DOI: https://doi.org/10.15446/recolma.v50n1.62205

Operator-valued Fourier multipliers on toroidal Besov spaces

Multiplicadores de Fourier operador-valuados sobre espacios de Besov toroidales

Bienvenido Barraza Martínez, Iván González Martínez, Jairo Hernández Monzón1

1 Universidad del Norte, Barranquilla, Colombia. bbarraza@uninorte.edu.co, idgonzalez@uninorte.edu.co, jahernan@uninorte.edu.co


Abstract

We prove in this paper that a sequence M: ZnL(E) of bounded variation is a Fourier multiplier on the Besov space Bsp, q(Tn, E) for sR, 1 < p < ∞, 1 ≤ q ≤ 1 and E a Banach space, if and only if E is a UMD-space. This extends the Theorem 4.2 in [3] to the n-dimensional case. As illustration of the applicability of this results we study the solvability of two abstract Cauchy problems with periodic boundary conditions.

Keywords: Fourier multipliers, operator-valued symbols, UMD-spaces, toroidal Besov spaces.


2010 Mathematics Subject Classification: 42A45, 47A56.


Resumen

En el presente artículo se prueba que una sucesión M: ZnL(E) de variación acotada, es un multiplicador de Fourier sobre el espacio de Besov Bsp, q(Tn, E) para sR, 1 < p < ∞, 1 ≤ q ≤ 1 y E un espacio de Banach, si y solo si, E es un espacio UMD. Este resultado extiende el Teorema 4.2 en [3] al caso n-dimensional. Como ilustración de la aplicabilidad de este resultado, se estudia la solubilidad de dos problemas de Cauchy abstractos con condiciones de frontera periódicas.

Palabras claves: Multiplicadores de Fourier, símbolos operador-valuados, espacios UMD, espacios de Besov toroidales.


Texto completo disponible en PDF


References

[1] H. Amann, Elliptic operators with dimensional state spaces, J. Evo. Equ. 1 (2001), 143-188.

[2] W. Arendt, M. Beil, F. Fleischer, S. Lück, S. Portet, and V. Schmidt, The laplacian in a stochastic model for spatiotemporal reaction systems, Ulmer Seminare 13 (2008), 133-144.

[3] W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic besov spaces and applications, Proceedings of the Edinburgh Mathematical Society 47 (2004), no. 1, 15-33.

[4] B. Barraza, R. Denk, J. Hernández, and T. Nau, Generation of semigroups for vector-valued pseudodifferential operators on the torus Tn, Journal of Fourier Analysis and Applications, DOI 10.1007/s00041-015-9437-7. (2015).

[5] S. Bu and J. Kim, A note on operator-valued Fourier multipliers on Besov spaces, Math. Nachr. 278 (2005), no. 14, 1659-1664.

[6] S. Bu and J. Kim, Operator-valued Fourier multipliers on periodic Triebel spaces, Acta Mathematica Sinica 21 (2005), no. 5, 1049-1056.

[7] T. Nau, lp-theory of cylindrical boundary value problems, an operatorvalued Fourier multiplier and functional calculus approach, Springer Spektrum, 2012.

[8] E. Poulsen, Evolutionsgleichungen in Banachräumen, Math. Z 90 (1965), 286-309.

[9] H. Tabane, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363-376.

[10] Ž. Štrkalj and L. Weis, On operator-valued Fourier multiplier theorems, Transactions of the American Mathematical Society 359 (2007), no. 8, 3529-3547.

[11] F. Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math. XCIII (1989), 201-222.

(Recibido en septiembre de 2015. Aceptado en mayo de 2016)