Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov-Maxwell system

Puntos de bifurcación de los operadores no lineales: teoremas de existencia, asintótica y aplicación al sistema de Vlasov - Maxwell

LEONARDO RENDÓN¹,², ALEXANDRE V. SINITSYN¹, NIKOLAI A. SIDOROV²

¹Universidad Nacional de Colombia, Bogotá, Colombia
²Irkutsk State University, Irkutsk, Russia

Abstract. Existence theorems about bifurcation points of solutions for nonlinear operator equation in Banach spaces are proved. The sufficient conditions of bifurcation of solutions of boundary-value problem for Vlasov-Maxwell system are obtained. The analytical method of Lyapunov-Schmidt-Trenogin is employed.

Key words and phrases. plasma, bifurcation points, Conley index, nonlinear analysis, Vlasov-Maxwell system, Lyapunov-Schmidt-Trenogin method.

2010 Mathematics Subject Classification. 35J05, 35J10, 35K05.

Resumen. Se prueban teoremas de existencia de puntos de bifurcación en las soluciones de algunos operadores no lineales en espacios de Banach. Condiciones suficientes de bifurcación son obtenidas para las soluciones del problema de valor de frontera del sistema de Vlasov-Maxwell. Se emplea el método de Lyapunov-Schmidt-Trenogin.

1. Introduction

One of the current problems in natural sciences is the study of kinetic Vlasov-Maxwell (VM) system [20] describing a behavior of many-component plasma. A great number of literature about the existence of solutions for the VM system is available, for example see [1, 3, 11, 21, 35] and the references therein. Nevertheless, the problem of bifurcation analysis of VM system, which was first formulated by A. A. Vlasov [20], has appeared very complicated on the background of progress of bifurcation theory in other fields and it remains open until the present time. There are only some isolated results. In [10, 9] the VM system is reduced to the system of semilinear elliptical equations for special classes of distribution functions introduced in [12]. The relativistic version of VM system for such distributions was considered in [1]. One simple existence theorem of a point of bifurcation is announced in [13], and another one is proved for this system in [14].

Vladilen A. Trenogin laid out the fundamentals of the modern analytical branch theory of nonlinear equations. Here readers may refer to his monograph [19], chapters 7-10. The bifurcation theory have been developed by various authors [5, 6, 16, 17, 15, 25, 18, 21, 22, 30], etc. The approximate methods of construction branching solutions were constructed in [33, 26, 25, 27, 24, 21, 22, 34, 32, 28, 31, 30], [36, 37]. Readers may refer to the pioneering research contributions presented in original paper [13, 23, 14, 29], in the monograph [21] as well as in recently published monograph [35] in the field of bifurcation analysis of the Vlasov-Maxwell systems.

The objective of the present paper is to offer the survey of general existence theorems of bifurcation points of VM system with the given boundary conditions on potentials of an electromagnetic field both the densities of charge and current. Here we apply our results of bifurcation theory from [17, 15, 21, 22, 23] and we use the index theory [2, 7, 22] for the study of bifurcation points of the VM system.

We consider the many-component plasma consisting of electrons and positively charged ions of various species, which described by the many-particle distribution function \(f_i = f_i(r,v), \quad i = 1, \ldots, N \). The plasma is confined to a domain \(D \subset \mathbb{R}^3 \) with smooth boundary. The particles are to interact only by self-consistent force fields, collisions among particles being neglected.

The behavior of plasma is governed by the following version of the stationary VM system [20]

\[
v \cdot \partial_r f_i + q_i/m_i(E + \frac{1}{c}v \times B) \cdot \partial_v f_i = 0, \quad (1)
\]

\[r \in D \subset \mathbb{R}^3, \quad i = 1, \ldots, N,\]

\[\text{curl} E = 0,\]
\[\begin{align*}
\text{div} B &= 0 \\
\text{div} E &= 4\pi \sum_{k=1}^{N} q_k \int_{\mathbb{R}^3} f_k(r,v)dv \overset{\triangle}{=} \rho, \\
\text{curl} B &= 4\pi c \sum_{k=1}^{N} q_k \int_{\mathbb{R}^3} vf_k(r,v)dv \overset{\triangle}{=} j.
\end{align*} \]

Here \(\rho(r), j(r)\) are the densities of charge and current, and \(E(r), B(r)\) are the electrical and the magnetic fields.

We seek the solution \(E, B, f\) of VM system (1)-(2) for \(r \in D \subset \mathbb{R}^3\) with boundary conditions on the potentials and the densities

\[\begin{align*}
U \big|_{\partial D} &= u_{01}, & (A, d) \big|_{\partial D} &= u_{02}; \\
\rho \big|_{\partial D=0}, & \quad j \big|_{\partial D=0},
\end{align*} \]

where \(E = -\partial_t U, B = \text{curl} A, \) and \(U, A\) be scalar and vector potentials.

We call a solution \(E^0, B^0, f^0\) for which \(\rho^0 = 0\) and \(j^0 = 0\) in domain \(D\), trivial.

In the present paper we investigate the case of distribution functions of the special form \([9]\)

\[f_i(r,v) = \lambda f_i(-\alpha_i v^2 + \varphi_i(r), v \cdot d_i + \psi_i(r)) \overset{\triangle}{=} \lambda f_i(R, G) \]

\[\varphi_i : \mathbb{R}^3 \to \mathbb{R}; \quad \psi_i : \mathbb{R}^3 \to \mathbb{R}; \quad r \in D \subseteq \mathbb{R}^3; \quad v \in \mathbb{R}^3; \]

\[\lambda \in \mathbb{R}^+; \quad \alpha_i \in \mathbb{R}^+ \overset{\triangle}{=} [0, \infty); \quad d_i \in \mathbb{R}^3, \ i = 1, \ldots, N, \]

where functions \(\varphi_i, \psi_i\), generating the appropriate electromagnetic field \((E, B)\), has to be defined.

We are interested in the dependence of unknown functions \(\varphi_i, \psi_i\) upon parameter \(\lambda\) in distribution (5). Here we study the case, when \(\lambda\) in (5) does not depend on physical parameters \(\alpha_i\) and \(d_i\). The general case of a bifurcation problem with \(\alpha_i = \alpha_i(\lambda), d_i = d_i(\lambda), \varphi_i = \varphi_i(\lambda, r), \psi_i = \psi_i(\lambda, r)\) will be considered in the following paper.

Definition 1.1. The point \(\lambda^0\) is called a bifurcation point of the solution of VM system with conditions (3), (4), if in any neighborhood of vector \((\lambda^0, E^0, B^0, f^0)\), corresponding to the trivial solution with \(\rho^0 = 0, j^0 = 0\) in domain \(D\), there is a vector \((\lambda, E, B, f)\) satisfying to the system (1)-(2) with (3), (4) and for which

\[\| E - E^0 \| + \| B - B^0 \| + \| f - f^0 \| > 0. \]
Let φ_0^i, ψ_0^i are such constants that the corresponding ρ_0^i and j_0^i, induced by distributions f_i in the medium for φ_0^i, ψ_0^i, are equal to zero in domain D. Then VM system has the trivial solution

$$f_0^i = \lambda \hat{f}_i(-\alpha_i v^2 + \varphi_0^i, v \cdot d_i + \psi_0^i), \quad E_0^i = 0, \quad B_0^i = \beta d_i, \quad \beta = \text{const for } \forall \lambda.$$

The organization of the present paper is as follows. In Section 2 two theorems of existence of bifurcation points for the nonlinear operator equation in Banach space generalizing known results on a bifurcation point are proved. The method of proof of these theorems uses the index theory of vector fields [2, 7] and allows to research not only the point, but also the bifurcation surfaces with minimum restrictions on equation.

In Section 3 we reduce the problem on a bifurcation point of VM system to the problem on bifurcation point of semilinear elliptic system. Last one is treated as the operator equation in Banach space. We derive the branching equation (BEq) which allows to prove the principal theorem of existence of bifurcation points of VM system because of results of the Section 2. An essential moment here is that the semilinear system of elliptic equations is potential that reduces to potentiality of BEq.

It follows from our results that for the original problem (1)–(4) the bifurcation is possible only in the case, when number of species of particles $N \geq 3$.

2. Bifurcation of solutions of nonlinear equations in Banach spaces

Let E_1, E_2 are real Banach spaces; T be normalized space. Consider the equation

$$Bx = R(x, \varepsilon). \quad (6)$$

Here $B : D \subset E_1 \rightarrow E_2$ be closed linear operator with a dense range of definition in E_1. The operator $R(x, \varepsilon)$ with values in E_2 is defined, is continuous and Frechet continuously differentiable with respect to x in a neighborhood

$$\Omega = \{ x \in E_1, \varepsilon \in \Upsilon : \| x \| < r, \| \varepsilon \| < \varrho \}.$$

Thus, $R(0, \varepsilon) = 0, R_x(0, 0) = 0$. Let operator B be Fredholm. Let us introduce the basis $\{ \varphi_i \}^n_i$ in a subspace $N(B)$, the basis $\{ \psi_i \}^n_i$ in $N(B^*)$, and also the systems $\{ \gamma_i \}^n_i \in E_1, \{ z_i \}^n_i \in E_2$ which are biorthogonal to these bases.

Definition 2.1. The point ε_0 is called a bifurcation point of the equation (6), if in any neighbourhood of point $x = 0, \varepsilon_0$ there is a pair (x, ε) with $x \neq 0$ satisfying to the equation (6).

It is well known [19] that the problem on a bifurcation point of (6) is equivalent to the problem on bifurcation point of finite-dimensional system

$$L(\xi, \varepsilon) = 0,$$

(7)
where \(\xi \in R^n \), \(L : R^n \times \Upsilon \to R^n \). We call equation (7) the branching equation (BEq). We write (6) as the system

\[
\tilde{B}x = R(\xi, \varepsilon) + \sum_{s=1}^{n} \xi_s z_s \tag{8}
\]

\[
\xi_s = \langle x, \gamma_s \rangle, \quad s = 1, \ldots, n, \tag{9}
\]

where \(\tilde{B} \overset{def}{=} B + \sum_{s=1}^{n} \langle \cdot, \gamma_s \rangle z_s \) has inverse bounded. The equation (8) has the unique small solution

\[
x = \sum_{s=1}^{n} \xi_s \varphi_s + U(\xi, \varepsilon) \tag{10}
\]

at \(\xi \to 0, \varepsilon \to 0 \). Substitution (10) into (9) yields formulas for the coordinates of vector-function \(L : R^n \times \Upsilon \to R^n \)

\[
L_k(\xi, \varepsilon) = \langle R\left(\sum_{s=1}^{n} \xi_s \varphi_s + U(\xi, \varepsilon), \varepsilon\right), \psi_k \rangle. \tag{11}
\]

Here derivatives

\[
\frac{\partial L_k}{\partial \xi_i} |_{\xi=0} = \langle R_x(0, \varepsilon)(I - \Gamma R_x(0, \varepsilon))^{-1}, \psi_k \rangle \overset{def}{=} a_{ik}(\varepsilon)
\]

are continuous in a neighbourhood of point \(\varepsilon = 0, \| \Gamma R_x(0, \varepsilon) \| < 1 \).

Let us introduce a set \(\Omega = \{ \varepsilon \mid \det[a_{ik}(\varepsilon)] = 0 \} \), containing point \(\varepsilon = 0 \) and the following condition:

A) Suppose that in a neighbourhood of point \(\varepsilon_0 \in \Omega \) there is a set \(S \), being Jordan continuum, representable as \(S = S_+ \bigcup S_- \), \(\varepsilon_0 \in \partial S_+ \cap \partial S_- \). Moreover, there is a continuous map \(\varepsilon(t), t \in [-1, 1] \) such that \(\varepsilon : [-1, 0) \to S_- \), \(\varepsilon : (0, 1] \to S_+ \), \(\varepsilon(0) = \varepsilon_0 \), \(\det[a_{ik}(\varepsilon(t))]_{i,k=1}^{n} = \alpha(t) \), where \(\alpha(t) : [-1, 1] \to R^1 \) be continuous function vanishes only at \(t = 0 \).

Theorem 2.2. Assume condition **A**, and \(\alpha(t) \) is monotone increasing function. Then \(\varepsilon_0 \) be a bifurcation point of (6).

Proof. We take arbitrarily small \(r > 0 \) and \(\delta > 0 \). Consider the continuous vector field

\[
H(\xi, \Theta) \overset{def}{=} L(\xi, \varepsilon((2\Theta - 1)\delta)) : R^n \times R^1 \to R^n,
\]

defined at \(\xi, \Theta \in M \), where \(M \{ \xi, \Theta \mid \| \xi \|= r, \quad 0 \leq \Theta \leq 1 \} \).

Case 1. If there is a pair \((\xi^*, \Theta^*) \in M \) for which \(H(\xi^*, \Theta^*) = 0 \), then by definition 2, \(\varepsilon_0 \) will be a bifurcation point.
Case 2. We assume that \(H(\xi, \Theta) \neq 0 \) at \(\forall (\xi, \Theta) \in M \) and, hence, \(\varepsilon_0 \) is not a bifurcation point. Then vector fields \(H(\xi, 0) \) and \(H(\xi, 1) \) are homotopic on the sphere \(\| \xi \|= r \). Consequently, their rotations \([6]\) coincided
\[
J(H(\xi, 0), \| \xi \|= r) = J(H(\xi, 1), \| \xi \|= r) \tag{12}
\]
Since vector fields \(H(\xi, 0), H(\xi, 1) \) and their linearizations
\[
L^-_1(\xi) \overset{df}{=} \sum_{k=1}^{n} a_{ik}(\varepsilon(-\delta))\xi_k |_{\varepsilon=0}^{n},
L^+_1(\xi) \overset{df}{=} \sum_{k=1}^{n} a_{ik}(\varepsilon(+\delta))\xi_k |_{\varepsilon=0}^{n}
\]
are nondegenerated on the sphere \(\| \xi \|= r \), then by smallness of \(r > 0 \), fields \((H(\xi, 0), H(\xi, 1)) \) are homotopic to the linear parts \(L^-_1(\xi) \) and \(L^+_1(\xi) \).

Therefore
\[
J(H(\xi, 0), \| \xi \|= r) = J(L^-_1(\xi), \| \xi \|= r) \tag{13}
J(H(\xi, 1), \| \xi \|= r) = J(L^+_1(\xi), \| \xi \|= r). \tag{14}
\]
Because of nondegeneracy of linear fields \(L^+_1(\xi) \), by the theorem about Kronecker index, the following equalities hold
\[
J(L^-_1(\xi), \| \xi \|= r) = \text{sign}\alpha(-\delta),
J(L^+_1(\xi), \| \xi \|= r) = \text{sign}\alpha(+\delta).
\]
Since \(\alpha(-\delta) < 0 \), \(\alpha(+\delta) > 0 \), then the equality (12) is impossible by (13), (14). Hence, we find a pair \((\xi^*, \Theta^*) \in M \) for which \(H(\xi^*, \Theta^*) = 0 \) and \(\varepsilon_0 \) be a bifurcation point. \(\blacksquare \)

Remark 2.3. If the conditions of Theorem 2.2 are satisfied for \(\forall \varepsilon \in \Omega_0 \subset \Omega \), then \(\Omega_0 \) be a bifurcation set of \((6)\). If moreover, \(\Omega_0 \) is connected set and its every point is contained in a neighbourhood, which is homeomorphic to some domain of \(R^n \), then \(\Omega_0 \) is called \(n \)-dimensional manifold of bifurcation.

For example, it is true, if \(\Upsilon = R^{n+1}, n \geq 1, \Omega_0 \) be a bifurcation set of \((6)\) containing point \(\varepsilon = 0 \) and \(V_{\varepsilon}\det[\alpha_k(\varepsilon)] |_{\varepsilon=0} \neq 0 \). It follows from the Theorem 2.2 at \(\Upsilon = R^1 \) the generalization [17], and also other known strengthening of M. A. Krasnoselskii theorem on a bifurcation point of odd multiplicity [6]. An important results in the theory of bifurcation points was obtained for \((6)\) with potential \(B\Eq \) to \(\xi \), when
\[
L(\xi, \varepsilon) = \grad_{\xi} U(\xi, \varepsilon).
\tag{15}
\]
This condition is valid, if a matrix \(\left[\frac{\partial L}{\partial \xi_i} \right]_{i,k=1}^{n} \) is symmetric. By differentiation of superposition, one finds from (11) that
\[
\frac{\partial L_k}{\partial \xi_i} = \langle R_x \left(\sum_{s=1}^{n} \xi_s \varphi_s + U(\xi,\varepsilon),\varepsilon \right) \left(\varphi_i + \frac{\partial U}{\partial \xi_i} \right), \psi_k \rangle, \tag{16}
\]
where according to (8), (10)
\[
\varphi_i + \frac{\partial U}{\partial \xi_i} = (I - \Gamma R_x)^{-1} \varphi_i. \tag{17}
\]
The operator \(I - \Gamma R_x \) is continuously invertible because \(\| \Gamma R_x \| < 1 \) for sufficiently small by norm \(\xi \) and \(\varepsilon \). Substituting (17) into (16) we obtain equalities
\[
\frac{\partial L_k}{\partial \xi_i} = \langle R_x (I - \Gamma R_x)^{-1} \varphi_i, \psi_k \rangle, \quad i,k = 1,\ldots,n.
\]
It follows the following claim:

Lemma 2.4. In order BEq (7) to be potential it is sufficient that a matrix
\[
\Xi = \left[\langle R_x (\Gamma R_x)^m \varphi_i, \psi_k \rangle \right]_{i,k=1}^{n}
\]
to be symmetric at \(\forall (x,\varepsilon) \) in a neighborhood of point \((0,0) \).

Corollary 2.5. Let all matrices
\[
\left[\langle R_x (\Gamma R_x)^m \varphi_i, \psi_k \rangle \right]_{i,k=1}^{n}, \quad m = 0,1,2,\ldots
\]
are symmetric in some neighborhood of point \((0,0) \). Then BEq (7) be potential.

Corollary 2.6. Let \(E_1 = E_2 = H \), \(H \) be Hilbert space. If operator \(B \) is symmetric in \(D \), and operator \(R_x(x,\varepsilon) \) is symmetric for \(\forall (x,\varepsilon) \) in a neighbourhood of point \((0,0) \) in \(D \), then BEq be potential.

In the paper [16] more delicate sufficient conditions of BEq potentiality have been proposed.

Suppose that BEq (7) is potential. Then it follows from the proof of Lemma 2.4 that the corresponding potential \(U \) in (15) has the form
\[
U(\xi,\varepsilon) = \frac{1}{2} \sum_{i,k=1}^{n} a_{i,k}(\varepsilon) \xi_i \xi_k + \omega(\xi,\varepsilon),
\]
where \(\| \omega(\xi,\varepsilon) \| = 0(\xi^2) \) at \(\xi \to 0 \).

Theorem 2.7. Let BEq (7) be potential. Assume condition \(\mathbf{A} \). Moreover, let the symmetrical matrix \(\left[a_{i,k}(\varepsilon(t)) \right] \) possesses at least \(\nu_1 \) positive eigenvalues at \(t > 0 \) and at least \(\nu_2 \) positive eigenvalues at \(t < 0 \), \(\nu_1 \neq \nu_2 \). Then \(\varepsilon_0 \) will be a bifurcation point of (6).
We take the arbitrary small $\delta > 0$ and we consider the function $U(\xi, \varepsilon((2\Theta - 1)\delta))$, defined at $\Theta \in [0, 1]$ in a neighborhood of the critical point $\xi = 0$.

Case 1. If there is $\Theta^* \in [0, 1]$ such that $\xi = 0$ is the nonisolated critical point of the function $U(\xi, \varepsilon((2\Theta^* - 1)\delta))$, then by Definition 2.1, ε_0 will be a bifurcation point.

Case 2. Assume that point $\xi = 0$ will be the isolated critical point of the function $U(\xi, \varepsilon((2\Theta - 1)\delta))$ at $\forall \Theta \in [0, 1]$, where $\varepsilon(\xi)$ be continuous function from condition A). Then at $\forall \Theta \in [0, 1]$, the Conley index $[2] K_\Theta$ of the critical point $\xi = 0$ of this function is defined. Let us remind that

$$\det \| \frac{\partial^2 U(\xi, \varepsilon((2\Theta - 1)\delta))}{\partial \xi_i \partial \xi_k} \|_{\xi=0} = \alpha((2\Theta - 1)\delta).$$

Since $\alpha((2\Theta - 1)\delta) \neq 0$ at $\Theta \neq \frac{1}{2}$, then the critical point $\xi = 0$ at $\Theta \neq \frac{1}{2}$ is nonsingular. Therefore, index K_Θ for any $\Theta \neq \frac{1}{2}$ by the definition (here readers may refer to p.6 [2]), is necessary equal to the number of positive eigenvalues of the corresponding Hessian. Thus, $K_\Theta = \nu_1$, $K_1 = \nu_2$, where $\nu_1 \neq \nu_2$ by the condition of Theorem 2.7. Hence, $K_\Theta \neq K_1$. Suppose that ε_0 is not a bifurcation point. Then $\nabla_\xi U(\xi, \varepsilon((2\Theta - 1)\sigma)) \neq 0$ at $0 < \| \xi \| \leq r$, where $r > 0$ is small enough, $\Theta \in [0, 1]$. Because of homotopic invariancy of Conley index (see in [2, Theorem 4, p.52]), K_Θ is constant at $\Theta \in [0, 1]$ and $K_0 = K_1$. Hence, in the second case we find a pair (ξ^*, Θ^*) for arbitrary small $r > 0$, $\delta > 0$, where $0 < \| \xi^* \| \leq r$, $\Theta^* \in [0, 1]$, satisfying to the equation $\nabla_\xi U(\xi, \varepsilon((2\Theta - 1)\delta)) = 0$ and ε_0 is a bifurcation point.

Remark 2.8. Other proof of the Theorem 2.7 with application of the Roll theorem is given in [18] for the case $\Upsilon = R^1$, $\nu_+ = n$, $\nu_- = 0$.

Remark 2.9. The Theorems 2.2, 2.7 (see Remark 2.3) allow to construct not only the bifurcation points, but also the bifurcation sets, surfaces and curves of bifurcation.

Corollary 2.10. Let $\Upsilon = R^1$ and B_{Eq} be potential. Moreover, let $[a_{ik}(\varepsilon)]_{i,k=1}^n$ be positively definite matrix at $\varepsilon \in (0, r)$ and negatively defined at $\varepsilon \in (-r, 0)$. Then $\varepsilon = 0$ is a bifurcation point of (6).

Consider the connection of eigenvalues of matrix $[a_{ik}(\varepsilon)]$ with eigenvalues of operator $B - R_x(0, \varepsilon)$.

Lemma 2.11. Let $E_1 = E_2 = E$, $\varepsilon \in R^1$; $\nu = 0$ be isolated Fredholm point of operator-function $B - \nu I$. Then

$$\text{sign} \Delta(\varepsilon) = (-1)^k \text{sign} \prod_{i=1}^k \nu_i(\varepsilon) = \text{sign} \prod_{i=1}^n \mu_i(\varepsilon),$$
where \(k \) be a root number of operator \(B \); \(\{ \mu_i^n \} \) are eigenvalues of matrix \([a_{ik}(\varepsilon)] \), \(\Delta(\varepsilon) = \det[a_{ik}(\varepsilon)] \).

Proof. Since \(\{ \mu_i^n \} \) are eigenvalues of matrix \([a_{ik}(\varepsilon)] \), then \(\prod^n \mu_i(\varepsilon) = \Delta(\varepsilon) \). Thus, it is sufficient to prove the equality \(\Delta(\varepsilon) = (-1)^k \prod^n \nu_i(\varepsilon) \). Since zero is the isolated Fredholm point of operator-function \(B - \nu I \), then operators \(B \) and \(B^* \) have the corresponding complete Jordan systems \[19\]

\[
\varphi_i^{(s)} = (\Gamma)^{s-1} \varphi_i^{(1)}, \quad \psi_i^{(s)} = (\Gamma^*)^{s-1} \psi_i^{(1)}, \quad i = 1, \ldots, n; \quad s = 1, \ldots, P_i. \tag{18}
\]

Here

\[
< \varphi_i^{(P_1)}, \psi_j >= \delta_{ij}; \quad < \varphi_i, \psi_j^{(P_1)} >= \delta_{ij}, \quad i, j = 1, \ldots, n; \quad \sum^n_{i=1} P_i = k.
\]

Let us remind that

\[
\varphi_i^{(1)} \triangleq \varphi_i = \Gamma \varphi_i^{(P_1)}, \quad \psi_i^{(1)} \triangleq \psi_i = \Gamma^* \psi_i^{(P_1)}, \quad \Gamma = \left(B + \sum^n_{i=1} < \cdot, \psi_i^{(P_1)} \right)^{-1} \varphi_i^{(P_1)}, \tag{19}
\]

where \(k = l_1 + \ldots + l_n \) we call a root number of operator \(B - R_\varepsilon(0, \varepsilon) \). The small eigenvalues \(\nu(\varepsilon) \) of operator \(B - R_\varepsilon(0, \varepsilon) \) satisfy to the following branching equation \[19\]

\[
L(\nu, \varepsilon) \triangleq \det |< R_\varepsilon(0, \varepsilon) + \nu I > (I - \Gamma R_\varepsilon(0, \varepsilon) - \nu \Gamma)^{-1} \varphi_i, \psi_j >|_{i,j=1}^{P_i} = 0. \tag{20}
\]

Because of preliminary Weierstrass theorem \[19\], by the equalities (18), (19), equation (20) in a neighbourhood of zero will be transformed to the form

\[
L(\nu, \varepsilon) = (\nu^k + H_{k-1}(\varepsilon)\nu^{k-1} + \ldots + H_0(\varepsilon)) \Omega(\varepsilon, \nu) = 0,
\]

where \(H_{k-1}(\varepsilon), \ldots, H_0(\varepsilon) = \Delta(\varepsilon) \) are continuous functions of \(\varepsilon \), \(\Omega(0, 0) \neq 0 \), \(H_0(0) = 0 \). Consequently, operator \(B - R_\varepsilon(0, \varepsilon) \) has \(k \geq n \) small eigenvalues \(\nu_i(\varepsilon), i = 1, \ldots, n \), which we may define from the equation

\[
\nu^k + H_{k-1}(\varepsilon)\nu^{k-1} + \ldots + \Delta(\varepsilon) = 0.
\]

Then \(\prod^n \nu_i(\varepsilon) = \Delta(\varepsilon)(-1)^k \).

Assume now \(\varepsilon \in R^l \). Consider the calculation of asymptotics of eigenvalues \(\mu(\varepsilon) \) and \(\nu(\varepsilon) \). Let us introduce the block representation of matrix \([a_{ik}]_{i,k=1}^n \) satisfying the following condition:

B Let \([a_{ik}(\varepsilon)]_{i,k=1}^n = [A_{ik}(\varepsilon)]_{i,k=1}^l \sim [\varepsilon^r A_{ik}^0]_{i,k=1}^l \) at \(\varepsilon \to 0 \), where \([A_{ik}] \) are blocks of dimensionality \([n_i \times n_k], n_1 + \ldots + n_l = n, \min(r_1, \ldots, r_l) = r_m \geq r_j, r_{ik} > r_i \) at \(k > i \) (or at \(k < i \), \(i = 1, \ldots, l \). Let \(\prod^n \det[A_{ik}^0]
eq 0 \). The condition **B** means that matrix \([a_{ik}(\varepsilon)]_{i,k=1}^n \) admits the block representation being “asymptotically triangular” at \(\varepsilon \to 0 \).
Lemma 2.12. Assume B). Then

\[
\det[a_{ik}(\varepsilon)]_{n}^{n_{k} = 1} = \varepsilon^{n_{1}r_{1} + \ldots + n_{l}r_{l}} \left(\prod_{i=1}^{l} \det |A_{ii}^{0} | + 0(1) \right),
\]

formulas

\[
\mu_{i} = \varepsilon^{r_{i}}(C_{i} + 0(1)), \quad i = 1, \ldots, l \tag{21}
\]

define the principal terms of all \(n \) eigenvalues of matrix \(|a_{ik}(\varepsilon)|_{n}^{n_{k} = 1}\), where \(\mu_{i}, C_{i} \in R^{n_{i}} \); \(C_{i} \) be vector of eigenvalues of matrix \(A_{ii}^{0} \).

Proof. By B) and the property of linearity of determinant, we have

\[
\det[a_{ik}(\varepsilon)] = \varepsilon^{n_{1}r_{1} + \ldots + n_{l}r_{l}} \det \begin{vmatrix} A_{11}^{0} + 0(1), & 0(1) & \ldots & \ldots & 0(1) \\ A_{21}^{0} + 0(1), & A_{22}^{0} + 0(1), & 0(1) & \ldots & 0(1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{l1}^{0} + 0(1), & \ldots & \ldots & \ldots & A_{ll}^{0} + 0(1) \end{vmatrix} = \varepsilon^{n_{1}r_{1} + \ldots + n_{l}r_{l}} \left(\prod_{i=1}^{l} \det |A_{ii}^{0} | + 0(1) \right).
\]

Substituting \(\mu = \varepsilon^{r_{i}}(C_{i} + 0(1)), \quad i = 1, \ldots, l \) into equation \(\det[a_{ik}(\varepsilon)] - \mu \delta_{ik} |_{i,k=1}^{n} = 0 \) and using the property of linearity of determinant we obtain equation

\[
\varepsilon^{n_{1}r_{1} + \ldots + n_{l}r_{l} + (n_{1} + \ldots + n_{l})r_{l}} \left(\prod_{j=1}^{i-1} \det |A_{jj}^{0} | \right) \cdot \det(A_{ii}^{0} - (\varepsilon)E)(\varepsilon)^{n_{1} + \ldots + n_{l} - r_{i}} + a_{i}(\varepsilon) = 0, \quad i = 1, \ldots, l, \tag{22}
\]

where \(a_{i}(\varepsilon) \to 0 \) at \(\varepsilon \to 0 \). Hence, the coordinates of unknown principal terms \(C_{i} \) in asymptotics (21) satisfy to the equations \(\det |A_{ii}^{0} - E | = 0, \quad i = 1, \ldots, l \).

If \(k = n \), then operator \(B - R_{x}(0, \varepsilon) \), as well as the matrix \([a_{ik}(\varepsilon)]_{n}^{n_{k} = 1}\) has \(n \) small eigenvalues. In this case we state a result:

Corollary 2.13. Let operator \(B \) has not \(I \)-joined elements and let the condition B) holds. Then the formula

\[
\nu_{i} = -\varepsilon^{r_{i}}(C_{i} + 0(1)), \quad i = 1, \ldots, l, \tag{23}
\]

defines all \(n \) small eigenvalues of operator \(B - R_{x}(0, \varepsilon) \), where \(C_{i} \in R^{n_{i}} \) be vector of eigenvalues of matrix \(A_{ii}^{0} \), \(i = 1, \ldots, l, \quad n_{1} + \ldots + n_{l} = n \).
Proof. By Lemma 2.11 in this case \(\sum_{i=1}^{n} P_i = n \) (root number \(k = n \)) and operator \(B - R_\varepsilon(0, \varepsilon) \) possesses at least \(n \) small eigenvalues. Since \(\sum_{i=1}^{n} n_i = n \), \(A^0_{ii} \) is quadratic matrix, then formula (23) yields \(n \) eigenvalues, where the principal terms coincide to within a sign with principal terms in (21). For calculation of eigenvalues \(\nu \) of operator \(B - R_\varepsilon(0, \varepsilon) \) we transform (20) to the form

\[
L(\nu, \varepsilon) = \det[a_{ik}(\varepsilon) + \sum_{j=1}^{\infty} b^{(j)}_{ik} \nu^j]_{i,k=1}^{n} = 0, \quad (24)
\]

where

\[
b^{(j)}_{ik} = <[I - \Gamma R_\varepsilon(0, \varepsilon)]^{-1}\Gamma]^{j-1}(I - \Gamma R_\varepsilon(0, \varepsilon))^{-1}\varphi_i, \gamma_k > .
\]

Substituting \(\nu = -\varepsilon^r e(\varepsilon) \) into (24) and taking into account the property of linearity of determinant we shall receive the equation, which differs from (22) by error term \(a_i(\varepsilon) \) only. Then in conditions of Corollary 2.13 the principal terms of all small eigenvalues of operator \(B - R_\varepsilon(0, \varepsilon) \) and matrix \(-[a_{ik}(\varepsilon)]\) are defined from the same equations and therefore, are equal. \(\square \)

Conclusions. 1) By Lemma 2.12 we can replace condition A) in the Theorem 1.2 with the following one:

A'). Let \(E_1 = E_2 = E \); \(\nu = 0 \) be isolated Fredholm point of operator-function \(B - \nu I \). Let in a neighbourhood of point \(\varepsilon_0 \in \Omega \) there is a set \(S \), containing point \(\varepsilon_0 \) and be continuum represented as \(S = S_+ \cup S_- \). Moreover, assume

\[
\varepsilon_0 \in \partial S_+ \cap \partial S_-; \quad \prod_{i} \nu_i(\varepsilon) \big|_{\varepsilon \in S_+} \cdot \prod_{i} \nu_i(\varepsilon) \big|_{\varepsilon \in S_-} < 0,
\]

where \(\{\nu_i(\varepsilon)\} \) are small eigenvalues of operator \(B - R_\varepsilon(0, \varepsilon) \).

2) If the principal terms of asymptotics of small eigenvalues of operator \(B - R_\varepsilon(0, \varepsilon) \) and matrix \(-[a_{ik}(\varepsilon)]\) coincide, then we may use eigenvalues of such operator in the Theorem 1.2. By Corollary 1.13 it is possible, if \(E_1 = E_2 = H \), operators \(B \) and \(R_\varepsilon(0, \varepsilon) \) are symmetric and condition B) is valid. Let us note that condition B) is valid in papers [16, 17, 15, 18] about bifurcation point with potential BEq, thus \(r_1 = \ldots = r_n = 1 \).

3. Statement of boundary-value problem and problem on a bifurcation point for the system (32) [9]

We begin with a preliminary result on reduction of VM system (1)-(2) with conditions (3) to the quasilinear system of elliptical equations for distribution (5), was first investigated in [10]. Assume the following condition:

C). \(\hat{f}_i(R, G) \) are fixed, differentiable functions in distribution (5); \(\alpha_i, d_i \) are free parameters; \(|d_i| \neq 0 \); \(\varphi_i = c_{1i} + l_i \varphi(r) \); \(\psi_i = c_{2i} + k_i \psi(r) \); \(c_{1i}, c_{2i} \) - const;
the parameters l_i, k_i are connected by relations

$$l_i = \frac{m_1}{\alpha_1 q_i} l_i, \quad k_i = \frac{q_i}{m_1} d_i, \quad k_1 = l_1 = 1,$$

(25)

and the integrals $\int_{\mathbb{R}^3} f_i dv, \int_{\mathbb{R}^3} f_i i dv$ converge at $\forall \varphi_i, \psi_i$.

Let us introduce notations $m_1 \triangleq m, \alpha_1 \triangleq \alpha, q_1 \triangleq q$.

Theorem 3.1. Let f_i are defined as well as in (5) and the condition C is valid. Let the vector-function (φ, ψ) is a solution of the system of equations

$$\Delta \varphi = \mu \sum_{k=1}^{N} q_k \int_{\mathbb{R}^3} f_k dv, \quad \mu = \frac{8\pi \alpha q}{m},$$

$$\Delta \psi = \nu \sum_{k=1}^{N} q_k \int_{\mathbb{R}^3} (v, d) f_k dv, \quad \nu = -\frac{4\pi q}{mc^2}$$

$$\varphi |_{\partial D} = -\frac{2\alpha q}{m} u_{01}, \quad \psi |_{\partial D} = \frac{q}{mc} u_{02}$$

(27)

on a subspace

$$\left(\partial_r \varphi_i, d_i \right) = 0, \quad \left(\partial_r \psi_i, d_i \right) = 0, \quad i = 1, \ldots, N.$$

(28)

Then the VM system (1), (2) with conditions (5) possesses a solution

$$E = \frac{m}{2\alpha q} \partial_r \varphi, \quad B = \frac{d}{d^2} (\beta + \int_{0}^{1} (d \times J(tr), r) dt) - \left[d \times \partial_r \psi \right] \frac{mc}{qd^2}$$

(29)

where

$$J \triangleq \frac{4\pi}{c} \sum_{k=1}^{N} q_k \int_{\mathbb{R}^3} v f_k dv, \quad \beta = \text{const.}$$

The potentials

$$U = -\frac{m}{2\alpha q} \varphi, \quad A = \frac{mc}{qd^2} \psi d + A_1(r), \quad (A_1, d) = 0$$

(30)

satisfying condition (3) are defined through this solution.

The proof of Theorem 3.1 follows from [14, Theorem 1].

Introduce notations

$$j_i = \int_{\mathbb{R}^3} v f_i dv, \quad \rho_i = \int_{\mathbb{R}^3} f_i dv, \quad i = 1, \ldots, N$$

and the following condition:

Volumen 50, Número 1, Año 2016
There are vectors \(\beta_i \in \mathbb{R}^3 \) such that
\[j_i = \beta_i \rho_i, \quad i = 1, \ldots, N. \]

For example, the condition \(D \) holds for distribution
\[f_i = f_i(a(-\alpha_i v^2 + \varphi_i) + b((d_i, v) + \psi_i)) \tag{31} \]
for \(\beta_i = \frac{b}{2\alpha_i} d_i, \quad a, b \text{-const.} \)

Suppose that condition \(D \) is valid. Then the system (26) will be transformed to the following
\[\triangle \varphi = \lambda \mu \sum_{i=1}^{N} q_i A_i, \quad \triangle \psi = \lambda \nu \sum_{i=1}^{N} q_i (\beta_i, d) A_i, \tag{32} \]
where
\[A_i(l_i \varphi, k_i \psi, \alpha_i, d_i) \triangleq \int_{\mathbb{R}^3} f_i dv. \]

Further, we shall suppose that the auxiliary vector \(d \) in (5) is directed along axes \(Z \). Because of conditions (28) we put in system (32) \(\varphi = \varphi(x, y), \quad \psi = \psi(x, y), \)
\(x, y \in D \subset \mathbb{R}^2 \). Moreover, let \(N \geq 3 \) and \(\frac{k_i}{l_i} \neq \text{const} \).

Let \(D \) be bounded domain in \(\mathbb{R}^2 \) with the boundary \(\partial D \) of class \(C^{2,\alpha} \), \(\alpha \in (0, 1] \). The boundary conditions (4) on the densities of local charge and current induce the equalities:

I.
\[\sum_{k=1}^{N} q_k A_k(l_k \varphi^0, k_k \psi^0, \alpha_i, d_i) = 0; \quad \sum_{k=1}^{N} q_k (\beta_k, d) A_k(l_k \varphi^0, k_k \psi^0, \alpha_i, d_i) = 0 \tag{33} \]
for \(\forall \varepsilon \in \epsilon \), where \(\epsilon \) is a neighbourhood of point \(\varepsilon = 0 \) and
\[\varphi^0 = -\frac{2\alpha q}{m} u_{01}, \quad \psi^0 = \frac{q}{mc} u_{02}. \tag{34} \]

Remark 3.2. If \(N = 2 \) and \(\beta_i = \frac{d_i}{2\alpha_i} \), then by condition \(I \) and equalities
\((\beta_i, d) = \frac{d^2}{2m} \frac{m}{\alpha_i} \), we have alternative: or in condition \(I \): \(A_1 = A_2 = 0 \) or \(k_i = l_i, \)
\(i = 1, 2 \). In this case, and also at \(\frac{k_i}{l_i} = \text{const} \) the system (32) is reduced to one equation and bifurcation of solutions in such approach, as it is considered in this paper is impossible.

By (33), (34) system (32) with boundary conditions
\[\varphi \big|_{\partial D} = \varphi^0, \quad \psi \big|_{\partial D} = \psi^0 \tag{35} \]
has a trivial solution \(\varphi = \varphi^0, \psi = \psi^0 \) at \(\forall \lambda \in \mathbb{R}^+ \).
Then because of Theorem 3.1 the VM system with boundary conditions (3), (4) has a trivial solution at \(\forall \lambda \)

\[
E^0 = \frac{m}{2\alpha q} \partial_r \varphi^0 = 0, \quad B^0 = \beta d_1, \quad r \in D \subset R^2, \quad f^0 = \lambda \mathcal{F}_i (-\alpha_i v^2 + c_{i1} + l_i \varphi^0, (v, d_i) + c_{2i} + k_i \psi^0).
\]

Thus, the densities \(\rho \) and \(j \) vanish at domain \(D \).

Now our purpose is to find \(\lambda_0 \) in neighborhood of which system (32), (35) has a nontrivial solution. Then the corresponding densities \(\rho \) and \(j \) will be identically vanished at domain \(D \), and the point \(\lambda_0 \) is a bifurcation point of the VM system with conditions (4), (5).

Let functions \(f_i \) are analytical in (5). Using the expansion in Taylor series

\[
A(x, y) = \sum_{i \geq 0} \frac{1}{i!} ((x - x^0) \partial_x + (y - y^0) \partial_y)^i A(x^0, y^0)
\]

and selecting linear terms, we transform (32) to operator form

\[
(L_0 - \lambda L_1) u - \lambda r(u) = 0. \tag{36}
\]

Here

\[
L_0 = \begin{bmatrix}
\Delta & 0 \\
0 & \Delta
\end{bmatrix}, \quad u = (\varphi - \varphi^0, \psi - \psi^0)';
\tag{37}
\]

\[
L_1 = \sum_{s=1}^{N} q_s \begin{bmatrix}
\mu_s \frac{\partial A_s}{\partial x} & \mu k_s \frac{\partial A_s}{\partial y} \\
\nu_l s (\beta_s, d) \frac{\partial A_s}{\partial x} & \nu k_s (\beta_s, d) \frac{\partial A_s}{\partial y}
\end{bmatrix}_{x = l_s \varphi^0, y = k_s \psi^0} \begin{bmatrix}
\mu T_1 & \mu T_2 \\
\nu T_3 & \nu T_4
\end{bmatrix},
\tag{38}
\]

\[
r(u) = \sum_{i \geq 1} \sum_{s=1}^{N} g_{is}(u) b_s, \tag{39}
\]

where

\[
g_{is}(u) \triangleq \frac{q_s}{i!} (L_s u_1 \partial_x + k_s u_2 \partial_y)^i A_s(l_s \varphi^0, k_s \psi^0)
\]

are homogeneous forms by \(u \);

\[
\frac{\partial^{i_1 + i_2}}{\partial x^{i_1} \partial y^{i_2}} A_s(x, y) \mid_{x = l_s \varphi^0, y = k_s \psi^0} = 0 \quad \text{at}
\]
Lemma 3.3. Let
\[2 \leq i_1 + i_2 \leq l - 1, \quad s = 1, \ldots, N; \quad l \geq 2; \quad b_s \triangleq (\mu, \nu(\beta_s, d))'. \]

We study the problem of existence of a bifurcation point \(\lambda^0 \) for (32), (34) as the problem on bifurcation point for operator equation (36). Let us introduce Banach spaces \(C^{2,\alpha}(D) \) and \(C^{0,\alpha}(D) \) with norms \(\| \cdot \|_{2,\alpha}, \| \cdot \|_{0,\alpha} \) and \(W^{2,2}(D) \), which is usual \(L^2 \) Sobolev space in \(D \). Let us introduce Banach space \(E \) of vectors \(u \triangleq (u_1, u_2)' \), where \(u_i \in L_2(D), L_2 \) be real Hilbert space with internal product \(\langle \cdot, \cdot \rangle \) and the corresponding norm \(\| \cdot \|_{L_2(D)} \). As a range of definition \(D(L_0) \) we take set of vectors \(u \triangleq (u_1, u_2) \) with \(u_i \in W^{2,2}(D) \). Here \(W^{2,2}(D) \) denotes \(W^{2,2} \) functions with trace 0 on \(\partial D \). Hence, \(L_0 : D \subset E \to E \) is a linear self-adjoint operator. By virtue of embedding
\[W^{2,2}(D) \subset C^{0,\alpha}(D), \quad 0 < \alpha < 1 \] the operator \(r : W^{2,2} \subset E \to E \) be analytical in neighborhood of zero. The operator \(L_1 \in L(E \to E) \) is linear bounded. For matrix corresponding to operator \(L_1 \) we shall keep same notations. By embedding (40) any solution of the equation (36) will be Hölder in \(D(L_0) \). Moreover, because the coefficients of (36) are constant, then vector \(r(u) \) will be analytical, \(\partial D \in C^{2,\alpha} \) and thanks to well-known results of the regularity theory of weak solutions [8], the being searching generalized solutions of (36) in \(W^{2,2}(D) \) belong to \(C^{2,\alpha} \). By Theorem 3.1 on reduction of VM system, the bifurcation points of problem (32), (34) are the bifurcation points of solutions of VM system (1), (2) with boundary conditions (3), (4). Thanks to given conditions on \(L_0 \) and \(L_1 \), all singular points of operator-function \(L(\lambda) \triangleq L_0 - \lambda L_1 \) be Fredholm. The bifurcation points of nonlinear equation (36) we can found only among points of a spectrum for linearized system
\[(L_0 - \lambda L_1)u = 0. \] (41)

For study of spectrum problem (41) we preliminary find the eigenvalues and the eigenfunctions of matrix \(L_1 \) in (41) for physically admissible parameters. With this purpose, we introduce the following condition:

\[\Pi : (T_1T_4 - T_2T_3) > 0, T_1 < 0. \]

Lemma 3.3. Let \[\frac{\partial A_i}{\partial x} = \frac{\partial A_i}{\partial y} > 0, \quad i = 1, \ldots, N \at x = l_i\varphi^0, \quad y = k_i\psi^0. \] Assume
\[\sum_{i=2}^{N} \sum_{j=1}^{l-1} a_i a_j (l_j k_i - k_j l_i) (\beta_i - \beta_j, d) > 0, \]
where \(a_i \triangleq q_1 \frac{\partial A_i}{\partial x} \), then condition \(\Pi \) is valid.

Proof. Without loss of generality we put \(q \triangleq q_1 < 0, q_i > 0, \quad i = 2, \ldots, N. \) Then via (25) \(\text{sign} q l_i = \text{sign} q. \) Further, because of definition of \(T_1 \) (see.(38)),
we verify that $T_1 < 0$. The positiveness of $T_1 T_4 - T_2 T_3$ follows from equality

$$T_1 T_4 - T_2 T_3 = \sum l_i a_i \sum k_i(\beta_i, d)a_i - \sum k_i a_i \sum l_i(\beta_i, d)a_i =$$

$$\sum_{i=2}^{N-1} a_i a_j (l_j k_i - k_i l_j)(\beta_i - \beta_j, d).$$

Example 3.4. If $\beta_i = \frac{d_i}{2a_i}$, then $(\beta_i, d) = \frac{d_i^2}{ab}$ and

$$\sum_{i=2}^{N-1} a_i a_j (l_j k_i - k_i l_j)^2 \cdot \frac{d^2}{2a_i a_j} > 0.$$

Lemma 3.5. Let distribution function has a form (31) and $f'_i > 0$. Then conditions D and II hold for $\beta_i = \frac{\lambda}{2a_i}$, and the system (32) will be transformed to the potential form

$$\Delta \begin{bmatrix} \varphi \\ \psi \end{bmatrix} = \lambda \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} \begin{bmatrix} \frac{\partial V}{\partial \varphi} \\ \frac{\partial V}{\partial \psi} \end{bmatrix},$$

(42)

where

$$V = \sum_{k=1}^{N} \frac{q_k}{l_k} \int_0^{a l_k \varphi + b l_k \psi} A_k(s) ds, \quad a_1 = \mu/a, \quad a_2 = \frac{\mu d^2}{2ab}.$$ (43)

The proof is conducted by direct substitution (43) into the system (42).

Lemma 3.6. Let $r \eqdef x \in R^1$, $v \in R^2$, $d \eqdef d_2$. Then the system (32) with potential (43) can be written as Hamiltonian system

$$\dot{p}_\varphi = -\partial_\varphi H, \quad \dot{\varphi} = \partial_{p_\varphi} H$$

$$\dot{p}_\psi = -\partial_\psi H, \quad \dot{\psi} = \partial_{p_\psi} H$$

with Hamiltonian function of the form

$$H = -\frac{p_\varphi^2}{2} - \frac{p_\psi^2}{2} + V(\varphi(x), \psi(x)).$$

Here

$$V(\varphi, \psi) = \lambda a_1 \sum_{k=1}^{N} \frac{q_k}{l_k} \int_0^{a l_k \varphi} \int_{R^2} A(s, \psi) ds + \lambda a_2 \sum_{k=1}^{N} \frac{q_k}{l_k} \int_0^{b l_k \psi} \int_{R^2} A(\varphi, s) ds.$$
The proof follows from lemma 2.2 (p.1152) of work [4].

Lemma 3.7. Assume Π. Then matrix L_1 in (38) has one positive eigenvalue $\chi_+ = \mu T_1 + o(1)$ and one negative $\chi_- = \eta \frac{T_1 T_4 - T_2 T_3}{T_1} \epsilon + O(\epsilon)$, $\eta = \frac{4\pi |q|}{m} > 0$ (44) at $\epsilon \Delta \sim \frac{1}{\epsilon} \to 0$.

Eigenvalue χ_- induces the eigenvectors of matrices L_1 and L_1' respectively

$$
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix} = \begin{bmatrix}
-T_2 \\
0
\end{bmatrix} + O(\epsilon), \quad \begin{bmatrix}
c_1^* \\
c_2^*
\end{bmatrix} = \begin{bmatrix}
0 \\
1
\end{bmatrix} + O(\epsilon).
$$

The readers may refer to [14] for the proof.

Let us now consider the calculation of bifurcation points λ_0 of equation (36). Setting in (36) $\lambda = \lambda_0 + \epsilon$, we consider the equation

$$(L_0 - (\lambda_0 + \epsilon)L_1 u - (\lambda_0 + \epsilon)r(u) = 0$$ (45)

in neighbourhood of point λ_0. Let $T_2 \neq 0$ and $T_3 \neq 0$, or $T_2 = T_3 = 0$. With the purpose of symmetrization of system at $T_2 \neq 0$ and $T_3 \neq 0$ having multiplicated both parts of (45) on matrix

$$M = \begin{pmatrix}
1 & 0 \\
0 & \tilde{a}
\end{pmatrix}, \text{ where } \tilde{a} \equiv \frac{\mu T_2}{\nu T_3} \neq 0,$$

we write (45) as

$$Bu = \epsilon B_1 u + (\lambda_0 + \epsilon)\Re u.$$ (46)

Here $B = M(L_0 - \lambda_0 L_1)$; $\Re(u) \triangleq Mr(u) \triangleq (r_1(u), r_2(u))$; $B_1 \in L(E \to E)$ be Fredholm self-adjoint operator. If $A_s = A_s(a_s \varphi + b_k \psi)$, then

$$\frac{\partial A_s}{\partial y} = A'_s b, \quad \frac{\partial A_s}{\partial x} = A'_s a, \quad \tilde{a} = \frac{\mu b f(\nu \frac{d^2}{2\alpha a})}{a \beta_s}, \quad \beta_s = \frac{b}{a \beta_s}.$$

In expansion (39)

$$\varrho_{is} = \frac{\varrho_{i}}{i!} A^{(i)}(a_s \varphi^0 + b_k \psi^0)(a_s u_1 + b_k u_2)^i.$$

Thus, in this case $\frac{\partial \varrho_{i}}{\partial u_2} = \frac{\partial \varrho_{i}}{\partial u_1}$ matrix $\Re u(u)$ will be symmetric for $\forall u$ and operator $\Re u : E \to E$ is self-adjoint for $\forall u$.
Remark 3.8. If \(T_2 = T_3 = 0 \), then we put \(\tilde{a} = 1 \). If \(T_2 = 0 \), \(T_3 \neq 0 \) or \(T_3 = 0 \), \(T_2 \neq 0 \), then the problem (36) has not the property of symmetrization and we should work with (45). In this case for study of the problem on bifurcation point we may use our results from [13].

Let \(\mu \) be eigenvalue of the Dirichlet problem
\[
-\Delta e = \mu e \quad |_{\partial D} = 0
\]
and \(\{e_1, \ldots, e_n\} \) be orthonormalized basis in a subspace of eigenfunctions. Denoted by \(c_- = (c_1, c_2)' \) the eigenvector of matrix \(L_1 \), which corresponds to eigenvalue \(\chi_0 < 0 \).

Lemma 3.9. Let \(\lambda_0 = -\mu/\chi_- \). Then \(\lambda_0 > 0 \), \(\dim N(B) = n \) and the system \(\{e_i\}_{i=1}^n \), where \(e_i = c_i e_i \) forms basis in a subspace \(N(B) \).

Proof. Let us introduce matrix of columns \(\Lambda \), which are the eigenvectors of matrix \(L_1 \) corresponding to eigenvalues \(\chi_- \), \(\chi_+ \). Moreover,
\[
\Lambda^{-1} L_1 \Lambda = \begin{pmatrix} \chi_- & 0 \\ 0 & \chi_+ \end{pmatrix}, \quad L_0 \Lambda = \Lambda L_0
\]
and equation \(Bu = 0 \) by change \(u = \Lambda U \) will be transformed to the form
\[
M[L_0 \Lambda U - \lambda_0 L_1 \Lambda U] = M[\Lambda(L_0 U - \lambda_0 \Lambda^{-1} L_1 U)] = 0.
\]
Hence, from here follows that the linear system (41) is decomposed onto two linear elliptical equations
\[
\Delta U_1 = -\lambda_0 \chi_- U_1 = 0, \quad U_1 |_{\partial D} = 0, \quad \Delta U_2 = -\lambda_0 \chi_+ U_2 = 0, \quad U_2 |_{\partial D} = 0,
\]
where \(\lambda_0 \chi_- = -\mu, \lambda_0 \chi_+ > 0 \). From (47) follows that \(\mu \in \sigma(-\Delta) \). Hence, \(U_1 = \sum_{i=1}^n \alpha_i c_i, \alpha_i - \text{const}, U_2 = 0 \) and
\[
\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \Lambda U = \begin{pmatrix} c_1 & c_1^* \\ c_2 & c_2^* \end{pmatrix} \begin{pmatrix} U_1 \\ 0 \end{pmatrix} = \begin{pmatrix} c_1 & \sum_{i=1}^n \alpha_i c_i \end{pmatrix}. \]
Let us construct Lyapunov-Schmidt BEq for equation (46). □✓

Without loss of generality we assume that the eigenvector \(c_- \) of matrix \(L_1 \) is chosen such that \(\chi_-(c_1^2 + F(c_2^2)) = 1 \), where \(F = \frac{\mu T_2}{\partial T_3} \). Then the system of vectors \(\{B_i e_i\}_{i=1}^n \) is biorthogonal to \(\{e_i\}_{i=1}^n \). Thus, operator
\[
\hat{B} = B + \sum_{i=1}^n < \cdot, \gamma_i > \gamma_i
\]
with $\gamma_i \triangleq B_1 e_i$ has inverse bounded $\Gamma \in L(E \to E)$, $\Gamma = \Gamma^*$, $\Gamma \gamma_i = e_i$.

Rewrite (46) as the system

$$\dot{B} - \epsilon B_1 u = (\lambda_0 + \epsilon)\Re(u) + \sum_i \xi_i \gamma_i$$

(49)

$$\xi_i = <u, \gamma_i>, \quad i = 1, \ldots, n.$$

(50)

By the theorem on inverse operator we have from (49)

$$u = (\lambda_0 + \epsilon)(I - \epsilon \Gamma B_1)^{-1} \Re(u) + \frac{1}{1 - \epsilon} \sum_{i=1}^{n} \xi_i e_i.$$

(51)

From (50) we have

$$\epsilon_1 - \epsilon \xi_i + \lambda_0 + \epsilon \frac{1}{1 - \epsilon} \lambda_l < \Re(u), e_i > = 0,$$

(52)

where $\Re(u) = \Re_l(u) + \Re_{l+1}(u) + \ldots$. Because of the theorem on implicit operator, equation (51) has unique solution for sufficiently small ϵ, $|\xi|$. \[u = u_1(\xi e, \epsilon) + (\lambda_0 + \epsilon)(I - \epsilon \Gamma B_1)^{-1} \Re(u) + u_{l+1}(\xi e, \epsilon) + \ldots.\] (53)

Here

$$u_1(\xi e, \epsilon) = \frac{1}{1 - \epsilon} \sum_{i=1}^{n} \xi_i e_i,$$

$$u_l(\xi e, \epsilon) = \Re_l(u_1(\xi e, \epsilon)),$$

$$u_{l+1}(\xi e, \epsilon) = \Re_{l+1}(u_1(\xi e, \epsilon)) +$$

$$+ \left\{ \begin{array}{ll}
0, & l \geq 2 \\
\Re_2^l(u_1(\xi e, \epsilon))(\lambda_0 + \epsilon)(I - \epsilon \Gamma B_1)^{-1} \Re_2(u_1(\xi e, \epsilon)), & l = 2
\end{array} \right.$$

and etc. Substituting the solution (53) into (52) we obtain the desired BEq

$$\mathbf{L}(\xi, \epsilon) = 0 \quad (BEq)$$

with $\mathbf{L} = (L^1, \ldots, L^n)$,

$$\mathbf{L}^l = \frac{\epsilon}{1 - \epsilon} \xi_l + \lambda_0 + \epsilon \frac{1}{(1 - \epsilon)^{l+1}} < \Re_l(\xi e, e_i) > + \frac{1}{1 - \epsilon} < \Re_{l+1}(\xi e, e_i) > +$$

$$+ \left\{ \begin{array}{ll}
0, & l \geq 2 \\
\Re_l^2(\xi e, \epsilon)(\lambda_0 + \epsilon)(I - \epsilon \Gamma B_1)^{-1} \Re_2(u_1(\xi e, \epsilon), e_i), & l = 2
\end{array} \right.$$

$$r_l = o(|\xi| l^{l+1}), \quad i = 1, \ldots, n.$$ If $\mathbf{L}(\xi, \epsilon) = \nabla U(\xi, \epsilon)$, then we call \mathbf{L} potential. In potential case matrix $\mathbf{L}(\xi, \epsilon)$ is symmetric.

Let in (46) $f_i = f_i(a_i \phi + b_i \psi), \quad i = 1, \ldots, N$. Then from the explained above matrix $\Re_u(u)$ will be symmetric at $\forall u$ and we have the following statement:
Lemma 3.10. Let conditions C), D), I-II and $\lambda_0 = -\mu/\chi$ hold. Then equation (46) possesses so much small solutions $u \to 0$ at $\lambda \to \lambda_0$, as small solutions $\xi \to 0$ possesses BEq at $\varepsilon \to 0$. If in system (32) $A_i = A_i(a_i \varphi + b_k \psi)$, $i = 1, \ldots, N$; a, b--const, then BEq will be potential.

Theorem 3.11 (Principal theorem). Let $N \geq 3$. Let conditions C), D), I-II and $\lambda_0 = -\mu/\chi$ are valid, where μ is n multiple eigenvalue of Dirichlet problem (47). Number χ see in (44). If n is odd, or distribution function has the form $f_i = f_i(a(-\alpha_i v^2 + \varphi_i) + b((d_i, v) + \psi_i))$, $i = 1, \ldots, N$, then λ_0 be a bifurcation point of VM system (1) - (2) with conditions (3) - (4).

Proof. Case 1. Let n is odd. Then in BEq

$$\Delta(\varepsilon) \equiv \det \left| \frac{\partial L_k}{\partial \xi_i} (0, \varepsilon) \right|_{l, k = 1}^n = \left(\frac{\varepsilon}{1 - \varepsilon} \right)^n.$$

Since n is odd, then $\Delta(\varepsilon) > 0$ for $\varepsilon \in (0, 1)$, and $\Delta(\varepsilon) < 0$ for $\varepsilon \in (-1, 0)$ and the statement of theorem follows from theorem 1.

Case 2. Let $f_i = f_i(a(-\alpha_i v^2 + \varphi_i) + b((d_i, v) + \psi_i))$. Then BEq is potential, moreover

$$\frac{\partial L_k(0, \varepsilon)}{\partial \xi_i} = \frac{\varepsilon}{1 - \varepsilon} \delta_{ik}, \quad i, k = 1, \ldots, n.$$

Hence, all eigenvalues of matrix $\frac{\partial L(0, \varepsilon)}{\partial \xi_i}$ are positive at $\varepsilon > 0$ and are negative at $\varepsilon < 0$. Thus, the validity of the theorem in case 2 follows from Theorem 3.1.

4. Conclusion

The distribution functions f_i in VM system depend not only on λ, but also on parameters α_i, d_i, k_i, l_i. It seems interesting to investigate a behavior of solutions of (1)-(2) with conditions (3), (4) depending from these parameters. Applying Theorems 2.2, 3.1 and their corollaries in the present paper, we can prove the existence theorems of points and surfaces of bifurcation for a more complicated case.

References

BIFURCATION POINTS OF NONLINEAR OPERATORS

[22], Index theory in the bifurcation problem of solutions of the Vlasov-Maxwell system, Matem. Mod. 11 (1999), no. 9, 83–100.

[29], Solution of Volterra operator-integral equations in the nonregular case by the successive approximation method, Differ. Equ. 46 (2010), 882–891.

(Recibido en septiembre de 2015. Aceptado en febrero de 2016)