DOI: https://doi.org/10.15446/recolma.v50n2.62209

On the energy of symmetric matrices and Coulson's integral formula

Sobre la energía de matrices simétricas y la fórmula integral de Coulson

J. A. de la Peña1, J. Rada2

1 Centro de Investigación en Matemáticas, A.C., Guanajuato, México. jap@cimat.mx
2 Universidad de Antioquia, Medellín, Colombia. pablo.rada@udea.edu.co


Abstract

We define the outer energy of a real symmetric matrix M as for the eigenvalues λ1, …, λn of M and their arithmetic mean . We discuss the properties of the outer energy in contrast to the inner energy defined as Einn(M) = . We prove that Einn is the maximum among the energy functions e: S(n) → R and Eout among functions f (M - 1n, where f is an energy function. We prove a variant of the Coulson integral formula for the outer energy.

Keywords: Total π-electron energy, Energy of a symmetric matrix, Bounds for energy, Coulson's integral formula.


Mathematics Subject Classification: 05C50.


Resumen

Definimos la energía exterior de una matriz simétrica real M como donde λ1, …, λn son los autovalores M y es su media aritmética. Discutimos las propiedades de la energía exterior en contraste con la energía interior definida como Einn(M) = . Demostramos que Einn es máxima entre todas las funciones de energía e: S(n) → R y Eout entre todas las funciones f (M - 1n, donde f es una función de energía. Demostramos una variante de la fórmula integral de Coulson para la energía exterior.

Palabras claves: Energía π-electrón total, Energía de una matriz simétrica, Cotas para la energía, Fórmula integral de Coulson.


Texto completo disponible en PDF


References

[1] J. N. Abreu, D. M. Cardoso, I. Gutman, E. A. Martins, and M. Robbiano, Bounds for the signless Laplacian energy, Lin. Algebra Appl. 435 (2011), 2365-2374.

[2] C. Adiga, R. Balakrishnan, and W. So, The skew energy of a digraph, Lin. Algebra Appl. 432 (2010), 1825-1835.

[3] C. Adiga and Z. Khoshbakht, On some inequalities for the skew Laplacian energy of digraphs, J. Inequal. Pure Appl. Math. 10 (2009), no. 3, Art. 80, 6p.

[4] Q. Cai, X. Li, and J. Song, New skew laplacian energy of simple digraphs, Trans. Comb. 2 (2013), no. 1, 27-37.

[5] M. Cavers, S. Fallat, and S. Kirkland, On the normalized Laplacian energy and general Randić index r-1 of graphs, Lin. Algebra Appl. 433 (2010), 172-190.

[6] V. Consonni and R. Todeschini, New spectral index for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008), 3-14.

[7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungszentrum Graz 103 (1978), 1-22.

[8] I. Gutman, Bounds for all graph energies, Chem. Phys. Lett. 528 (2012), 72-74.

[9] I. Gutman and X. Li (Eds), Energies of graphs - theory and applications, Univ. Kragujevac, Kragujevac, 2016.

[10] I. Gutman and M. Mateljevic, Note on the coulson integral formula, J. Math. Chem. 39 (2006), 259-266.

[11] I. Gutman and B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414 (2006), 29-37.

[12] R. Horn and C. Johnson, Topics in matrix analysis, Cambridge University Press, 1991.

[13] G. Indulal, I. Gutman, and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472.

[14] X. Li, Y. Shi, and I. Gutman, Graph energy, Springer-Verlag, New York, 2012.

[15] M. Mateljevic, V. Bozin, and I. Gutman, Energy of a polynomial and the integral formula, J. Math. Chem. 48 (2010), 1602-1068.

[16] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007), 1472-1475.

[17] V. Nikiforov, Beyond graph energy: Norms of graphs and matrices, Lin. Algebra Appl. 506 (2016), 82-138.

[18] I. Peña and J. Rada, Energy of digraphs, Lin. Multilin. Algebra 56 (2008), 565-579.

[19] S. Pirzada and M. Bhat, Energy of signed digraphs, Discrete Appl. Math. 169 (2014), 195-205.

[20] S. Pirzada, M. Bhat, I. Gutman, and J. Rada, On the energy of digraphs, Bull. IMVI 3 (2013), no. 1, 69-76.

[21] J. Rada, The mcClelland inequality for the energy of digraphs, Lin. Algebra Appl. 430 (2009), 800-804.

[22] J. Rada, Lower bound for the energy of digraphs, Lin. Algebra Appl. 432 (2010), 2174-2180.

[23] J. Rada, Bounds for the energy of normal digraphs, Lin. Multilin. Algebra 60 (2012), 323-332.

[24] J. Rada, I. Gutman, and R. Cruz, The energy of directed hexagonal systems, Lin. Algebra Appl. 439 (2013), 1825-1833.

[25] H. S. Ramane, I. Gutman, and D. S. Revankar, Distance equienergetic graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), 473-484.

[26] W. So, M. Robbiano, N. M. M. de Abreu, and I. Gutman, Applications of a theorem by ky fan in the theory of graph energy, Lin. Algebra Appl. 432 (2010), 2163-2169.

Recibido: julio de 2016 Aceptado: septiembre de 2016