ the fibered
product of coverings P ×M P , endowed with the projection π : P → P defined
by π̄(px, qx) = px. By definition of Galois cover, the projection π̄ : P̄ → P is a
trivial cover. The diagonal set:

P ′ = {(px, px) : px ∈ P} ⊂ P̄

is a connected component of P̄ . The rest of connected components of P̄ are
obtained by the action of G on the frames:

P ′g = {(px, pxg) : px ∈ P}.

Since π is a local diffeomorphism, for each px ∈ P it induces an isomorphism
between FR(Tpx

P ) and FR(TxM). By means of these isomorphisms we have
that P ′ can be seen as global frame and then a {1}-structure in P . Same facts
happen for P ′g for each g ∈ G and the triples (P, π∗(∇), P ′g) are a family
of infinitesimally homogeneous structures in P over {1}. The group G acts in
P by diffeomorphisms. Let us write φg(px) for pxg. The diffeomorphisms φg
are symmetries of the connection π∗(∇). We may differentiate φg to compute
the action of G in the global frames, and we obtain (φg)∗(P

′) = P ′g−1. The
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triple (P, π∗(∇), P ′) together with the action of G in P completely describes
the infinitesimally homogeneous manifold (M,∇, P ) as the quotient of P by G.
We may then state the following result that characterizes the infinitesimally
homogeneous manifolds with structure group G as quotients of infinitesimally
homogeneous manifolds with structure group {1} by suitable groups of sym-
metries of their respective affine connections.

Proposition 3.3. Let us consider G ⊂ GL(Rn) a finite matrix group and
(M,∇, P ) an infinitesimally homogeneous manifold with structure group {1}
endowed with right action of G in M satisfying:

(1) G acts in M freely and completely discontinuously by symmetries of ∇.

(2) G acts equivariantly in the global frame P in the following sense, for each
g ∈ G, (φg)∗(P ) = Pg−1.

The quotient map π : M →M/G is a cover and there is a projected connection
π∗(∇) in M . The triple (M/G, π∗(∇), P ) is an infinitesimally homogeneous
manifold with structure group G. Conversely, any infinitesimally homogeneous
manifold with structure group G is isomorphic to a quotient manifold of this
kind.

3.4. Oriented Riemannian structures

Let us consider the group G = SO(n) consisting of all orthogonal matrices
whose determinant is 1. For this group a G-structure on a smooth manifold
M can be thought as having an orientation of M and a Riemannian structure.
In order to determine the suitable candidates for the characteristic tensors R0,
T0, and J0 in what follows we will show some algebraic results.

Lemma 3.4. Let R be a quadrilinear map R : Rn × Rn × Rn × Rn 7−→ R
satisfying:

(a) R(u1, u2, u3, u4) = −R(u1, u2, u3, u4),

(b) R(u1, u2, u3, u4) = −R(u1, u2, u4, u3),

(c) R(u1, u2, u3, u4) +R(u1, u3, u4, u2) +R(u1, u4, u2, u3) = 0,

for all u1, u2, u3, u4 ∈ Rn. If R is SO(n)-invariant then R is a multiple of the
tensor K,

K : (u1, u2, u3, u4) 7−→ 〈u2, u3〉〈u1, u4〉 − 〈u1, u3〉〈u2, u4〉. (9)

Proof. Let us take λ = R(e1, e2, e1, e2). For any orthogonal basis {u, v} of a
plane in Rn there is a rotation g such that g(e1) = u, g(e2) = v (we may change
the order of u, v in the case n = 3). By the SO(n)-invariance of R we have:

R(u, v, u, v) = R(e1, e2, e1, e2) = λ = λK(u, v, u, v).
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Finally, by Lemma [3, Chapter 5, Proposition 1.2] we have that R = λK. �X

Remark 3.5. In the case n 6= 4 it is possible to proof that the only SO(n)-
invariant 4-linear maps satisfying condition (a) are the multiples of K.

It is clear that, by contraction with the scalar product, the SO(n)-invariant
4-linear maps are in 1-1 correspondence with the SO(n)-equivariant (3, 1)-
tensors. Therefore, the characteristic tensor R0 of an infinitesimally homoge-
neous manifold with structure group SO(n) is an scalar multiple of the (3, 1)-
tensor K0 corresponding to K, which defined by the formula K0(u, v, w) =
〈v, w〉u−〈u,w〉v. Note that λK0 is the curvature tensor of a Riemannian man-
ifold of constant sectional curvature equal to λ.

For the characteristic tensor T0 we have the following algebraic result.

Lemma 3.6. For n 6= 1, 3 the space of skew-symmetric SO(n)-invariant (2, 1)-
tensors in Rn vanishes. For n = 3 this space is spanned by the euclidean vector
product:

∧ : R3 × R3 → R3, (u, v) 7→ u ∧ v

Proof. The case n = 3 corresponds to the uniqueness of the vector product in
euclidean space, which is already well known. If n is even, then −1 ∈ SO(n) and
the result follows from Lemma 3.1. On the other hand, if n is odd and n ≥ 5,
let us consider an orthonormal basis B = {b1, . . . , bn} of Rn. The G-invariance
of T0 is equivalent to the identity

g (T0(u, v)) = T0 (g(u), g(v)) , (10)

for all g ∈ G and u, v ∈ Rn. Given bk, bl ∈ B, let gkl ∈ SO(n) be the element
given by the rotation of angle π/2 in the (bk, bl)-plane. Let us consider fixed
indexes i, j ∈ {1, . . . , n}. Replacing g by gkl in the identity (10), we get,

gkl
(
T0(bi, bj)

)
= T0

(
gkl(bi), gkl(bj)

)
,

for all k, l ∈ {1, . . . , n}.
In the case if repeated indexes i = k, j = l we obtain

gij
(
T0(bi, bj)

)
= T0

(
gij(bi), gij(bj)

)
= T0

(
bi, bj

)
,

consequently T0(bi, bj) ∈ gen(bi, bi)
⊥.

For k, l /∈ {i, j},

gkl
(
T0(bi, bj)

)
= T0

(
gkl(bi), gkl(bj)

)
= T0

(
bi, bj

)
,

so that T0(bi, bj) ∈ gen(bk, bl)
⊥. Hence, 〈T0(bi, bj), bk〉 = 0 for all k ∈ {1, . . . , n}

Since bi, bj are arbitrary elements in B, the result follows. �X
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Finally let us proceed to determine the suitable candidates for the charac-
teristic tensor J0.

Lemma 3.7. Let us consider the vector space gl(n)/so(n) endowed with the
adjoint action of SO(n). Then, the space of linear SO(n)-invarivariant maps
from Rn to gl(n)/so(n) vanishes. In other words the tensor J0 vanishes.

Proof. If n is even, then −1 ∈ SO(n) and the result follows from Lemma 3.1.
On the other hand, we assume that n is odd and n ≥ 3. Let I be a SO(n)-
invariant linear map from Rn to gl(n)/so(n), and let λ : Rn → gl(Rn) be an
arbitrary lifting for I. In order to obtain the desired result we will show that
λ is so(n)-valued. To do this, let B = {b1, . . . , bn} be an orthonormal basis of
Rn and let us consider a fixed vector bi ∈ B. For each g ∈ SO(n), we will write
Lg to denote the linear map

Lg := Adg

(
λ(bi)

)
− λ

(
g(bi)

)
∈ so(n).

The SO(n)-invariance (5) implies that Lg ∈ so(n) for all g ∈ SO(n). Therefore
for each j, k ∈ {1, . . . , n} and each g ∈ SO(n) we have that

〈Lg(bj), bk〉 = −〈Lg(bk), bj〉, (11)

for all g ∈ SO(n). In particular, 〈Lg(bi), bi〉 = 0, for all g ∈ SO(n). Thus given
g ∈ SO(n) such that g(bi) = −bi, we have

〈g (λ(bi)) · (−bi), bi〉 = −〈λ(bi) · bi, bi〉;

consequently,
〈λ(bi) · bi, bi〉 = 0. (12)

On the other hand given bj , bk ∈ B, let us denote by gjk the element in SO(n)
obtained by rotation of angle π/2 in the (bj , bk)-plane. Replacing g by gjk in
(11) results

〈λ(bi) · bj , bk〉+ 〈λ (gjk(bi)) · bj , bk〉 = −〈λ(bi) · bk, bj〉 − 〈λ (gjk(bi)) · bk, bj〉;

for i 6= j, k,
〈λ(bi) · bj , bk〉 = −〈λ(bi) · bk, bj〉. (13)

In particular we get
〈λ(bi) · bj , bj〉 = 0, (14)

for all j 6= i. By combining (12) and (14) we obtain

〈λ(bi) · (bi + bj), bi + bj〉 = 0,

for all j ∈ {1, . . . , n}, which implies that

〈λ(bi) · bj , bi〉 = −〈λ(bi) · bi, bj〉; (15)

for all j 6= i. From equalities (13) and (15) we clonclude that λ(bi) ∈ so(n) and
the result follows. �X
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Theorem 3.8. Let (M,∇, P ) be an infinitesimally homogeneous manifold of
dimension n 6= 1 with structure group SO(n) . Then P is the bundle of positively
oriented orthogonal frames in an oriented Riemannian structure in M with
constant sectional curvature. Additionally, one of the following cases holds:

(a) ∇ is the Levi-Civita connection of the Riemannian structure in M .

(b) The dimension of M is n = 3, and ∇ is of the form ∇′ + µt were ∇′
is the Levi-Civita connection, µ is an scalar constant, and t is the vector
product in TM induced by the oriented Riemannian structure of M .

Proof. In any case, by Lemma 3.4, the characteristic tensor R0 is of the form
λK0 and thus (M,P ) is a Riemannian oriented manifold of constant sectional
curvature. Let us now consider the case n 6= 3. In such case, by Lemmas 3.6
and 3.7, the characteristic tensors T0, J0 vanish. It follows that ∇ is a torsion-
free connection parallel to the oriented Riemannian structure, and thus it is
its Levi-Civita connection. Finally let us consider the case n = 3. By Lemma
3.7 we have that ∇ is a connection parallel to the oriented Riemann structure.
Let us consider ∇′ the torsion-free part of ∇ defined by ∇′ = ∇− 1

2T . By the
above argument, ∇′ is the Levi-Civita connection in the Riemannian structure,
and finally, by Lemma 3.6 the torsion T is a multiple of the vector product t
induced by the oriented Riemannian structure P in TM . �X

Remark 3.9. Note that SO(1) = {1}. Therefore, the case n = 1 has been
already discussed as an infinitesimally homogeneous structure over the identity.

3.5. Riemannian structures

Let us fix the group G = O(Rn) of orthogonal matrices and (M,∇, P ) an
infinitesimally homogeneous manifold with structure group G. It is well known
that to have a G-structure in M is equivalent to have a Riemannian metric in
M . Since −1 ∈ G, Lemma 3.1 implies that T0 and J0 vanish. Hence, ∇ is the
Levi-Civita connection associated to the Riemannian metric of M . Moreover,
for the characteristic tensor R0 it is clear that the procedure employed to solve
the case SO(n) applies verbatim. In conclusion, the only suitable tensors for
R0 are the scalar multiples of the following:

K : Rn × Rn × Rn 3 (u, v, w) 7−→ 〈v, w〉u− 〈u,w〉v ∈ Rn.

Note that R0 = λK is the curvature tensor of a Riemannian manifold of con-
stant sectional curvature λ. That is, the infinitesimally homogeneous manifolds
with structure group G are the Riemannian manifolds endowed with the Levi-
Civita connection and with constant sectional curvature.
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3.6. Volume structures

Let us fix G = SL(Rn). Any G-structure P → M is determined by a volume
form ω in M , and vice versa. Let us consider ∇ a linear connection in TM .
The quotient gl(TxM)/gx canonically identifies with R be means of the trace
morphism. This, the inner torsion JP of the structure is a 1-form in M . On
the other hand, there is no linear non zero G-invariant 1-form in Rn. Hence,
if JP is G-constant then it vanishes. Equivalently we may say that the volume
form ω is horizontal for the connection ∇, that is, ∇ω = 0. Similarly, a linear
algebra computation using generic parabolic maps in SL(Rn) shows that there
are not G-invariant tensors T0 and R0. Thus, if (M,∇, P ) is an infinitesimally
homogeneous manifold, then ∇ is a flat torsion-free linear connection. Sum-
marizing, an infinitesimally homogeneous space with structure group SL(Rn)
is an affine manifold (in the sense of Thurston, [2]) endowed with a horizontal
volume form.

3.7. Constant rank distributions

Let us fix G = GL(Rn;Rs) with s < n, the group of linear automorphisms of
Rn that fix Rs. It consist of block triangular matrices. Let (M,∇, P ) be an
infinitesimally homogeneous manifold with structure group G. For this partic-
ular group, G-structures P → M are in one-to-one correspondence with rank
s regular distributions of vector spaces in M . Let us denote by L the distribu-
tion corresponding to P . The group G containts the center of GL(Rn), hence
by Lemma 3.1, the characteristic tensors J0, T0 and R0 vanish. We have that
(M,∇) is an affine manifold and ∇ is a connection in P , or equivalently, the
distribution L is parallel with respect to ∇, and hence it determines a foliation
F whose leaves are s-dimensional affine submanifolds M . Summarizing, the
data of a infinitesimal homogeneous structure in M with structure group G
consists of:

(a) An affine manifold (M,∇).

(b) A foliation F of M by affine submanifolds of dimension s.

Let us remind that a submanifold of M is affine if ∇ induces a torsion free and
flat connection on it. Thus, the leaves of F are totally geodesic submanifolds
of M .

3.8. Webs

Let us fix G ⊂ GL(Rn) the group of diagonal matrices, and let (M,∇, P ) be an
infinitesimally homogeneous manifold with structure group G. By definition,
G-structure in M is a web. As before, by Lemma 3.1, the characteristic tensors
J0, T0 and R0 vanish. We have then that (M,∇) is an affine manifold. The web
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P is compatible with the connection ∇ and thus it is a web by geodesic lines.
Summarizing, an infinitesimally homogeneous manifold whose structure group
is that of diagonal matrices is an affine manifold endowed with a web (in the
sense of [1]) of geodesic lines.

3.9. Almost hermitian structures

Let us consider the group G = U(R2n) of unitary matrices, and (M,∇, P )
an infinitesimally homogeneous manifold with structure group G. It is well
known (see propositions 3.1, 3.2 and 4.7 in [3, vol. II]) that the G structure
P determines an almost hermitian structure consisting in an almost complex
structure J and an hermitian metric h in M . The bundle P → M is the
bundle of unitary frames of the almost hermitian structure. Let us compute the
characteristic tensors of (M,∇, P ). Let us proceed as in the case of Riemannian
structures: since −1 ∈ G, and Lemma 3.1 implies that T0 and J0 vanish. It
follows that ∇ is the Levi-Civita connection of the hermitian metric h. Let us
recall the following result [3, vol. II, Ch. IX, Theorem 4.8]:

Theorem 3.10. Let (M,J, h) be an almost hermitian manifold and P → M
the bundle of unitary frames. Then (M,J, h) is a Kähler manifold if and only
if P admits a torsion free connection (which is necessarily unique).

The vanishing of J0 and T0 implies that ∇ is a torsion-free connection in P ,
thus (M,J, h) is a Kähler manifold. Let us compute the curvature tensor R0,
let us consider the cuadrilinear map:

K : Cn × Cn × Cn × Cn → R,

defined by the formula:

K(u1, u2, u3, u4) =

1

4

(
〈u1, u3〉〈u2, u4〉 − 〈u1, u4〉〈u2, u3〉+ 〈u1, iu3〉〈u2, iu4〉 − 〈u1, iu4〉〈u2, iu3〉

+ 2〈u1, iu2〉〈u3, iu4〉
)

We have the following result analogous to Lemma 3.4.

Lemma 3.11. Let R be a quadrilinear map R : Rn × Rn × Rn × Rn 7−→ R
satisfying:

(a) R(u1, u2, u3, u4) = −R(u1, u2, u3, u4),

(b) R(u1, u2, u3, u4) = −R(u1, u2, u4, u3),

(c) R(u1, u2, u3, u4) +R(u1, u3, u4, u2) +R(u1, u4, u2, u3) = 0,

for all u1, u2, u3, u4 ∈ Rn. If R is U(n)-invariant then R is a multiple of the
tensor K.
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Proof. Let us consider e1, . . . , en the canonical basis of Cn es complex vec-
tor space, so that e1, . . . , en, ie1, . . . , ien is a real basis. Let us take λ =
R(e1, ie1, e1, ie1). For vector u ∈ Cn there is an unitary transformation g such
that g(u) = ‖u‖e1 and thus:

R(u, iu, u, iu) = 〈u, u〉2R(e1, ie1, e1, ie1) = λ〈u, u〉2 = λK(u, iu, u, iu).

Finally, by Lemma [3, vol II, Chapter IX, Proposition 7.1] we have that R =
λK. �X

Thus, we have R0 = λK. This tensor R0 is, by definition, the curvature ten-
sor of a Kähler manifold of constant holomorphic curvature λ. Hence, (M,∇, P )
is a Kähler manifold of constant holomorphic curvature. Summarizing:

Theorem 3.12. Let (M,∇, P ) be a manifold endowed with a connection ∇
and an U(n)-structure P . It is an infinitesimally homogeneous manifold if and
only if P is the bundle of unitary frames of a constant holomorphic curvature
Kähler structure in M and ∇ is its corresponding Levi-Civita connection.

3.10. Product of Riemannian structures

Let us fix the group O(Rn1) × O(Rn2) ⊂ GL(Rn), where n = n1 + n2. Since
−1 ∈ G, Lemma 3.1 implies that T0 and J0 vanish. Moreover, it follows from
the procedure done for the orthogonal group that the only suitable tensors for
the curvature are the linear combinations of K, K1 and K2 where for each
i = 1, 2, Ki is the version of K, defined in (9), over Rni .

On the other hand, since J0 vanishes, it follows from the algebraic rela-
tion between J0 and R0 given in [4, Theorem 1] that a suitable candidate for
the curvature tensor must be (o(Rn1) + o(Rn2))-valued. Given a linear com-
bination aK + bK1 + cK2, it is clear that it satisfies this condition only if a
vanishes. Thus, the only candidates for the curvature are the linear combina-
tions of K1 and K2. Summarizing, an infinitesimally homogeneous manifold
(M,∇, P ) with structural group O(Rn1) × O(Rn2) is locally described as the
product (M, g) = (M1, g

1) × (M2, g
2), of two Riemannian manifolds (M1, g

1),
(M2, g

2) each endowed with the Levi-Civita connection and with constant sec-
tional curvature. Where g denotes the metric structure given by the orthogonal
sum of g1 and g2, more precisely,

g(x1,x2)

(
(v1, v2), (w1, w2)

)
= g1

x1
(v1, w1) + g2

x2
(v2, w2),

for each x1 ∈ M1, x2 ∈ M2, v1, w1 ∈ Tx1M1 and each v2, w2 ∈ Tx2M2. More-
over, ∇ is the Levi-Civita connection for g and for each x = (x1, x2) ∈ M ,
P(x1,x2) is the set consisting of all linear isometries p : Rn1+n2 → T(x1,x2)M
such that

p
(
Rn1 ⊕ {0}n2

)
= Tx1

M1 ⊕ {0};
p
(
{0}n1 ⊕ Rn2

)
= {0} ⊕ Tx2

M2.
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4. Conclusions

In this article we have discussed the infinitesimally homogeneous structures of
affine manifolds with prescribed structure groups. We found that, for many
examples we arrive to well known geometric structures. However, we used ad
hoc methods for each group. It would be interesting to consider some other
examples, as symplectic groups, or develop a general procedure that allows to
solve this problem for a more general family of matrix groups.
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