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Abstract. This is a note from a series of lectures at Encuentro Colombiano de
Computación Cuántica, Universidad de los Andes, Bogotá, Colombia, 2015.
The purpose is to introduce additive quantum error correcting codes, with
emphasis on the use of binary representation of Pauli matrices and modules
over a translation group algebra. The topics include symplectic vector spaces,
Clifford group, cleaning lemma, an error correcting criterion, entanglement
spectrum, implications of the locality of stabilizer group generators, and the
classification of translation-invariant one-dimensional additive codes and two-
dimensional CSS codes with large code distances. In particular, we describe an
algorithm to find a Clifford quantum circuit (CNOTs) to transform any two-
dimensional translation-invariant CSS code on qudits of a prime dimension
with code distance being the linear system size, into a tensor product of finitely
many copies of the qudit toric code and a product state. Thus, the number
of embedded toric codes is the complete invariant of these CSS codes under
local Clifford circuits.
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1. Introduction

Quantum error correcting codes were invented by Shor who showed that a
quantum computer can in principle be built out of faulty components [36, 37].
The basic idea is that despite quantum mechanical state vectors and operators
form continuous spaces, errors can be effectively treated as if they were discrete.
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Before long, a simple and systematic method of slicing the state vector space
into discretely labeled subspaces with help of classical error correcting codes
was discovered by Calderbank and Shor [10] and Steane [38], and generalized to
what is now known as stabilizer codes by Gottesman [15] or symplectic/additive
codes by Calderbank, Rains, Shor and Sloane [8, 9].

Another conceptual and practical use of quantum error correcting codes is
provided by Kitaev [25], who presented a class of exactly solvable local Hamil-
tonians associated with quantum error correcting codes, exhibiting so-called
topological order. Although the phenomenology of a certain topological order
was known by Sachdev and Read [35], Kitaev’s models facilitated understand-
ing significantly, and demonstrated how a topologically ordered medium can be
used as a naturally fault-tolerant quantum information processing platform.

In this note, we present a mathematically coherent and mostly self-contained
treatment of stabilizer/additive/symplectic codes with applications to quantum
spin systems governed by a translation-invariant local Hamiltonian associated
with codes. We emphasize binary symplectic vector spaces over groups of Pauli
matrices. This makes the appearance of translation-group algebra with coeffi-
cients in the binary field very natural, which we will mainly study in the later
half of the present note.

We discuss neither a particular way of designing a quantum error correct-
ing code nor decoding algorithms thereof. Also, we do not attempt to develop
insight about topological order in general. Rather, this note is to introduce
and review notions from commutative algebra that the author has found use-
ful and interesting in the understanding of the cubic code model [18] and its
cousins [11, 6, 24, 41, 39, 40]. Most results in this note is hardly new, but
the derivation of the results will be sometimes different from existing litera-
ture. The classification theorem 5.13 for two-dimensional translation-invariant
CSS codes has not previously appeared, and is intimately related to a result of
Bomb́ın [5]. Detailed comparison is given in 5.14.

The author thanks Cesar Galindo-Martinez and Julia Plavnik for their hos-
pitality during the workshop in Bogotá, Colombia, and Héctor Bomb́ın for
guiding along his paper [5]. The author was supported by Pappalardo Fellow-
ship in Physics while at MIT.

2. Additive/Stabilizer/Symplectic codes

The set of all 2 × 2 matrices acting on C2 = span {|0〉 , |1〉} has a linear basis
consisting of

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
, (1)
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called Pauli matrices. They square to be the identity, are hermitian, and
satisfy

XY = iZ, Y Z = iX, ZX = iY. (2)

Thus, any pair of non-identity Pauli matrices anti-commute. As a complex
algebra, we can further reduce the generating set to {X,Z} since Y = −iZX.
The matrix algebra on (C2)⊗n is the n-fold tensor product of the 2× 2 matrix
algebra, of which the generating set can be chosen as the set of all n-fold tensor
products of the Pauli matrices. To avoid lengthy phrasing, let us say just Pauli
operators to mean n-fold tensor products of Pauli matrices.

An additive code [9, 8] or stabilizer code [15] is a subspace of n-qubit
Hilbert space1 that is defined as the common eigenspace of a set of commuting
Pauli operators of eigenvalue +1. The common eigenspace is referred to as
code space to distinguish it from other related entities. Any vector in the
code space is a code vector. The defining Pauli operators or any product of
them are called stabilizers. The stabilizers form the multiplicative stabilizer
group.

Excercise 2.1. Show that the stabilizer group of nonzero additive code space
does not contain −1. �

How do we test whether a pair of Pauli operators commute? Since X and Z
generate the matrix algebra, we see that any Pauli operator P can be written,
for example, as

P = η (X ⊗ I ⊗X ⊗ · · · ⊗X)︸ ︷︷ ︸
x=101···1

(Z ⊗ Z ⊗ I ⊗ · · · ⊗ I)︸ ︷︷ ︸
z=110···0

= ηX(x)Z(z) (3)

where η = ±1,±i, a fourth root of unity. We have associated bit strings x and
z to keep record of the positions of nontrivial tensor factors. It is now clear
that any Pauli operator is uniquely specified by the overall phase factor η and
two bit strings of length n. The commutation relation between a pair of Pauli
matrices is then calculated as

1In functional analysis, a Hilbert space refers to an inner product space that is complete in
the induced metric topology. For finite dimensional vector spaces, the completeness, meaning
that every Cauchy sequence converges, follows trivially from the completeness of the real
numbers. So, the wording “Hilbert space” is superfluous in our setting where we only consider
finite dimensional spaces. Nonetheless, we will keep using this terminology whenever we are
referring to the complex vector space of all state vectors.
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η1X(x1)Z(z1)η2X(x2)Z(z2)

= η1η2X(x1) [(−1)x2·z1X(x2)Z(z1)]Z(z2)

= η1η2(−1)x2·z1X(x1 + x2 mod 2)Z(z1 + z2 mod 2) (4)

= η1η2(−1)x2·z1X(x2)X(x1)Z(z2)Z(z1)

= η1η2(−1)x2·z1X(x2) [(−1)x1·z2Z(z2)X(x1)]Z(z1)

= (−1)x2·z1−x1·z2η2X(x2)Z(z2)η1X(x1)Z(z1). (5)

Hence, any pair of Pauli operators commute or anti-commute, and the two
cases are distinguished by

−x2 · z1 + x1 · z2 mod 2. (6)

More generally, we can consider d× d matrix algebra acting on Cd with gener-
ators

Xd =



0 1

0 1
... 0 1

0
. . .

1 0 · · ·


, Zd =


1

ω

ω2

. . .

ωd−1

 (7)

where ω = exp(2πi/d). Due to the commutation relation

XdZd = ωZdXd, (8)

any pair of these generalized Pauli operators Xd(x)Zd(z) and Xd(x
′)Zd(z

′)
commutes up to ωm where

m = −x′ · z + x · z′ (mod d) =
(
x z

)( 0 id

−id 0

)(
x′

z′

)
(mod d). (9)

When x = x′ and z = z′, we trivially have m = 0.

Excercise 2.2. Verify (9) by deriving the analogue of (5). �
Excercise 2.3. Let G be the group of 3× 3 matrices of form

ha,b,c =

1 a c

0 1 b

0 0 1

 (10)

where a, b, c ∈ Z/dZ and the group operation is the matrix multiplication. Show
that the matrices in (7) together with ω = exp(2πi/d) form a representation of
the group G. (The group G has a name, Heisenberg group over Z/dZ.) Hint:
What is the commutator of h1,0,0 and h0,1,0? What does h0,0,1 correspond to?
�
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We may regard the dit string x, z as one dit string of length 2n [16, 34]. If
d is a prime number, then we may further regard the dit string of length 2n
as a 2n-dimensional vector over the finite field Fd.2 Upon multiplication of two
Pauli operators, the corresponding dit string is added modulo d, which can be
interpreted as the vector addition. In addition, we see that Eq. (9) introduces
a symplectic form on this vector space. This symplectic form will be central
to further development, and it is thus necessary to understand the symplectic
structure thoroughly.

2.1. Symplectic vector spaces

Let F be any field and V denote a vector space over F. A bilinear form λ :
V × V → F is called symplectic or alternating if

λ(v, v) = 0 ∀v ∈ V. (11)

If the association

V 3 v 7→ λ(v, ·) ∈ V ∗ (12)

from V to its dual vector space V ∗ is bijective, then we say λ is non-degenerate.
When V is finite dimensional, we can express the λ as a matrix Λ given a basis
of V , and the bilinear form λ is non-degenerate if and only if the matrix Λ
has a nonzero determinant. Below we will not distinguish the form λ from its
matrix representation Λ whenever the basis choice is clear.

Excercise 2.4. Show that the matrix representation of the symplectic form
is skew-symmetric (ΛT = −Λ), but a skew-symmetric matrix may not yield a
symplectic form if the field is of characteristic 2. �

In order to understand the symplectic space better, we will find a canonical
basis. To this end, we consider a variant of Gram-Schmidt orthogonalization
for inner product spaces. Let V be a n-dimensional symplectic space, not nec-
essarily non-degenerate. With respect to λ, we can consider the symplectic
complement

W⊥ = {v ∈ V : λ(v, w) = 0 ∀w ∈W} (13)

of any subspace W . (Some authors call it as the “orthogonal” complement.)

Lemma 2.5. If v, w ∈ V satisfy λ(v, w) 6= 0, then

V = span{v, w} ⊕ (span{v, w})⊥. (14)

2At this stage, it is less clear why we need the field rather than just additive group Z/dZ.
See (4). It is actually more of a technical convenience rather than an essential ingredient.
However, some of our claims we will make below depend on the fact that Z/dZ = Fd is a
field. See Ref. [13] for discussions regarding composite numbers d.
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Proof. “⊇” is trivial by definition. Let v′ = v and w′ = w/λ(v, w) form a basis
for W = span{v, w} so that λ(v′, w′) = 1. The decomposition

x = −λ(x, v′)w′ + λ(x,w′)v′ + x+ λ(x, v′)w′ − λ(x,w′)v′︸ ︷︷ ︸
y

(15)

for an arbitrary x ∈ V proves “⊆” since

λ(y, v′) = λ(x, v′) + λ(x, v′)λ(w′, v′)− λ(x,w′)λ(v′, v′) = 0, (16)

λ(y, w′) = λ(x,w′)− λ(x, v′)λ(w′, w′)− λ(x,w′)λ(v′, w′) = 0. (17)

If z ∈W ∩W⊥, then z = av′+bw′ for some a, b ∈ F and λ(z, v′) = λ(z, w′) = 0,
which imply a = 0 and b = 0. Therefore, the sum W +W⊥ is direct. �X

A two-dimensional subspace on which the symplectic form is non-degenerate,
as in the lemma, is called a hyperbolic plane. Note that the matrix repre-
sentation of the symplectic form for the hyperbolic plane is(

0 1

−1 0

)
. (18)

Suppose we have an unstructured basis {v1, . . . , vn} where λ is not always zero.
By examining all values λ(vi, vj), we can find a hyperbolic plane. By the lemma,
the symplectic complement of the span of {vi, vj} has smaller dimension, and we
can inductively proceed to decompose the space. At some point the decompo-
sition may encounter a subspace on which the symplectic form vanishes, which
is called an isotropic subspace. The proof of the lemma gives an algorithm
to find a canonical basis, which is essentially the same as the Gram-Schmidt
orthogonalization for inner product spaces. We arrive at a structure theorem
of finite dimensional symplectic spaces.

Proposition 2.6. Any finite dimensional symplectic vector space is a di-
rect sum of hyperbolic planes and an isotropic subspace. In particular, a non-
degenerate symplectic vector space is even dimensional.

Excercise 2.7. Show that the dimension of an isotropic subspace of a non-
degenerate symplectic space of dimension 2n is at most n. �

2.2. Automorphisms of symplectic spaces

By definition, an automorphismA of a symplectic vector space V is an invertible
linear map from V to itself such that

λ(Av,Aw) = λ(v, w) ∀v, w ∈ V. (19)
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With respect to a basis of V the condition for the matrix A to be an automor-
phism is

ATλA = λ, detA 6= 0 (20)

where the superscript T denotes the transpose. If λ is non-degenerate, the
second condition detA 6= 0 is redundant.

Let us choose a canonical basis of 2n-dimensional non-degenerate symplectic
vectors space where the matrix representation of the symplectic form is

λn =

(
0 id

−id 0

)
(21)

where id stands for the n×n-identity matrix. Thus, for the unit column vectors
ei, where the sole nonzero 1 appears at i-th component (i = 1, . . . , n), we have
λ(ei, ei+n) = 1 = −λ(ei+n, ei), and all the other symplectic pairings vanish.

A few elementary automorphisms can be found by solving an equation,(
a b

c d

)T (
0 1

−1 0

)(
a b

c d

)
=

(
0 1

−1 0

)
⇔ ad− bc = 1. (22)

Thus, the automorphism group for a hyperbolic plane is SL(2,F), which is
generated by three types of elements

S =

(
1 0

a 1

)
where a ∈ F, H =

(
0 1

−1 0

)
, and R =

(
a 0

0 a−1

)
where a ∈ F×.

(23)

If n ≥ 2, we see that there is another automorphism C

C|〈ei,ej ,ei+n,ej+n〉 =


1 0

a 1

1 −a
0 1

 where a ∈ F, 1 ≤ i 6= j ≤ n (24)

where we only displayed the action of C on the four dimensional subspace, on
the complement of which C acts by the identity. It is often useful to think of
the four elementary symplectic transformations (automorphisms) as row
operations on a column vector. S adds a-times i-th component to (i + n)-th
component. H interchanges i-th and (i + n)-th with an extra sign. C adds a-
times i-th component to j-th component (j 6= i ≤ n) while (−a)-times (n+j)-th
to (n+ i)-th.

Proposition 2.8. Let Σ be an s- dimensional isotropic subspace of a 2n-
dimensional non-degenerate symplectic space F2n. There exists a symplectic
transformation that maps Σ onto the span of {e1, . . . , es}, a subset of the canon-
ical basis vectors of F2n. Moreover, the symplectic complement Σ⊥ is isomorphic
to Σ⊕W for some non-degenerate symplectic subspace W .
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Proof. We provide an algorithm to find the symplectic transformation (au-
tomorphism) using S, H, R, and C. Let us identify the subspace Σ with a
matrix of basis vectors written in the columns. This matrix is 2n × s. Any
column operation on the matrix Σ is just a different choice of basis vectors for
the space Σ. If we could find a combination of the four elementary symplectic
transformations and column operations such that the matrix Σ is transformed
to 

id 0

0 0

0 0

0 0

 ,

then the composition of the elementary symplectic transformations is the de-
sired transformation. We inserted a horizontal line to distinguish upper and
lower half blocks.

Using C, we see that any row operation on the upper-half block can be
made symplectic by a suitable row operation on the bottom-half block. Hence,
for the upper half-block, we can freely employ row and column operations to
the matrix Σ to obtain

Σ′ =


1 01×(s−1)

0(n−1)×1 ?(n−1)×(s−1)

a ?

b(n−1)×1 ?

 .

Then, S on the 1st and (n+ 1)st row can make the entry a to zero. H’s on the
all but 1st and (n + 1)st row bring the submatrix b to the upper half block,
and a subsequent row operation can annihilate it. As a result, we obtain

Σ′′ =


1 01×(s−1)

0(n−1)×1 ?(n−1)×(s−1)

0 c1×(s−1)

0(n−1)×1 ?

 .

Being isotropic, it satisfies (Σ′′)TλnΣ′′ = 0 where λn is in (21). This equation
tells us that the submatrix c has to be zero. We have reduced the dimension
in the problem: s→ s− 1, n→ n− 1. The desired transformation is found by
recursion.

The second statement is a corollary of the first since the symplectic comple-
ment of {e1, . . . , es} is the span of {e1, . . . , es} plus the span of {es+1, . . . , en, en+s+1, . . . , e2n},
where the latter is non-degenerate. �X

Proposition 2.9. S, H, R, and C generate the full automorphism group of a
finite dimensional non-degenerate symplectic space.
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Excercise 2.10. Prove 2.9. Hint: Transform the matrix of an automorphism
into the identity matrix by S, H, R, and C, using the similar strategy as in
the proof of 2.8. �

2.3. Logical operators

We return to the discussion of Pauli operators. We have seen that the multi-
plicative group of Pauli operators is rather simple, since, if we ignore the overall
phase factors ±1,±i, the group is actually abelian. More precisely,

Proposition 2.11. If P denotes the multiplicative group of all Pauli opera-
tors including ±1,±i acting on n-qubit Hilbert space (C2)⊗n, then P/〈i〉 is an
abelian group, which is isomorphic to the additive group (Z/2Z)2n.

It is a useful coincidence that this additive group can be regarded as a vector
space F2n

2 over F2. Moreover, the commutation relation naturally endows this
vector space with a symplectic form. The form is non-degenerate because X
and Z on i-th qubit defines a hyperbolic plane, the direct sum of which is the
whole space. We use by convention an ordered canonical basis e1, . . . , e2n on
the symplectic space F2n

2 in which the symplectic matrix is as in (21). So, the
Pauli operator P (ei) corresponding to ei is equal up to a phase factor to

P (ei) =

{
Xi if 1 ≤ i ≤ n,
Zi if n+ 1 ≤ i ≤ 2n

(25)

where the subscript i denote the sole qubit that is acted on nontrivially by the
designated Pauli matrix.

We now introduce the simplest additive code on n qubits. Let {Zi : i =
1, . . . , n − k} be a commuting set of Pauli operators. What is the code space,
the common (+1)-eigenspace of the stabilizers? It is obvious that any such
eigenvector (code vector) must be of form

|0〉 ⊗ · · · ⊗ |0〉 ⊗ |ψ〉 (26)

for some vector |ψ〉 ∈ (C2)⊗k, and we can identify the code space with this
(C2)⊗k. There exist Pauli operators Xn−k+1, Zn−k+1, . . . , Xn, Zn that generate
the operator algebra on the code space. These Pauli operators are called logical
operators.3 The logical operators may appear in various guises. For example,
Z1Zn has the same action on the code space as Zn since (Z1Zn)(Z−1

n ) = Z1

acts by the scalar +1 on the code space by construction. Formally, any Pauli
operator that maps the code vector into the code space is called a logical

3The term “logical” comes from the intended use of the code in an error correction scheme,
where information is redundantly encoded into a physical system shielding the “logical level”
from errors, and the logical operators are those that transform the encoded information. Of
course, in this oversimplified example, there is no protection.
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operator. The logical operator P is said to be equivalent to another logical
operator P ′ if P ′P−1 is a stabilizer up to a phase factor. Sometimes, the logical
operator is termed as a nontrivial logical operator in order to distinguish it from
a trivial logical operator, where the latter is nothing but a stabilizer.

Excercise 2.12. Show that a Pauli operator is a (trivial or nontrivial) logical
operator if and only if it commutes with every stabilizer. �

Let us translate the discussion around the simplest example into the lan-
guage of symplectic spaces. The stabilizers generate an abelian multiplicative
group, called stabilizer group S. Since it is abelian, the corresponding sym-
plectic space is isotropic. By 2.12, we see that the set L of all trivial and
nontrivial logical operators corresponds to the symplectic complement of this
isotropic subspace: L = S⊥. By 2.8, S⊥ contains S and a non-degenerate
subspace which is isomorphic to S⊥/S. Any nonzero element in this quotient
space corresponds to a nontrivial logical operator. Two different logical opera-
tors may have the same action on the code space, which is precisely captured
by the quotient space S⊥/S. All these statements on the symplectic space does
not rely on a specific basis. What does the basis change (automorphism) in
the symplectic space over F2 corresponds to in the space of operators on the
Hilbert space over C?

2.4. Clifford group

A unitary operator on n-qubit Hilbert space (over C) is called Clifford if it
maps any Pauli operator to a Pauli operator. Any Clifford operator U induces
a linear map A in the corresponding symplectic space. This is easily proved as

UP (v + w)U† ∝ UP (v)U†UP (w)U†,

±P (A(v + w)) ∝ P (A(v))P (A(w)) ∝ P (A(v) +A(w))

where P (v) denotes a Pauli operator on n qubits specified by the bit string
of length 2n. Since U is invertible, the induces linear map A is also invertible.
Recall that the symplectic form λ is defined by

P (v)P (w) = (−1)λ(v,w)P (w)P (v). (27)

Conjugating this equation by U , we see that A preserves the symplectic form
in the sense of (19). Therefore, a Clifford unitary induces an automorphism of
the symplectic space.

We have found a generating set of the symplectic group on F2n
2 . Are the

generators induced from Clifford unitary operators? Consider the following uni-
taries.
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UH =
1√
2

(
1 1

1 −1

)
, US =

(
1 0

0 i

)
, UCNOT =


1 0

0 1

0 1

1 0

 . (28)

They are called Hadamard gate, phase gate, and controlled-not gate, respec-
tively. It is straightforward to verify that UH interchanges X and Z by conju-
gation. Therefore, UH induces the elementary symplectic transformation H of
2.9.

Excercise 2.13. Show that US and UCNOT are Clifford, and induce S and C
of 2.9, respectively. Hint: A linear operator is determined by the image of basis
vectors. �

By 2.9, it follows that any symplectic automorphism is induced by some
Clifford unitary operator. This is summarized by stating

Proposition 2.14. There exists a surjective group homomorphism from the
Clifford group on n qubits to the symplectic automorphism group on F2n

2 .

Excercise 2.15. Generalize this to qudits of a prime dimension d. Hint: The
symplectic transformation R of 2.9 needs to be included. Find the unitary that

induces R. The dimension d being prime means that Fd
×a−−→ Fd for a ∈ F×d is

a permutation. �

A natural question is then what the kernel of this homomorphism ϕ is. To
find the kernel, suppose ϕ(U) = id, which is to say that

UP (v)U† = ηP (v) (29)

for some phase factor η = ±1,±i that may depend on v. If the action of U on the
generators of the Pauli group, then U is uniquely determined. The generators
of the Pauli group are the Pauli operators Xi and Zi for qubit i = 1, . . . , n.
SinceXi and Zi are hermitian, we must have UXiU

† = ±Xi and UZiU
† = ±Zi.

Suppose n = 1, UXU† = −X, and UZU† = Z. One solution to these equations
is U = Z, and we knew that there is a unique solution. For general n, one can
assume U is a tensor product of single qubit operators, and for each factor one
finds a Pauli matrix component of U . Thanks to the uniqueness, a solution is
the answer. Therefore, we conclude that the kernel of ϕ is equal to the Pauli
group (up to an arbitrary phase factor, which does not alter the conjugation
action and hence we ignore). The Clifford group is generated by Pauli group
and three types of elements of (28). Actually, the Pauli group is generated by
the elements of (28). The phase gate US squares to become Z. The Hadamard
conjugates it to X. X and Z generates the Pauli group. Hence, we have
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Proposition 2.16. The three types of Clifford unitary operators of (28) gen-
erates the full Clifford group.

Now, suppose we have an additive code defined by a set of stabilizers on n
qubits. We have learned that this stabilizer group S corresponds to an isotropic
subspace Σ in the symplectic space F2n

2 . Let s = dimF2
Σ ≤ n. By 2.8, there ex-

ists a symplectic transformation that maps Σ onto the span of e1, . . . , es ∈ F2n
2 .

Since ϕ is surjective, there exists a Clifford unitary that turns the stabilizer
group to 〈X1, . . . , Xs〉 up to signs. The set of all logical operators after this
Clifford unitary is precisely 〈Xs+1, Zs+1, . . . , Xn, Zn〉. This leads to an impor-
tant conclusion. Let us say that a set of Pauli operators are independent if
the corresponding binary vectors are linearly independent over F2.

Theorem 2.17. Any stabilizer code defined by s independent stabilizers on n
qubits has code space dimension 2n−s. There exist Pauli logical operators that
generate the full operator algebra acting on the code space.

Excercise 2.18. Generalize 2.17 to qudits Cd of prime dimension d. �

Since the code space dimension is always a power of 2, it is convenient to
work with the exponent

k = n− s, (30)

which is called the number of encoded or logical qubits.

2.5. Cleaning lemma

We have studied the Pauli group P, focusing on its abelianization P/〈i〉, which
happens to be a vector space, and the symplectic structure provided by com-
mutation relations. We converted the code space into the simplest one that we
clearly understand, like the trivial example of additive code defined in (26).
We did so by considering the largest set of transformations, the Clifford group,
mapping Pauli operators to Pauli operators.

We are now going to discuss error correction. For this purpose, the notion
of locality is of central importance, and we should not make a transformation
that breaks the notion of locality. In terms of the vector space associated with
the Pauli group, the locality demands us to use a particular basis.

We say a region to mean a subset of qubits. An operator is said to be
supported on a region M , if it acts by identity on the complement of M .
The support of an operator is the minimal region on which the operator is
supported. We learned that given an additive code, there exists a set of logical
Pauli operators. Where are they supported? The logical operators are the inter-
face of the code space to the external world, so it is important to know locate
them precisely. For a region M , let `M be the largest number of independent
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logical operators supported on M . Here, the notion of independence is more
restrictive than what we used to define independent stabilizers in 2.17. Given a
stabilizer group S and the corresponding isotropic subspace Σ ⊂ F2n

2 , a set of
independent logical operators is one that maps to a linearly independent
set in the quotient vector space F2n

2 /Σ.

Proposition 2.19.

`M + `Mc = 2k.

The case `M = 0 is covered in [7], and more general case is shown in [42].
The proof below follows [21].

Proof. The set of all Pauli operators supported on M corresponds to a vector
space F2m

2 spanned by {ei : i ∈ M}, where m is the number of qubits in M .
The set of all logical operators on M corresponds to Σ⊥ ∩ F2m

2 . By definition
of independent logical operators,

`M = dimF2(Σ⊥ ∩ F2m
2 )/(Σ ∩ F2m

2 )

= dimF2(Σ⊥ ∩ F2m
2 )− dimF2(Σ ∩ F2m

2 ).

Let us consider calculating the first term algorithmically. If we write down the
basis vectors for Σ in the rows of a matrix A, then Σ⊥ amounts to calculating
the kernel of the matrix and transform it with the symplectic matrix λ−1. Since
we are only interested in the dimension, the invertible map λ is immaterial. The
restriction “∩F2m

2 ” means that we have to find the kernel with zero components
in entries for M c. This is to say that we calculate the kernel of the submatrix
of A obtained by deleting all columns for M c. The dimension we seek for is
then 2m minus the rank of this submatrix. This is a straightforward algorithm,
and we translate it back to linear algebra. The rank of this submatrix is the
dimension of πM (Σ) where πM is the linear map that sets the components of
M c to zero. The vectors in ΣM := Σ ∩ F2m

2 will remain untouched by πM ,
those in ΣMc := Σ ∩ (F2m

2 )⊥ will be annihilated, and the other vectors will be
somehow modified. Consider the decomposition

Σ = ΣM ⊕ ΣMc ⊕ Σ′ (31)

where Σ′ includes whatever remains beyond ΣM ⊕ΣMc . The choice of Σ′ is not
canonical, but it is easy to check that πM |Σ′ is injective, so dimF2 πM (Σ′) =
dimF2 Σ′. Thus,

`M = 2m− dimF2
πM (Σ)− dimF2

ΣM

= 2m− 2 dimF2
ΣM − dimF2

Σ′.
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By symmetric argument,

`Mc + `M = 2m+ 2(n−m)− 2 dimF2 ΣM − 2 dimF2 ΣMc − 2 dimF2
Σ′

= 2n− 2 dimF2 Σ

= 2k

where the last line is by 2.17. �X

The proposition has an important corollary:

Theorem 2.20 (Cleaning Lemma). If a region M does not support any non-
trivial logical operator (correctable),4 then for any logical operator there exists
an equivalent logical operator supported on the complement region M c.

In other words, a correctable region can be cleaned of any logical operators.

Proof. The assumption is that `M = 0. By 2.19, `Mc = 2k, which means that
every logical operator’s action can be achieved by a logical operator on M c. �X

This simple fact will incur a number of interesting applications below.

2.6. Error correction criterion

Imagine one has embedded a state vector into an additive code in order to send
it over a noisy channel or to store it safely. A physics qubit may be damaged or
lost during the process. When and how can we recover from the damage? Let
us examine the trivial example in (26) first. If the error occurs in one of the
first n− k qubits, and |0〉 will be mapped to some other state. Our message is
not damaged at all, and the formal restoration is achieved simply by replacing
the first n−k qubits with fresh qubits in the known |0〉 state. On the contrary,
if error occurs in one of the last k qubits, then there is no way to recover it;
the damage is permanent.

In fact, the error correction for general additive codes is not too different.
Suppose a physical qubit i in a correctable region is damaged. By the cleaning
lemma 2.20, there exists a complete set L of logical operators supported outside
of the damaged qubit i. In particular, every member of L commutes with any
operator on the damaged qubit i. We learned from the discussion leading to
2.17 that there exists a Clifford unitary U that maps the given additive code
space into that of the trivial code of (26). U necessarily maps the complete set
L of logical operators to a complete set ULU† of logical operators on the trivial

4Although in this lecture note we treat the two notions, the correctability and the absence
of logical operator, equally, but they are not in general equivalent. The existence of a cor-
recting map is stronger than the absence of operators that act nontrivially within the code
space.

Volumen 50, Número 2, Año 2016



QUANTUM CODES ON LATTICES 313

code. In the trivial code, given an operator E that acts nontrivially on the last
k (logical) qubits, any complete set of logical operators must have one member
that does not commute with E. Therefore, if the operator D caused the damage
on the qubit i in the correctable region, UDU† must be supported on the first
n−k qubits. The recovery operation R is then easy, and the composition U†RU
is our desired error recovery operation. 5 Summarizing,

Theorem 2.21. For any error that has occurred in a correctable region of an
additive code, there exists a recovery map that corrects it. 6

This idea goes back to the very first quantum code by Shor [37]. A more
general criterion was discovered shortly after by Knill and Laflamme [28].

The above error correction motivates us to introduce a quantitative at-
tribute to an additive code. The size of the smallest correctable region is one
less than that of the smallest support of any nontrivial logical operator, where
the latter is called code distance or minimal distance,7 denoted usually by
d. So, whenever error occurs on d − 1 or less qubits, there exists a recovery
map. Obviously, the large d is preferred.

Note that in the above we assumed that we knew the region where the error
had occurred. This is not a very realistic assumption, and it is necessary to de-
vise a method to locate the error. This task in general cannot be deterministic,
because one has to measure the system in such a way that it does not modify
the encoded quantum state where the measurement outcome is probabilistic
in nature, and two different errors might result in the identical measurement
outcomes. (Often the procedure of locating the error is the hardest step in an
error correcting algorithm since if the locations are known the recovery map is
provided by the code itself.) Therefore, it is important for an error correcting
code not only to have large correctable region, but also to admit a reliable (and
efficient) error correcting algorithm.

Excercise 2.22. Using the cleaning lemma 2.20, show that the code distance
d should obey 2(d−1) ≤ n−1 if k ≥ 1 for any additive code on n qubits with k
encoded qubits. (The statement actually follows from quantum Singleton bound
2(d− 1) ≤ n− k [28], but the weaker version can be derived from the cleaning
lemma.) �

5The standard notion of the operation is a quantum channel, a completely positive and
trace preserving linear map on the space of density operators. Everything we said here can
be phrased using channels.

6This is not a tautology; we have defined the correctable region because of this result.
7It is a “distance” when we consider the Hamming distance on the symplectic binary

vector space. This jargon is influenced by classical coding theory.
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2.7. Entanglement spectrum

A bipartite state vector |ψAB〉 can always be written as

|ψAB〉 =
∑
i

√
pi

∣∣∣φ(i)
A

〉 ∣∣∣φ(i)
B

〉
(32)

for positive numbers pi and some orthonormal vectors
∣∣∣φ(i)
A

〉
and

∣∣∣φ(i)
B

〉
where∑

i pi = 1 by the normalization 〈ψAB |ψAB〉 = 1. The numbers pi are called
the Schmidt coefficients of the state |ψAB〉, and also called the entanglement
spectrum. The entanglement spectrum is actually a complete set of invari-
ants under unitary transformations on either partition; it is invariant under
unitaries, and conversely the entanglement spectrum determines the pure state
up to unitary transformations on each partition.

A code state vector is defined on a Hilbert space consisting of n tensor
factors. Every choice of a subset of qubits (region) defines a bipartition, and
one can ask what the entanglement spectrum of a code state is. In general, the
entanglement spectrum depends on the particular code vector, but if the code
vector is an eigenvector of a maximal set of commuting logical Pauli operators,
then the entanglement spectrum turns out to be very simple. The commuting
set of logical operators can be regarded as Pauli stabilizers, so the state vector is
uniquely determined by a set of n commuting Pauli stabilizers. The eigenvalues
of the stabilizers need not be all +1.

Proposition 2.23. Let |ψ〉 ∈ (C2)⊗n be a nonzero common eigenvector of n in-
dependent Pauli operators Pi. With respect to any bipartition, the entanglement
spectrum is independent of the eigenvalues. In other words, the entanglement
spectrum is determined by the binary vectors of the Pauli operators Pi.

Proof. First the n independent Pauli operator must all commute with one
another; otherwise, if P and Q are any two anti-commuting Pauli operators
with eigenvalues p, q, respectively, then

pq |ψ〉 = pQ |ψ〉 = Qp |ψ〉 = QP |ψ〉 = −PQ |ψ〉 = −qP |ψ〉 = −pq |ψ〉 (33)

so |ψ〉 = 0. By 2.8, there exists a Clifford unitary U that conjugates the sta-
bilizer group S of the given commuting Pauli operators to that of Xi (i =
1, . . . , n). The state U |ψ〉 is a common eigenstate of Xi with some eigenvalues.
Two states with different eigenvalues ±1 of Xi can be mapped to each other
by some Zi. Since U is Clifford, UZiU

† is also a Pauli operator, and maps
|ψ〉 to another state that is a common eigenvector of S. Since a Pauli operator
UZiU

† is a tensor product unitary operator, it cannot change the entanglement
spectrum with respect to any bipartition. �X
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Theorem 2.24. Given any bipartition M tM c of n qubits, and a nonzero
common eigenvector |ψ〉 of n independent Pauli operators, there exists a tensor
product Clifford operator that transforms |ψ〉 into Bell pairs. In particular, the
entanglement spectrum is flat. The number of nonzero Schmidt coefficients is
equal to 2s where

s = |M | − dimF2 ΣM . (34)

Here, |M | is the number of qubits in M and dimF2
ΣM is the number of inde-

pendent stabilizers supported on M .

The last formula goes back at least to [14]. (See also [22].) It can also be
easily derived from [27]; see [31] and references therein.

Proof. From 2.23, we may assume that n independent Pauli operators Pi are
commuting and have eigenvalue +1. Order the qubits so that those in M are
the first m = |M | qubits.

Suppose some Pi is supported on M . The single operator Pi defines an
isotropic F2-subspace of FM2 , and by 2.8, we see that there exists a Clifford
unitary U supported on M such that Pi is mapped to X1. The eigenstate of
X1 is always of form |+〉 ⊗ ?, i.e., the first qubit becomes disentangled by U .
This Clifford does not affect the entanglement spectrum between M and M c,
and hence we can remove the first qubit and we are left with one less qubit and
one less stabilizer X1. The formula (34) retains its form since |M | is reduced
by 1, and simultaneously dimF2 ΣM is reduced by 1. Therefore, without loss of
generality we may assume no stabilizer Pi is supported only on M or M c.

Consider the matrix Σ that has the binary vectors for Pi in the columns.
The rows 1, . . . ,m and n+ 1, . . . , n+m are for M .

We first claim that n = 2m. To show this, consider the decomposition of Σ
in (31). There we showed that the restriction map πM that sets the component
of M c to zero is injective on Σ′. By our assumption, Σ = Σ′, and hence πM
is injective. This means that the 2m × n submatrix Σ(M) of Σ consisting of
rows for M has the same rank as the full matrix Σ. The rank of Σ is n by
assumption. This demands that 2m ≥ n. Repeating the argument for M c in
place of M , we have 2(n−m) ≥ n. This proves n = 2m.

The column operation of Σ is nothing but a different choice of independent
stabilizers of |ψ〉. Run column operations on Σ such that the 2m×2m submatrix
Σ(M) becomes the identity matrix.
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Σ′ =



1 01×(m−1)

0(m−1)×1 id(m−1)

? ? ? ?

? ? ? ?

1 01×(m−1)

0(m−1)×1 id(m−1)

? ? ? ?

? ? ? ?


Next, we apply symplectic transformation on M or M c without changing the
entanglement spectrum, so that the transformed matrix of Σ will be simple.
The (4m − 2) × 1 submatrix in the first column corresponding to M c entries
cannot be zero, since otherwise the first column will be supported on M . As in
the proof of 2.8, we use the elementary symplectic transformations on M c to
obtain

Σ′′ =



1 01×(m−1)

0(m−1)×1 id(m−1)

1 ? ? ?

0(m−1)×1 ? ? ?

1 01×(m−1)

0(m−1)×1 id(m−1)

0 E1×(m−1) f G1×(m−1)

0(m−1)×1 ? ? ?


.

We now employ the equation (Σ′′)Tλ(Σ′′) = 0. Due to the first column, the
equation enforces E = 0, f = 1, G = 0.

Σ′′′ =



1 01×(m−1)

0(m−1)×1 id(m−1)

1 ? ? ?

0(m−1)×1 ? ? ?

1 01×(m−1)

0(m−1)×1 id(m−1)

0 01×(m−1) 1 01×(m−1)

0(m−1)×1 ? ? ?


.

Again by C operations and S operations on M c, we obtain
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Σ′′′′ =



1 01×(m−1)

0(m−1)×1 id(m−1)

1 ? 0 ?

0(m−1)×1 ? 0(m−1)×1 ?

1 01×(m−1)

0(m−1)×1 id(m−1)

0 01×(m−1) 1 01×(m−1)

0(m−1)×1 ? 0(m−1)×1 ?


.

We see that the first column and (m+ 1)-st column is block diagonal with the
rest. These isolated columns represent the state that is stabilized by X1Xm and
Z1Zm. There is a unique such state (|00〉+ |11〉)/

√
2, the Bell pair. The entan-

glement spectrum is {1/2, 1/2}, and there are two nonzero Schmidt coefficients.
The formula (34) is clearly valid. �X

For generalizations to prime d-dimensional qudits, the entry f in Σ′′ should
be −1. The number of nonzero Schmidt coefficients is a power of d.

Corollary 2.25. For any state in an additive code space, the entanglement
spectrum of any correctable region M is flat. The entanglement entropy of M
is given by (34).

Proof. By the cleaning lemma 2.20, any logical operator can be pushed away
from M . This implies that any observable supported on M has the same ex-
pectation value regardless of the actual encoded state. In other words, the
reduced density matrix for M is independent of the code state. Therefore, we
can conveniently choose the code state to be an eigenstate of a maximal set
of commuting logical operators, and we can use 2.24. The entanglement en-
tropy is −

∑
i pi log pi, which is equal to log of the number of nonzero Schmidt

coefficients because they are the same. �X

3. Geometric locality

From now on, we consider additive codes whose stabilizer group is generated
by Pauli operators supported on small balls in some metric space. We will call
an upper bound w on the ball’s diameter as the the geometric locality of the
code.

The error correcting capability of the additive codes is, crudely speaking,
due to the entanglement structure of the code states. If the code distance is
larger than, say 3, any pair of qubits have the same reduced density matrix
for any code state. In other words, the complete data for all pairs of qubits
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cannot determine the code state at all; the entanglement made the global in-
formation hidden from local degrees of freedom. In 3.2 below we will see that
this interesting property is severely restricted by the geometric locality.

This signals implications in many-body physics. Physical degrees of free-
dom, qubits, interact with each other whose strength is only strong for those
that are nearby. We cannot in general fully determine the microscopic interac-
tion, and, even if we did, it is almost always hopeless to calculate consequences
of the interaction exactly. Instead, physicists model the system and identify im-
portant aspects, which can be compared with experiments. The geometrically
local additive codes provides a class of physically relevant (i.e., local) models
which we can analyze relatively easily. Since the additive codes is designed to
produce highly entangled states, the intuition gained from this class of mod-
els will be valuable to enhance our understanding of physical systems where
entanglement is presumably essential.

Another practical motivation to study geometrically local additive codes is
to use them as “firmware” in quantum information processing architectures. A
raw physical qubit is likely to be noisy, so it is expected that an error correction
layer will be added on top of a system of physical qubits. The error correction
scheme would be implemented easier if the necessary operation is on a small
local cluster of qubits. One of the most important operations in any error
correcting code implementation is to check whether a state is in the code space.
In geometrically local codes, this membership test can be done on local clusters
of qubits.

The first result under the geometric locality is the following.

Lemma 3.1 (Union Lemma [7, 21]). Let M and N be correctable regions for
a geometrically local additive code of locality w. If M and N are separated by
distance > w, then M ∪N is also correctable.

Proof. We have to show that any logical operator O supported on M ∪N is
trivial. Since O is a tensor product operator, we can write O = OM⊗ON where
OM is supported on M and ON on N . The locality implies that there is no
stabilizer group generator that acts nontrivially on both M and N . By 2.12,
each stabilizer group generator must commute with each tensor factor OM and
ON . This means that each of OM and ON is a logical operator. Since each
region is correctable, OM is trivial, so is ON . The product O is also trivial. �X

Below we give important applications of the cleaning lemma 2.20 and the
union lemma 3.1.
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3.1. Code distance is bounded in one dimension

Suppose we have an array of n qubits along a line. We consider an additive code
whose stabilizer group is generated by Pauli operators supported on intervals
of length at most w. How large can the code distance d be?

Theorem 3.2. d ≤ 3w if the additive code encodes at least one qubit.

The result in Ref. [7] is essentially this, though they have phrased it pri-
marily with two-dimensional systems.

Proof 1 [21]. Suppose on the contrary that d > 3w. Then any interval of length
≤ 3w is correctable. For integers r ≥ 0, let Mr = [−2rw, 3w+2rw] be intervals.
By the cleaning lemma, M0 is correctable.

We claim by induction that Mr for any r ≥ 0 is correctable. Mr+1 \Mr

consists of two intervals of length 2w separated by distance > w. By the union
lemma, the union of the two intervals is correctable. If O is any logical op-
erator, by the cleaning lemma an equivalent logical operator O′ exists on the
complement of Mr+1 \Mr, which is Mr tM c

r+1. Since O′ is a tensor product
operator, we may consider its tensor factor O′Mr

on Mr, which by itself must
be logical due to the locality. Since Mr is correctable by induction hypothesis,
O′Mr

is a stabilizer, and the tensor factor O′Mc
r+1

is equivalent to O. Since O

was arbitrary, this implies that on M c
r+1 a complete set of logical operators can

be found, i.e., `Mc
r+1

= 2k, and by 2.19 we conclude that Mr+1 is correctable.
This completes the induction.

For a sufficiently large r, Mr includes all n qubits, and the whole system
is correctable. This contradicts the assumption that there exists a nontrivial
logical operator. �X

Proof 2 [7]. For integer r ∈ Z, let Nr = [2rw, 2(r + 1)w]. Consider Neven =⋃
r∈2ZNr and Nodd =

⋃
r∈2Z+1Nr. If d > 3w, then Neven is correctable by the

union lemma. A nontrivial logical operator can then be found in Nodd by the
cleaning lemma, which is a contradiction since Nodd is correctable as well by
the union lemma. �X

Excercise 3.3. Sharpen the statement of 3.2 using the argument in Proof 2.
�

Excercise 3.4. Apply the conclusion of 3.2 for codes in higher dimensional
lattices, to show that there always exists a nontrivial logical operator supported
on a thin slab [7, 21]. �
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4. Translation invariance

We specialize to the additive codes that obeys translation invariance. The ma-
terial of this section and the next is mostly from Ref. [19]. An exception is
the proof of 5.13. Specifically, we consider an array of qubits on a lattice. The
lattice is modeled by the additive group ZD, where D is called the spatial di-
mension.8 The lattice is a collection of sites, the elements of ZD. We assume
that a finite number q of qubits are located on each site. A local operator on
this infinite array of qubits is an operator supported on a ball of finite size.
The set of all local operators naturally admits an action from ZD by permut-
ing (translating) the tensor factors. A translation invariant code is one for
which the generating set of the stabilizer group consists of local Pauli operators
and is translation-invariant.

This generalizes our previous discussion, since if we set D = 0 the notion of
translation becomes vacuous. In other words, our study of finite dimensional
symplectic vector spaces and automorphism groups was zero-dimensional.

For a positive D, one might be worried about the infinitely large lattice
and the corresponding infinite dimensional Hilbert space. We are not going to
discuss about this infinity. Instead, we contend ourselves by implicitly consid-
ering a family of codes by factoring out sublattices (subgroup) of ZD of finite
subgroup indices. This index, the order of the quotient group, is more often
called system size. The procedure of factoring out the subgroup of ZD is to
impose periodic boundary conditions on the lattice.

The translation invariance allows us unambiguously define the stabilizer
group over the family of finite systems. It should be noted that the absence of
−1 from the stabilizer group (See 2.1) is not always guaranteed. For instance,
in D = 1 consider the stabilizer group generated by −ZiZi+1. On the ring of
odd length, a product of these generators is equal to −1. We intentionally avoid
such a situation, and focus on those where −1 does not appear.9

Concretely, the translation-invariance helps us to deal with the formal infi-
nite dimensionality. The bit string that encodes Pauli operator up to a phase
factor is really a specification of the support of the Pauli operator. For a Pauli
operator on lattice, we have the coordinate system ZD, so a list of integer D-
tuples is all we need. Furthermore, a Pauli operator is a finite product of single
qubit operator, which we can write as (assuming D = 3)

P (a, b, c; ei)

where ei denotes qubit i within the site (a unit cell) (a, b, c) ∈ Z3. By conven-
tion, ei for 1 ≤ i ≤ q means the Pauli X, and eq+i for 1 ≤ i ≤ q means the

8This is yet another “dimension,” which is different from the Hilbert space dimension, or
the binary vector space dimension.

9It can be shown that for any finite abelian group of Pauli operators, there exists a finite
abelian group of Pauli operators that does not contain −1, but has the same binary vector
representation.
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Pauli Z. The Pauli Y is represented as ei+ei+q. Let us employ formal variables
x, y, z associated with the generators of Z3, and write

(a, b, c)⇔ xaybzc.

In previous section, for multiplication of Pauli operators, we added the corre-
sponding bit strings over F2. Similarly we write, for example,

P (1, 2, 3; e1)P (−1, 2, 4; eq+2)⇔ xy2z3e1 + x−1y2z4eq+2 (35)

for a general Pauli operator. These observations can be summarized as

Proposition 4.1. The following two groups are isomorphic.

• The multiplicative group of finitely supported Pauli operators modulo
phase factors on the lattice of dimension D with q qubits per site

• The additive group of all Laurent polynomial column vectors10 in D for-
mal variables of length 2q

Recall that a vector space is an additive group with an action from a field.
Likewise, a module M is an additive group with an action (“·”) from a more
general ring R: r · m ∈ M for any r ∈ R and m ∈ M . The distributive
law is assumed by the same formula: (r1 + r2) · m = r1 · m + r2 · m and
r · (m1 +m2) = r ·m1 + r ·m2. We will generally omit the dot (“·”) of the ring
action.

The translation group acts on the set of Pauli operators, and hence on the
set of Laurent polynomial column vectors. The translation along x-direction by
a unit distance increases the x-coordinate by 1, which is equivalent to multi-
plication by x on the Laurent polynomial column vector. This action naturally
defines an action from the group ring R = F2[ZD] ∼= F2[x±1

1 , . . . , x±D]. There-
fore, we speak of Pauli module over the the translation group algebra R for
the additive group of all Laurent polynomial column vectors of length 2q.

By the definition of the translation invariant codes, the stabilizer group
is closed under the translation group action. This is to say that the set of
Laurent polynomial column vectors corresponding to the stabilizer group is an
R-submodule, which we call stabilizer module, of the Pauli module.

In the zero-dimensional study, the symplectic form emerged from the com-
mutation relation. We interchanged the vector components corresponding to X
and Z parts, and using the dot product we counted the number of overlap. The
interchange of X and Z components is readily defined for the Pauli module ele-
ments, but dot product is not immediately applicable. For Laurent polynomial

10We have overloaded the term “vectors.” It is a 2q×1 matrix over the Laurent polynomial
ring, but this is too wordy. As a vector over the base field F2, the number of components
is infinite. Here, we just say column vectors to mean anything that has several components
arranged in a column.
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column vectors, what we want is to count the number of overlapping terms. A
trick is to consider the following antipode, denoted by the bar over the element.

4.1. Symplectic form

The antipode map11 is an involutive12 F-linear map from R to R defined by

xa11 · · ·x
aD
D 7→ xa11 · · ·x

aD
D := x−a11 · · ·x−aDD . (36)

It is then clear that for any f, g ∈ R,

Sum of the coefficients of overlapping terms of f and g = Coefficient of 1 in f̄g.
(37)

The latter quantity actually defines a F-bilinear form on R (valued in F), and
naturally generalizes to Rn, which we call dot product:

For any v, w ∈ Rn, define (v · w) =

(
Coefficient of 1 in

n∑
i=1

v̄iwi

)
∈ F. (38)

Clearly, this dot product generalizes the zero-dimensional (D = 0) dot product.
Note that

(gv · w) = (v · ḡw) for any g ∈ R, v, w ∈ Rn. (39)

The generalization of (9), the symplectic form, on R2n is given by

λ(v, w) = (v · λnw) (40)

where λn is the 2n × 2n symplectic matrix (21). We used the same symbol
λ as it is a generalization of the zero-dimensional case. With respect to this
symplectic form, we continue to say that an R-submodule Σ of Rn is isotropic
if

∀v, w ∈ Σ, λ(v, w) = (v · λnw) = 0. (41)

Proposition 4.2. A submodule Σ of R2n generated by the columns of a Laurent
polynomial matrix σ is isotropic if and only if

σ̄Tλnσ = 0 (42)

as a matrix. We will denote σ̄T by σ†.

11It is the antipode map of the group algebra R = F[ZD] taken as a Hopf algebra.
12The inverse is itself.
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Proof. Say σ is 2n× t. (⇐) An arbitrary element of Σ is σh for some column
vector h ∈ Rt. Thus,

λ(σh, σh′) = Coeff. of 1 in (h†σ†λnσh
′) = 0.

(⇒) We must have

Coeff. of 1 in (e†iσ
†λnσg

−1ej) = 0

for any basis unit vector ei, ej , and any monomial g. ei and ej selects (i, j)-
entry of the matrix σ†λnσ. The coefficient of 1 in a Laurent polynomial f that
is shifted by g−1 is exactly the coefficient of g in f . Since g addresses any term,
this implies that the (i, j)-entry is identically zero. �X

Remark 4.3. The dot product is a non-degenerate symmetric bilinear form
on R. That is, if (v · w) = 0 for all w ∈ R, then we must have v = 0. This
means that the F-linear map v 7→ fv ∈ R∗, where fv : w 7→ (v · w) is a linear
functional on R, is injective. This association is not surjective whenever D > 0,
but becomes surjective if we consider “finite systems” by imposing conditions
such as xLi

i = 1 since R becomes finite dimensional F-vector space.

The dual space R∗ can be endowed with an R-module structure by defining
rf(?) = f(r̄?) for any r ∈ R and f ∈ R∗. If f = (v · ?), then rf = f(r̄?) =
(v · r̄?) = (rv · ?) by (39).

Given a R-module map ϕ : Rn → Rm, i.e., an m× n matrix with entries in
R, we can consider its dual ϕ∗ : (Rm)∗ → (Rn)∗ by the rule (ϕ∗f)(?) = f(ϕ(?)).
If the association v 7→ (v · ?) is bijective, then we can consider

Rm
∼=−→ (Rm)∗

ϕ∗−−→ (Rn)∗
∼=−→ Rn

and ask the matrix representation of this R-module map. The answer is simply
ϕ†. This is in fact how the transpose for real matrices and the hermitian conju-
gate for complex matrices are defined with respect to the usual inner product.
�

Remark 4.4. The base ring R = F[ZD] can be obtained from a polynomial
ring in D variables by inverting a single element x1 · · ·xD. In particular, it is
Noetherian. Hence, every submodule of Rn is finitely generated, which means
that there always exists a (rectangular) finite matrix σ whose columns gener-
ate the given submodule over R. Almost all statements below require that the
stabilizer module is finitely generated, which is guaranteed by the finite dimen-
sional lattice ZD. For thorough treatment of Noetherian rings and modules,
consult Atiyah-MacDonald [3]. �
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4.2. Stabilizer and Excitation map

When there are q qubits per site on the lattice ZD, the matrix equation of 4.2
reads

σ†λqσ = 0. (43)

Note that this is a genuine generalization of the zero-dimensional case D = 0.
The number q is the total number of qubits in the system, and † reduces to
the usual transpose. The matrix σ is usually called a generating matrix of
the code on q qubits. In our convention, the columns of σ are the stabilizer
group generators.13 We call σ a stabilizer map in order to emphasize the
importance of the image of this R-linear map rather than the particular matrix
representation.

It will prove useful to think of the t× 2q matrix

ε = σ†λq (44)

separately from σ and define a chain complex

(E = Rt)
ε←− (P = R2q)

σ←− (G = Rt) (45)

of length 2. (A chain complex is an array of maps such that the composition
of any consecutive maps is zero. It has nothing to do with complex numbers.)

Previously in Section 3, we briefly noted that the geometrically local addi-
tive codes model physical systems. This is because local codes define a Hamil-
tonian

H = −
∑
g

Pg (46)

where Pg are the hermitian local stabilizer generators. The generators may
be redundant. The Hamiltonian actually depends on the particular choice of
generators, and is not uniquely determined by the code space. The lowest en-
ergy eigenspace (ground space) of H, however, is by definition the code space
regardless of the choice of Pg.

What about higher energy states? These excited eigenspace decomposes into
the eigenspaces of individual generators Pg; the ground space has eigenvalue
Pg = +1. For each eigenspaces, we may visualize the distribution of the eigen-
values of Pg’s in the lattice, as Pg is supported on a small region of the lattice.
These eigenvalues are precisely what we can measure without worrying about
corrupting the encoded states in the ground (code!) space. Any eigenvalue −1
of Pg is called a defect or excitation.

13Many other references make convention where rows of a binary matrix represent stabilizer
group generators.
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Excercise 4.5. Show that for any common eigenspace of Pg’s, there exists a
Pauli operator that maps the ground space onto it. �

In the translation invariant codes, the Hamiltonian can also be chosen to
be translation invariant, and the choice of the Hamiltonian is conveniently
expressed by a particular matrix σ of the stabilizer map. The columns rep-
resent Pauli operators supported near the origin, and all the other terms in
the Hamiltonian is obtained by translations. In this case, the excitations are
less sensitive to the choice of the matrix σ. Consider a state |ψe〉 that has an
excitation Pi = −1 around a site i with respect to the σ. If we choose another
Hamiltonian, −

∑
g′ P

′
g′ , for the same code space, represented by σ′, then the

operator Pi as a Laurent polynomial column vector v should be given by some
R-linear combination of the columns of σ′:

v =
∑
j

ajσ
′
j , aj ∈ R. (47)

Since aj consists of finitely many terms, this means that Pi is a product of some
finitely many local terms P ′g′ around i, among which there must be an operator
P ′g′ that has eigenvalue −1 on |ψe〉. The location of the excitation P ′g′ = −1 is
not too different from that of Pi = −1.

The matrix ε yields a convenient way to determine the locations of the
defects (excitations) when a Pauli operator acts on the ground state. Let |ψ〉
be a ground state (code state), and let P be arbitrary Pauli operator that is
finitely supported. To locate the excitations of |ψ′〉 = P |ψ〉, we consider

Pg |ψ′〉 = PgP |ψ〉 = ±PPg |ψ〉 = ±P |ψ〉 = ± |ψ′〉 (48)

where the sign ± is determined by the commutation relation between Pg and
P . We know how to express this sign by the symplectic form. The Hamiltonian
term Pg is a translation by g ∈ ZD of one of the columns of σ, say i-th column
σi. The Pauli operator P is expressed by some column vector v. The anti-
commutation happens precisely when

1 = (gσi · λqv) = (g · σ†iλqv). (49)

If we vary g ∈ ZD, then we will collect all positions of the excitation associated
with σi, and may convert these position data into a Laurent polynomial. But,
this Laurent polynomial is exactly σ†iλqv. If we collect these polynomials, one
for each column i of σ, we obtain a column vector of Laurent polynomials of
length t, which is equal to σ†λqv. This shows how ε = σ†λq defines a map from
the Pauli operators to the excitations. The map ε is the excitation map.

Excercise 4.6. Recall 2.12. Assume periodic boundary conditions for the lat-
tice to work with finite systems, and show that a Pauli operator is logical if
and only if its Laurent polynomial representation v satisfies ε(v) = 0. Show
also that it is nontrivial if v /∈ imσ. �
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4.3. Symplectic/Locality-preserving Clifford transformations

In the zero-dimensional study above, we identified symplectic transformations
that preserves the symplectic form in the abstract vector space, and found
a generating set for the symplectic group. We then showed that, on the F2-
symplectic space derived from the commutation relation among Pauli oper-
ators on qubits, the generators of the symplectic group are induced by Clif-
ford unitary transformations on qubits. Here we parallel the discussion with
the translation invariance. Recall that q is the number of qubits per site, and
R = F2[x±1 , . . . , x

±
D] is our base ring, the translation group algebra.

A 2q × 2q matrix T on R2q is symplectic if it satisfies the matrix equation

T †λqT = λq. (50)

Restricting the entries of T to be in F2 we recover the symplectic group in the
zero-dimensional case. This subgroup of the symplectic group is induced by the
application of the Hadamard, the phase, and the controlled-not gate on every
unit cell, uniformly over the lattice.

There are other symplectic transformations, of which we enumerate a few.

When q = 1, for any monomial g = xa11 · · ·x
aD
D , the matrix

(
g 0

0 g

)
is sym-

plectic. Interpreting in terms of action on qubits, this amounts to translating
qubits into (a1, . . . , aD)-direction. This certainly maps a Pauli operator to a
Pauli operator and preserves the size of the support; it is a locality-preserving
Clifford transformation.

Assuming q = 1 still, we consider transformation of form Sf =

(
1 0

f 1

)
.

Plugging it into (50), we obtain an equation f = f̄ . The matrix S of (23)
corresponds to Sf for f ∈ F2 ⊆ R. Sf with a general f can be split into
a product of finitely many Sm+m̄ for a monomial m and at most one Sa for
a ∈ F2. The transformation Sm+m̄ is new arising from the translation structure,
and is induced by a controlled-Z gate

UCZ = diag(1, 1, 1,−1) (51)

on a pair of qubits. Since it is diagonal, it commutes with any other UCZ acting
on other qubits. This commutes with Pauli Z, so only nontrivial action is on
Pauli X. It is simple calculation to verify that UCZ(X ⊗ I)U†CZ = X ⊗ Z
and UCZ(I ⊗ x)UCZ = Z ⊗X. This implies that if UCZ acts on every pair of
qubits separated by the displacement m ∈ ZD, then the induced symplectic
transformation is precisely Sm+m̄.

When q ≥ 2, we can generalize the controlled-NOT (24). If we apply the
controlled-NOT translation invariantly where the target qubit is at m ∈ ZD
relative to the control qubit, then the presence of X at the control qubit will
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bring a new X to the target qubit, and the presence of Z at the target qubit
will bring a new Z to the control qubit. Since the controlled-NOT’s on two
different but overlapping pairs in general do not commute, the control and
target qubit should be the different qubit within the unit cell, in order to
define the controlled-NOT uniformly over the lattice unambiguously. Such a
translation-invariant controlled-NOT induces a symplectic transformation

C|〈ei,ej ,ei+n,ej+n〉 = C(m) :=


1 0

m 1

1 −m
0 1

 where 1 ≤ i 6= j ≤ n (52)

where m is a monomial of R. Since C(m)C(m′) = C(m+m′), the entry of m
in the matrix (52) can be occupied by any Laurent polynomial of R.

Remark 4.7. A natural question in analogy with 2.9 is whether the symplectic
transformations that are found so far generate the full symplectic group. The
author does not know the answer when D ≥ 2. The case D = 0 is covered in
2.9, and the case D = 1 will be solved in the next section. �

5. Low dimensions

5.1. Smith normal form

For a moment, we digress from the translation invariant additive codes, and
consider matrices over a “nice” ring. The conclusion will have immediate ap-
plications in one-dimensional additive codes.

A ring is an abelian group where two elements may be multiplied. Integers,
complex numbers, polynomials, etc. form rings. An ideal I of a ring R is a
subset of the ring that is a subgroup of R under addition such that rm ∈ I for
all r ∈ R and m ∈ I. So, an ideal is a collection of multiples of its members,
and sums thereof. Most of the time, we only care about the generators, the
multiples of which form the ideal. When the generators gi are known, we write
I = (gi, . . .). A commutative ring with 1 is a principal ideal domain if no
nonzero elements multiply to become zero and every ideal is generated by a
single element. Important examples are the ring of integers Z, and the (Laurent)
polynomial ring in one variable over a field F[x] (F[x, x−1]). These are examples
of Euclidean domains.

Why is Z a principal ideal domain? Suppose I = (a, b) is an ideal of Z. If
b > a > 0, then we can consider (a, b− a), and see that it is the same ideal as
before because an ideal is closed under addition. We can proceed similarly to
find smaller and smaller generators, but this must stop at some point because
positive integers cannot decrease forever. In the end, we must be left with a
single number (principal generator), which is actually the greatest common
divisor of a and b. This is the Euclid’s algorithm, and proves that (a, b) =
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(gcd(a, b)). This argument will always give the single generator of an ideal
of Z generated by a finitely many elements. For an arbitrary ideal I where
the number of generators is unknown, one can consider the smallest positive
member d of the ideal, and prove that every member of I has to be a multiple of
d. Important is the division algorithm that allows us to find a smaller element as
a linear combination of two given elements. This argument applies with a slight
modification to the univariate polynomial and Laurent polynomial ring. The
“size” of a polynomial is measured by the degree of the polynomial, and the size
of a Laurent polynomial is measured by the difference of the greatest exponent
and the least exponent. We can rephrase the implication of the algorithm as
follows.

Proposition 5.1. For any column vector v over an Euclidean domain, there
exists a finite product M of elementary row operation matrices such that the
column vector Mv consists of a single nonzero entry.

5.1.1. Classification of finitely generated abelian groups

A group G is said to be finitely generated if there is a finite set of members
(generators) g1, . . . , gn of the group such that all other members can be written
as a finite product of the generators and their inverses. Following the convention
for abelian groups, we should denote the group operation as a sum instead of
a product. So, any group element can be written as

n∑
i=1

cigi (53)

where ci ∈ Z. This means that the n-tuple of integers (c1, . . . , cn) can express
any element of the group, and we may say that the map

Zn → G (54)

is surjective. This map is a group homomorphism as one can easily check from
(53). Whenever we see a surjective homomorphism we should consider the
kernel K. The kernel itself is finitely generated14 by k1, . . . , km ∈ Zn. We again
think of the kernel as the image of the map

ϕ : Zm → Zn (55)

14This is not too trivial. One of the best ways to show this is through the notion of
Noetherian rings and modules. Here is a sketch. A Noetherian module is one of which any
submodule is finitely generated. An equivalent definition is that every increasing chain of
submodules saturates. Similarly, a Noetherian ring is Noetherian if it is Noetherian module
over itself. After showing the equivalence of the definitions, one can further show that finitely
generated modules over a Noetherian ring is Noetherian. Since Z is a principal ideal domain,
it is Noetherian. The kernel is a submodule of Zn and therefore is finitely generated.
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sending the unit vectors of Zm to ki. In this way we present the group G as
the cokernel of ϕ:

Zm ϕ−→ Zn → G→ 0. (56)

If we express the map ϕ as a matrix, it will contain the generators k1, . . . , km
in the columns of the n×m integer matrix M .

Now, what do the row and column operations on M correspond to? In-
stead of choosing the generating set of G as g1, . . . , gn, we could choose g1 +
g2, g2, g3, . . . , gn. In the latter case, we would write (53) as

g = c1(g1 + g2) + c2g2 + · · · cngn = c1g1 + (c1 + c2)g2 + · · · cngn (57)

We see that different choices of the generators lead to row operations on M .
Similarly, the choice of generators of K is of course arbitrary, and since the
columns of M are the generators of K, this corresponds to column operations
on M .

Therefore, any row and column operations on M does not change the iso-
morphism class of G; they are just differences how we describe the group G.
Let us use the Euclid’s algorithm in order to simplify M . Pick any nonzero
column and run the Euclid’s algorithm to eliminate all but one entries in the
upper-left corner. Run the algorithm on the first row, to single out a nonzero
entry on the upper-left corner. If any nonzero element appears, repeat. Since a
positive integer cannot decrease forever, this procedure must end after finitely
many iterations. A nonzero element will reside at the upper-left corner and all
other entries in the first column and first row will be zero.? ? ?

? ? ?

? ? ?

 7→
d1 0 0

0 ? ?

0 ? ?

 (58)

If the bottom-right block contains an integer that is not divisible by d1, then
we bring that integer to the first row, and repeat the above. This will decrease
the number in the upper-left corner, and after finitely many iterations, d1 will
divide all the other entries.

We inductively proceed to obtaind1 0 0

0 ? ?

0 ? ?

 7→
d1 0 0

0 d2 0

0 0
. . .

 (59)

where

d1 | d2 | · · · | dr. (60)
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where dr > 0 and r is the rank of the matrixM , i.e., r is maximal such that some
r × r submatrix of M has nonzero determinant. This diagonal form is called
the Smith normal form of M . The diagonal elements are called elementary
divisors of M . We have defined the elementary divisors as a result of the Smith
algorithm. There is some arbitrariness in the details of the algorithm. So, a
priori, we do not know whether the elementary divisors are unique regardless
how we obtain them. However, there is another characterization of elementary
divisors, which will prove their uniqueness. For any rectangular matrix M , let
Is(M) be the ideal generated by the determinants of s × s submatrices of M ,
called s-th determinantal ideal of M .

Proposition 5.2. It holds that Is(M) = Is(AM) = Is(MB) for any invert-
ible matrices A and B. The elementary divisors of M are determined by the
determinantal ideals of M , and hence are uniquely determined by M .

Proof. The second claim follows from the first because d1 · · · ds is the (princi-
pal) generator of Is(M).

To show the first claim, suppose three matrices satisfy AM = C. An (s×s)-
submatrix C ′ of C is the product of some s × s′ submatrix A′ of A and some
s′ × s submatrix M ′ of M . Each row vi is a linear combination of rows bj of
M ′ as vi =

∑
ji
A′ijibji . The minor detC ′ is a multilinear function of rows vi

of C ′;

detC ′ = det(v1, . . . , vs) (61)

=
∑

j1,j2,...,js

A′1j1A
′
2j2 · · ·A

′
sjs det(bj1 , . . . , bjs). (62)

This implies that detC ′ is a linear combination of minors of M ′. Since C ′ was
arbitrary, we see that Is(C) ⊆ Is(M). If A is invertible, then the opposite
inclusion holds, implying an equality. This proves Is(AM) = Is(M). To show
Is(MB) = Is(B), transpose everything above. �X

Since G is the cokernel of M , we see that

G ∼= Z/dt+1Z⊕ · · · ⊕ Z/drZ⊕ Zn−r. (63)

where dt = 1 < dt+1.15 We have decomposed the group G into familiar abelian
groups, effectively by row and column operations on the presentation of G.

Remark 5.3. Over any principal ideal domain the Smith normal form is de-
fined: For any matrix M there exists invertible matrices A and B such that
AMB is diagonal such that upper-left elements divide lower-right elements.

15To show that this is a unique expression, observe the following. The number of the direct
summands Z is the vector space dimension upon tensoring Q over Z. In addition, for the
minimal n, either d1 = 0 or d1 > 1.
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The difference is that over a non-Euclidean domain, the algorithm to find A
and B may need to do more than just adding one row (column) to another
row (column). The conclusion that the Smith normal form is unique (i.e., the
elementary divisors are well-defined) remains true. �

5.2. Classification in one dimension

We turn back to the lattice codes with translation structure, here with the
simplest possible translation. Consider qubits arranged on a straight line where
q qubits are clustered at each site i ∈ Z. The translation group is Z and we
identify the group algebra as R = F2[x, x−1] ∼= F2[Z]. We have shown that
a translation invariant additive code on this array of qubits is defined by a
stabilizer module Σ over R. The stabilizer module has finitely many generators
as an R-module, and if we express the generators in the columns of a 2q × t
matrix σ then it satisfies

σ†λqσ = 0 (64)

by 4.2. The entries of σ are Laurent polynomials with one variable x. The ring
R happens to be a Euclidean domain, and we can try to convert the matrix
σ into a simpler form by the elementary symplectic transformations that we
found in Section 4.3. We will show that the Smith normal form of σ can be
obtained.

Proposition 5.4. For any translation-invariant one-dimensional additive code,
there exists a locality-preserving and translation-invariant Clifford transforma-
tion such that the stabilizer map is diagonal with zero matrix in the bottom
half. The diagonal elements completely determines the equivalence class of the
translation-invariant additive code up to Clifford operations.

This has appeared in [17] and also in [19].

Proof. We employ the technique used in the proof of 2.8. Using the controlled-
NOT, Hadamard, and column operations, we can bring σ into

σ′ =


f 0

0 ?

g ?

0 ?

 . (65)

The equation σ′†λqσ
′ = 0 demands that fḡ = f̄g = fḡ. Suppose f = αxa +

· · ·+ βxb and g = γxc + · · ·+ δxd with the exponents increasing and α, β, γ, δ
are all nonzero. Assume harmlessly that the degree of f is smaller than that
of g: b − a < d − c. (If not, apply Hadamard to interchange them). Then
the equation fḡ = fḡ implies that γ/α = δ/β and a + b = c + d. Setting

Revista Colombiana de Matemáticas
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h = (γ/α)(xc−a + xd−b), we see that h = h̄ and controlled-Z by h reduces
the degree at the position of g by at least 2. Since the degree cannot decrease
forever, after finitely many iterations we obtain a column with sole nonzero
entry. Then, the top row of the bottom half block must be zero, due to the
equation σλqσ = 0.

σ′′ =


d1 0

0 ?

0 0

0 ?

 . (66)

If there is any entry that is not divisible by d1, then we can bring it to the
first row by Hadamard and controlled-NOT, and repeat the above. The degree
cannot decrease forever, and we must be left with a stabilizer map in the form
of σ′′ where d1 divides every entry. We finish by induction in q. �X

5.2.1. Coarse-graining

If we are lenient about the translation structure, then stronger classification can
be obtained. The translation group Z has subgroups bZ for any positive integer
b. Any stabilizer module is a module over this smaller translation group, and
we can consider Clifford operations that conforms with this smaller translation
group. This can be viewed as taking a larger unit cell in the lattice. Instead
of saying that the unit cell consists of q qubits, we now take the unit cell to
consist of bq qubits.

To be clear, by coarse-graining we mean taking a smaller base ring R′ =
F2[xb, x−b] of R = F2[x, x−1], and regarding all R-modules to R′-modules.

As a standalone ring, R′ is isomorphic to R, but now R is a module of rank
b over R′ with a basis 1, x, . . . , xb−1. The Pauli module R2q is now R′2bq as
R = R′b. Since the stabilizer map is from Rt to R2q, under the coarse translation
group, the new stabilizer map is from R′bt to R′2bq, and the corresponding
matrix gets bigger by a factor of b. To figure out the bigger matrix, observe
that each entry in the stabilizer map can be regarded as a map R → R. Over
the smaller ring R′, this map has to be represented by R′b → R′b. Since the
multiplication in R is compatible with the composition of maps R→ R (That
is what module is about), it is enough to find the matrix representation of
the generator x of the ring over F2. The multiplication by x sends the basis
elements 1, x, . . . , xb−1 to x, x2, . . . , xb = x′ · 1. Hence,

(x : R′b → R′b) =


0 x′

1 0
. . .

. . .

1 0

 . (67)
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Excercise 5.5. Consider the Ising model whose stabilizer map is given by

σIsing =

(
1 + x

0

)
on the one-dimensional lattice. Write down the corresponding

Hamiltonian according to (46). Take a smaller translation group 2Z instead of
Z, and rewrite a corresponding stabilizer map, which should be 4 × 2. Verify
that the Hamiltonian is not changed. �

Using this passive coarse-grain procedure, the Clifford group actually be-
comes larger. From 5.4, the only potentially interesting stabilizer map is (f)
where we omit the lower half block and f is a Laurent polynomial. Since mul-
tiplying a monomial to f does not change im(f) at all, we may assume that
all exponents of f is nonnegative and f(x = 0) 6= 0. Upon coarse graining,
this 1 × 1 matrix becomes b × b matrix, and a controlled-NOT provides any
row operation, and redefinition of stabilizer generators provides any column
operation. Hence, this b×b matrix can be brought into the Smith normal form,
and we would hopefully simplify f into a smaller degree polynomial in x′. The
following tells us how to choose b. It is convenient to introduce the annihilator
of a module M over a ring S:

annSM = {r ∈ S : rm = 0 ∀m ∈M} (68)

An annihilator is an ideal of S.

Proposition 5.6. Let f(x) ∈ F[x] be a polynomial with f(0) 6= 0 over a field
F. Suppose f(x) divides xn − 1. Then, the annihilator of the module M =
F[x]/(f(x)) over R′ = F[xn] is precisely the ideal (xn − 1) ⊆ R′.

Proof. Since R′ is a subring of R = F[x], we immediately have annR′M =
R′∩annRM = R′∩(f(x)). The latter includes xn−1 by the supposition. Hence,
(xn− 1) ⊆ annR′M ( R′, but (xn− 1) is maximal in R′ since R′/(xn− 1) ∼= F
is a field. �X

Let us see how this implies the simplification of f into a smaller degree
polynomial in x′ = xn. By coarse-graining, we obtain the matrix representation
M of the map f(x) : R′n → R′n. The R′-module R/(f(x)) is equal to R′-module
cokerM , and hence annR′ cokerM = annR′ R/(f(x)) = (xn−1) = (x′−1). By
inspection of the Smith normal form, every elementary divisors must divide the
annihilator x′ − 1. There are only two possible ways to divide x′ − 1: either by
1 or by x′ − 1. This implies that the elementary divisors are either 1 or x′ − 1.
Since the module M has F-vector space dimension deg f , there are precisely
deg f elementary divisors that are equal to x′ − 1 and n − deg f elementary
divisors that are equal to 1, up to scalars in F.

We work out an example explicitly. Let f(x) = 1+x+x2, and then x3−1 =
(x− 1)f(x), so let R′ = F[x3]. As a R′-linear map R′3 → R′3, f(x) becomes
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M =

1 x′ x′

1 1 x′

1 1 1

 . (69)

Applying row and column operations, we have

M 7→

1 x′ x′

0 1− x′ 0

0 1− x′ 1− x′

 7→
1 0 0

0 1− x′ 0

0 1− x′ 1− x′

 7→
1 0 0

0 1− x′ 0

0 0 1− x′

 .

(70)

In fact, the supposition in 5.6 is always satisfied whenever the field F is finite,
which is the case for the additive codes on lattices.

Proposition 5.7. For any polynomial f(x) with coefficients in a finite field
F such that f(0) 6= 0, there exists a positive integer n such that f(x) divides
xn − 1.

Proof. We have to use some facts about finite fields; namely, any finite field
of characteristic16 p consists of solutions of xp

m −x = 0.17 This means that the
roots of the polynomial f(x) are roots of xp

m − x for some m. Since 0 is not a
root of f(x), we see that the roots of f(x) are among those of xn

′ − 1 for some
n′. If there is any multiplicity of the roots of f(x), take the smallest m′ such

that pm
′

is at least the largest multiplicity. Then, (xn
′ − 1)p

m′

= xn
′pm
′

− 1
contains all factors of f(x) and hence is a multiple of f(x). �X

Combining 5.4, 5.6, 5.7, we arrive at the classification:

Theorem 5.8. Any one-dimensional translation-invariant additive code can be
converted into several copies of Ising models and some trivial codes, by Clifford
operators that obey coarse translation invariance.

Note the consistency with our result 3.2. The Ising model has code dis-
tance 1 independent of system size. In 3.2, we did not assume the translation-
invariance, and concluded that the code distance is bounded. Here we assumed
the translation-invariance and obtained a complete classification under Clifford
operations. The Clifford operations in 5.8 preserve locality, so any logical op-
erator in the one-dimensional translation-invariant code is a conjugation of a
logical operator of the Ising model, which acts on a geometrically local set of
qubits.

16The minimal positive integer p such that px = 0 for any element x of the field. It is
necessarily a prime number.

17The proof using the result on finitely generated abelian groups can be found in 5.9 below.
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Remark 5.9. The set F× of all nonzero elements of a finite field is a (multi-
plicative) group of finite order. In particular, it is finitely generated and finite.
Therefore, it is isomorphic to direct sum of finite cyclic groups. Choose the
largest period N , which is a factor of |F×|. Then, every nonzero field element
satisfies xN = 1. The polynomial xN − 1 has at most N distinct roots, but we
know it has |F×| distinct roots. Hence, |F×| = N and the F× is a cyclic group
of order N . Finally, F is a vector space over Fp of some finite dimension m,
implying N = pm−1. Therefore, xp

m −x = 0 holds for any element of the field
F. �

5.3. Translation-invariant two-dimensional CSS codes

In one-dimensional classification, it was crucially used in the initial stage that
the base ring F2[x, x−1] is a Euclidean domain. In two-dimensions, the base
ring is R = F2[x±, y±], and the problem becomes more complicated.

First, we need to distinguish infinite lattice Z2 versus finite lattice Z2/Λ
obtained by periodic boundary conditions (factoring out a subgroup Λ ≤ Z2

of finite index). This distinction was unnecessary in the one-dimensional case
because the ring F2[x±] was so simple that we didn’t have to talk about log-
ical operators. Roughly speaking, we saw that a one-dimensional translation-
invariant code is not going to be useful for error correcting purposes, which
makes the discussion of logical operators unimportant. On the contrary, two-
dimensional codes may have error correcting capability with the code distance
comparable with the system size, and it is crucial to understand logical opera-
tors. Unfortunately, the logical operators in the infinite system are out of our
scope since we have only studied finite dimensional symplectic spaces.

The complication is already lurking in the previous one-dimensional case.
Consider the Ising model (see 5.5) with excitation map ε = (0, 1 + x). Apply-
ing 4.6, we would say that the logical operators correspond to ker ε. Since in
F2[x±] no two nonzero elements multiply to become zero, the kernel has the
zero second component. However, if we had considered ker ε over the factor ring
F2[x±]/(xL − 1) = F2[x]/(xL − 1), then the kernel would have nonzero second

component since (1 + x)
∑L
i=1 x

i = 0. Remark here that the ideal (xL − 1)
imposes the periodic boundary condition that translation by L units is equiv-
alent to no translation. Thinking of “infinite L” to recover the infinite lattice,
we would say that an infinite series

∑
i∈Z x

i(0, 1)T lies in ker ε, but the infinite
series is not a member of the Pauli module (F2[x±])2. It is not too difficult to
extend the module to include the infinite series, but we are not going to do it.

The most important distinction for the two- or higher dimensional cases
from the one-dimensional ones is that there exists a stabilizer map σ such that

ker ε = imσ over R = F2[x±, y±], (71)

ker ε ) imσ over F2[x, y]/(xL − 1, yL − 1) (72)
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for some L, where ε = σ†λq is the excitation map. In 4.6 one has shown that
kerσ†/ imσ is the set of all independent logical operators. (72) means that there
are nontrivial logical operators, and they cannot be expressed by a Laurent
polynomial vector in the infinite system. The logical operators have to be global.

If (71) does not hold, then there exists a nontrivial logical operator sup-
ported on a finite region of the lattice.18 The size of the finite region is indepen-
dent of the system size, and an error on that finite region will not be corrected.
This is a situation we want to avoid. Thus, we assume (71) from now on.

Here is an example of (72), which we refer to as toric code [25].

σ =


x− 1 0

y − 1 0

0 ȳ − 1

0 −x̄+ 1

 . (73)

Excercise 5.10. Verify that σ†λ2σ = 0, and that kerσ†λ2 = imσ. �

One could directly compute kerσ†λ2/ imσ over R/(xL − 1, yL − 1), but
we are going to make connection from this quotient module to the cellular
homology in the next subsection. In the rest of this section we show that this
is essentially the only example of translation-invariant additive (CSS) codes in
two dimensions.

5.3.1. Canonical form of stabilizer maps

The following fact is our starting point of the further discussion. Unfortunately
the proof is beyond the scope of this lecture note. The proof can be found in
Ref. [19].

Proposition 5.11. For any two-dimensional translation-invariant additive
code, if the stabilizer map σ satisfies kerσ†λ = imσ over R = F2[x±, y±],
then there is a choice of another stabilizer map σ′ such that

imσ = imσ′ = kerσ′†λq, kerσ′ = 0, (74)

Moreover, any such σ′ has size 2t × t for some t, and there exists a positive
integer b such that

annR′ cokerσ′† = (xb − 1, yb − 1) (75)

where R′ = F2[x±b, y±b] is the coarser translation group algebra.

18We had better be more cautious here. We only have defined logical operators in the finite
systems, and here we are saying that ker ε/ imσ 6= 0 over R implies that there is a nontrivial
logical operator for finite systems. We elaborate on this in 5.15 below.
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Due to this, we may assume that our stabilizer map is given such that b = 1
and σ′ = σ. The last condition (75) imposes stringent restrictions on σ. To see
this, let us recall the definition of the annihilator. The cokernel is Rt/ imσ†. If
e1, . . . , et are the unit basis vectors of Rt, the annihilator condition says that
(x − 1)ei and (y − 1)ei must be in the image of σ† whenever ei is nonzero
modulo imσ†. In other words, a linear combination of the columns of σ† must
yield (x−1)ei, and another yield (y−1)ei if it cannot generate ei. In particular,
the row i of σ† must generate either the maximal ideal (x−1, y−1) or the unit
ideal (the ring R itself).

The notion of torsion submodules is useful to characterize the cokerσ†. A
torsion submodule T (M) of a module M over R is defined19 as

T (M) = { m ∈M | ∃r ∈ R \ {0} such that rm = 0 }. (76)

The condition (75) says any nonzero element of cokerσ′† is a torsion element;
T cokerσ′† = cokerσ′† is a torsion module. Depending on the choice of σ,
cokerσ† may not be a torsion module. However,

Proposition 5.12. If imσ = im τ , then T cokerσ† and T coker τ † are isomor-
phic as R-modules.

Proof. Regard τ and σ as matrices. We may combine two matrices as µ =
(σ τ). By assumption, imµ = imσ = im τ . Since every column of τ is in the
span of σ, we can find a column operation matrix C such that µC = (σ 0).
Similarly, there is a column operation matrix C ′ such that µC ′ = (0 τ). Now,
coker(µC)† = coker(C†µ†), where the invertible C† induces an isomorphism
between cokerµ† and coker(C†µ†). It follows that coker(σ 0)† ∼= coker(0 τ)†,
and T coker(σ 0)† ∼= T coker(0 τ)†. On the other hand, a torsion submodule is
oblivious to a free summand: For any module M , we see T (M ⊕ R) = T (M)
since R is a domain. To finish the proof, observe that coker(σ 0)† = (cokerσ†)⊕
Rm where m is the number of columns of τ , so T coker(σ 0)† = T cokerσ†, and
likewise T coker(0 τ)† = T coker τ †. We conclude that T coker τ † ∼= T cokerσ†.

�X

5.3.2. Structure theorem

The strong constraint (75) leads to a structure theorem, at least for CSS codes.
Recall that a CSS code [10, 38] is a code where stabilizer generators can be
chosen to be either X- or Z-type. Hence, a CSS code has a block diagonal

19This definition assumes R has no two nonzero elements that multiply to become zero.
That is, we are using the fact that R is a domain. Note that over a field a torsion submodule
is always zero.
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stabilizer map σ and excitation map ε.

ε = σ†λ =

(
0 σ†X
−σ†Z 0

)
, σ =

(
σX 0

0 σZ

)
. (77)

Theorem 5.13. For any two-dimensional translation-invariant CSS code, if
the stabilizer map σ satisfies kerσ†λ = imσ over R = F2[x±, y±], then the
code becomes a tensor product of finitely many copies of the toric code and a
product state by (a finite number of layers of) Clifford operations. The number
of copies of the toric code in the CSS code is equal to 1

2 dimF2
T cokerσ†.

Note that by 5.12, the number dimF2 T cokerσ† depends only on imσ. A
similar result is in Ref. [5]. See 5.14 below for comparison.

Proof. 5.11 provides us with a stabilizer map that satisfies (74). Thus, we may
assume that our stabilizer map σ satisfies (74) and (75) with b = 1.

We wish to convert a row of the excitation map ε = σ†λq that generates
the maximal ideal

m = (x− 1, y − 1) (78)

into one that has only two components as in (73). We know that there exists a
vector p of Laurent polynomials such that εp is a vector with sole nonzero entry
x − 1, y − 1, or 1. We wish to turn p into a unit vector. The transformation
has to be induced from Clifford operation, and in particular should preserve
the symplectic form. We are not going to follow this line as we do not under-
stand the symplectic group over R well enough.20 But, the complication can
be reduced by going to a coarser lattice.

Since we can always multiply monomials on the rows of ε, we may assume
every entry has positive exponent. If n is the maximum exponent of the terms
in ε, take R′ = F2[x±n, y±n] as our new base ring (Coarse-graing I). Then
every entry of the new excitation map ε′ has exponent at most 1. That is,
every entry is a F2-linear combination of 1, x′, y′, x′y′. Let us say that such ε is
of degree one. If a row i of ε generates m, then its entries are members of m, and
hence they are F2-linear combinations of x− 1, y − 1, xy − 1. Using symplectic
transformations that does not involve any variables x, y, we can eliminate all
but at most three entries in the row i. The number of survived entries must
be either three or two, because they should generate two elements x′ − 1 and
y′ − 1 over R. If there are three entries survived, they can be rearranged to be

20Even the following problem, which is presumably simpler, is fairly complicated. Let v be
a vector over S = F[x1, . . . , xn], a polynomial ring with the coefficients in a field. Suppose
the entries of v generate the unit ideal. Is there an invertible matrix M with entries in S
where v is a column of M? The answer is affirmative, known as Quillen-Suslin theorem. See
XXI.3.5 of [29].
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x′ − 1, y′ − 1, and x′y′ − 1.21 Now, we can use the CSS assumption to erase
the entry xy − 1 by some controlled-NOT operation. (Note that a symplectic
transformation on ε acts on its columns.) This controlled-NOT operation may
destroy the fact that ε′ has been of degree one, in which case we take an even
coarser base ring to reduce the maximum exponent back to 1 Coarse-graining
II).

Therefore, we may now assume without loss of generality that if T coker ε 6=
0, there exists a row of ε such that it consists of two entries of degree 1. There
are three possibilities up to F2-symplectic transformations. The two entries can
be (i) x− 1, y − 1, (ii) x− 1, xy − 1, or (iii) y − 1, xy − 1. In either of (ii) and
(iii), we can redefine the translation variable so that xy 7→ y or xy 7→ x. They
corresponds to automorphisms of R. To summarize,

(•) If T coker ε 6= 0, then by symplectic transformations and a redefinition of
the base ring, we can find an excitation map ε with a row i that has only
two nonzero entries x− 1 and y − 1.22

Let us say that x − 1 is at column a and y − 1 at b. Assume that a, b ≤ q;
otherwise, interchange left-half and right-half blocks of ε:

ε =

 ? ? ?

0 x− 1 y − 1

? ? ?

 . (79)

Now we examine what can be done to ε towards the form of (73). It is going
to be elementary and careful examination of the conditions (74) and (75). We
state intermediate goals and then give the proofs for them. Let’s roll our sleeves
up!

(I) After some F2-symplectic transformation, we can obtain ε′ such that all
the entries on columns a and b of ε′ belong to m:

ε′ =

 ? ◦ ◦
0 x− 1 y − 1

? ? ?

 where any ◦ ∈ m. (80)

By the condition (75) there exists a vector px and py such that εpx = (x− 1)ei
and εpy = (y − 1)ei, where ei is a unit vector with i-th component 1. Setting
x = y = 1, px, py become a vector over F2, and their symplectic product is zero
due to the CSS condition. Then, by 2.8 there exists a symplectic transformation

21If the base field is Fp for some prime p, then one should multiply some scalar of Fp to
get the coefficient 1.

22This does not involve any additional qubits; however, a similar statement can be shown
much more simply if one allows to insert additional qubits in the trivial product state.
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S (controlled-NOT’s) that do not involve variables x, y such that Spx(x = y =
1) = ea and Spy(x = y = 1) = eb while the row i of εS−1 is still the same
as the row i of ε. That is, Spx has a-th component outside m, but everything
else in m. Similarly, Spy has b-th component outside m, but everything else
in m. Now, the new excitation map ε′ = εS−1 has the claimed property: The
equation ε′(Spx) = (x− 1)ei demands that

ε′k,a(Spx)a + (terms in m) = 0 for k 6= i, (81)

implying ε′k,a ∈ m for all k 6= i. Similarly, ε′(Spy) = (y − 1)ei demands that
ε′k,b(Spy) + (terms in m) = 0 whenever k 6= i, implying ε′k,b ∈ m for all k 6= i.

(II) Both the columns a+ q and b+ q of ε′ are nonzero.

If either of them was zero, then the condition ker ε = imλqε
† would imply that

there must be a row with sole nonzero element 1 at column a or b. That is not
possible as we have shown in (I) that ε′ has entries in m for the columns a and
b.

(III) For any row j each tuple of entries (ε′j,a+q, ε
′
j,b+q) is a F2-multiple of the

tuple (x− xy, xy − y).

Since the row i of (•) has only two nonzero components, the condition ε′λqε
′† =

0 implies that ε′j,a+q(x̄−1)+ε′j,b+q(ȳ−1) = 0 for all j. The solution of degree-one
is a F2-multiple of x− xy, xy − y.

(IV) By Gauss elimination that does not involve any variables x and y, the
excitation map ε′ can be turned into ε′′ such that each of the left and
right blocks of ε′′(x = y = 1) is in the reduced row echelon form.

This is obvious.

(V) ε′′ has a row j such that ε′′j,a+q, ε
′′
j,b+q 6= 0 but ε′′j,k(x = y = 1) = 0 for all

k:

ε′′ =


? ◦ ◦
0 x− 1 y − 1

? ◦ ◦
◦ x− xy xy − y

 . (82)

Let J1 be the collection of all row indices j such that the row j is nonzero upon
setting x = y = 1. The reduced row echelon form of ε′′ tells us that j ∈ J1 if
and only if ej ∈ im ε′′, which can be verified by setting x = y = 1. For j ∈ J1,
choose vectors f (j) such that ej = ε′′f (j). (f (j) are determined up to imλqε

′′†.)
On the contrary to the claim (V), suppose that ε′′j,a+q, ε

′′
j,b+q 6= 0 happens only
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for j ∈ J1. Then, for the unit vector ea+q we have ε′′ea+q =
∑
j∈J1 cjej for

some cj ∈ R. This means that ea+q−
∑
j∈J1 cjf

(j) ∈ ker ε′′. On the other hand,
setting x = y = 1, we see that ε′′(x = y = 1)ea+q = 0 by (III). This implies
that cj(x = y = 1) = 0 for all j ∈ J1. Since ker ε′′ = imλqε

′′†, it follows that
λqea+q −

∑
j∈J1 cjλqf

(j) ∈ im ε′′†, and therefore λqea+q = ea ∈ im ε′′†(x = y =
1). But, the column a of ε′′(x = y = 1) is zero by (I). This is a contradiction.
Since (II) implies that the column a+ q and b+ q are nonzero, (V) is proved.

(VI) By symplectic transformations and F2-row operations on ε′′, we can ob-
tain ε′′′ such that ε′′′j,a+q and ε′′′j,b+q are the only nonzero entries in the row
j (6= i) and columns a+ q, b+ q:

ε′′′ =


? ? ?

0 x− 1 y − 1

? 0 0

0 x− xy xy − y

 . (83)

By (III), row operations on ε′′ can eliminate all the entries but j-th row in the
columns a + q and b + q. The row i is left intact as it has zero entries in the
columns a + q and b + q anyway. After this, since x − xy, xy − y generate the
ideal m and all the entries of row j are in m by (V), appropriate controlled-
NOTs clean the row j by adding some multiple of ε′′j,a+q and ε′′j,b+q to other
places in the row j in the right-half block of ε′′. These controlled-NOTs do not
change the row i because on the left-half block of ε′′ the controlled-NOT adds
multiples of 0 to ε′′i,a and ε′′i,b.

(VII) For any row r the tuple (ε′′′r,a, ε
′′′
r,b) is a R-multiple of the tuple (x−1, y−1).

Therefore, some row operation on ε′′′ clears up the column a, b, leaving
ε′′′i,a = x− 1 and ε′′′i,b = y − 1 intact:

ε′′′′ =


? 0 0

0 x− 1 y − 1

? 0 0

0 x− xy xy − y

 . (84)

This follows from the proof of (III) using the cleaned row j of ε′′′.

Now the excitation map ε′′′′ obtained from (VII) has a distinguished sub-
matrix consisting of rows i and j, columns a, b, a+ q, b+ q, which is the same
the excitation map of the toric code. We have shown that T coker ε 6= 0 implies
k = dimF2

T coker ε ≥ 2. By induction on k, we see that k has to be even, and
that there is a Clifford operation obeying a coarse translation-invariance which
factors out k/2 copies of the toric code. The proof so far is algorithmic.
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It remains to turn the code state into a product state when k = 0. This
part appears to be no easier than the Quillen-Suslin theorem on the unimodular
completion problem. Since the excitation map of a CSS code is block diagonal,
and any elementary column operation on the left-block can be compensated by
another column operation in the right-block to become a symplectic transfor-
mation, we only need to show that the left-half block of ε can be transformed
into the identity matrix, representing the trivial state. The condition (75) says
that each row generates the unit ideal (each row is unimodular), and therefore
our problem is to convert each row that generates the unit ideal into the unit
vector using elementary column operations (unimodular completion) over the
Laurent polynomial ring. This is known to be possible with explicit algorithms.
Park [33] gives an algorithm that reduces the problem into that over a poly-
nomial ring, so that the algorithm of Park and Woodburn [32] can then be
applied. (Amidou and Yengui [1] find a more efficient algorithm when the coef-
ficient field is infinite, which is not applicable for our purpose.) This completes
our proof of the classification theorem. �X

5.3.3. Remarks

Remark 5.14. Bomb́ın [5] reports a classification theorem, which is similar
to 5.13. Here we sketch his approach and clarify the difference from 5.13. In
Ref. [5], the content of 5.11 is stated, albeit in different terminology. Namely, it
is argued that there exists a translation-invariant set of local generators of the
stabilizer group such that there is no “local relation” among the generators.
This amounts to kerσ = 0 in our language. In addition, there are finitely many
topological charges which form an abelian group, and one can coarse-grain the
lattice such that each new unit cell can support any topological charge. The
former amounts to coker ε being a finite additive group, and the latter amounts
to (75).

Given this intermediate conclusion, Bomb́ın studies the topological spins
and mutual statistics using the commutation relations among string operators
associated with the topological charges, using an idea by Levin and Wen [30].
His finding can be summarized as follows. The mutual statistics can be captured
by a bilinear symmetric form κ with the diagonal elements being zero. Over the
binary field F2, the symmetric form κ happens to be symplectic, and therefore
there exists a canonical basis as in 2.6 for the set of topological charges. Under
this canonical basis, there are two complementary subsets C,D of topological
charges on which κ vanishes. The topological spin eiπθ(a) obeys θ(a − b) =
κ(a, b) + θ(a) + θ(b) for any charges a and b [4, Eq. (3.1.2)], [26, Eq. (223)]. On
a subspace C or D where κ vanishes, the angle θ becomes a linear functional
θC or θD. (We used the property that b = −b.) Then, there is a basis change
on the space of topological charges to simplify the linear functionals θC and
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θD. If these linear functionals cannot be transformed to zero on C and D, then
Bomb́ın calls the code “chiral.”

The main conclusion is that any non-chiral translation-invariant code is
equivalent to a finitely many copies of the toric code. Here, the equivalence is
defined through locality-preserving unitary transformations that map any Pauli
operator to a Pauli operator. There is a difference between this equivalence and
the equivalence under controlled-NOT, Hadamard, and phase gates. The latter
equivalence (under local quantum circuits) trivially implies the former notion,
while the former does not imply the latter unless one includes auxiliary qubits.

Ref. [2] shows that for any locality-preserving unitary U there exists an-
other locality-preserving unitary V such that U ⊗V is a local quantum circuit.
The proof is very simple: Let S denote the swap operation between two iden-
tical many-qubit systems. This is a local quantum circuit as the swap can
be implemented by swapping every pair of qubits, i.e., S =

⊗
i Si. Then,

(U† ⊗ I)Si(U ⊗ I) is a local unitary, and therefore (U† ⊗ I)S(U ⊗ I) is a
local quantum circuit, and U ⊗ U† = S(U† ⊗ I)S(U ⊗ I) is a local quantum
circuit, too. However, this result together with Bomb́ın’s does not imply that
one can turn a 2D translation-invariant code state with no topological charge
into a product state by a local quantum circuit, since the auxiliary qubits may
be transformed into an entangled state. Our treatment under CSS assumption
does not need the auxiliary qubits.

Note that 5.13 remains true for qudit stabilizer codes with prime dimen-
sions where X-type stabilizer group generators are separated from Z-type ones
(CSS). On the other hand, Bomb́ın’s result does not assume the CSS condi-
tion, but appears to rely on the binary field F2 over which a skew-symmetric
matrix is symmetric. This make it obscure to apply his approach to qudit
prime-dimensional codes. �

Remark 5.15. Here we elaborate on the relation between ker ε/ imσ being
nonzero and logical operators on finite systems. Suppose v ∈ ker ε is a vector
such that v /∈ imσ, so when passed to ker ε/ imσ it represents a nonzero ele-
ment. The equation εv = 0 is still valid even if we mod out bL = (xL−1, yL−1),
meaning that v is a logical operator. Here, we need to prove that v is nontrivial
for some L. That is, v /∈ imσ+bLR

2q for some L if v /∈ imσ. Phrased differently,
we have to show that (R/bL)⊗R K 6= 0 where K := (Rv + imσ)/ imσ 6= 0.

Here is a proof for readers who are familiar with localization. (See Atiyah-
MacDonald [3] for concise treatment.) Let us lift the coefficient field to the
algebraic closure Fa of F2. (Fa is a flat module over F2.) K 6= 0 if and only
if Km 6= 0 for some maximal ideal m. By Nullstellensatz, m = (x − a, y − b)
for some a, b ∈ Fa, and hence there exists a positive odd integer L such that
aL = 1 = bL. (There are infinitely many such L.) Since K is finitely generated
R-module, it admits a finite presentation i.e., K ∼= cokerφ for some matrix φ
over R. Upon localization at m, we can think of a minimal φ where every entry
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is a member of m. Then, this minimal φ becomes a zero matrix upon factoring
(bL)m because (bL)m = mm. Since the minimal φ had nonzero number of rows,
it follows that (R/bL ⊗K)m is nonzero. Therefore, (R/bL)⊗K is nonzero for
infinitely many L. �

5.4. Connection to cellular homology

We have learned that any translation-invariant CSS code (X stabilizers and
Z stabilizers are separated) in two-dimensions with large code distance has to
be a finitely many copies of the toric code. The stabilizer map of the toric
code consists of two blocks which are related by exchanging two rows and
x↔ x̄, y ↔ ȳ. The excitation map inherits the duality as well, and thus we can
focus on one block. The equation ker ε = imσ decomposes into two equivalent
equations, one of which reads

R1
∂1=

(
x− 1 y − 1

)
←−−−−−−−−−−−−−− R2

∂2=

 y − 1

−x+ 1


←−−−−−−−−−− R1. (85)

It is readily verified that ∂1∂2 = 0 as matrices. We promised earlier that we
will calculate ker ε/ imσ subject to the periodic boundary condition that is
expressed by an ideal bL = (xL− 1, yL− 1). Here we make a connection to the
cellular homology of the two-dimensional torus.

Consider a torus obtained by gluing small squares. One can imagine a big
square with vertical sides identified with each other, and the horizontal sides
identified with each other, and then slice the big square into smaller ones.
Suppose the number of small squares are L in each direction so there are L2

squares in total.

Introduce an abelian group C2 = Fn2 where n = L2 is equal to the number
of squares. We may visualize an element of C2 as a configuration of bits written
on the centers of the small squares. Similarly, introduce another abelian group
C1 = F2n

2 where 2n is the number of edges. Each vector in C1 is identified
with an array of bits written on the edges. Now, define a group homomorphism
∇2 : C2 → C1 by the rule that the bit 1 on a square is mapped to four bits
written on the four edges that surrounds the square. If a collection of squares
is given as an input to ∇2, then the output from ∇2 is the boundary of the
union of the squares. Thus, it is legitimate to call ∇2 a boundary map.

Let us introduce a coordinate system for the squares and the edges. Pick
a square and declare it as the origin. The coordinates for the small squares
are defined modulo L. To give the coordinates for the edges, we associate the
vertical edge to the square on the right of the edge, and the horizontal edge to
the square above the edge. For example, the boundary edges of the square at
(0, 0) are (0, 0)v, (0, 1)h, (1, 0)v, and (0, 0)h, where the subscripts distinguishes
the horizontal or vertical edges. Following the trick to write the collection of
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tuples as a polynomial, we can write the collection of edges as 1v + xv and

1h + yh. Even more compactly, we have

(
1 + y

1 + x

)
. We see that this matrix is

equal to ∂2 over F2.

Excercise 5.16. Verify that ∂1 represents the boundary map from the group
of edges to the group of vertices. To which square do we have to associate a
vertex to have a consistent coordinate system? �

The kernel of the boundary map modulo the group of boundaries of one-
higher dimensional cells is called a homology group. There is one homology
group at each “dimension”: Formally we set ∂3 = 0 and ∂0 = 0, and define
Hi = ker ∂i/ im ∂i+1 for i = 0, 1, 2.

We could define these homology groups without ever involving the Laurent
polynomial ring, which was rather a convenient extra feature allowed by the
Cartesian array of small squares. Although it is a another problem how one
can identify the homology group, there is no problem of defining the homology
group given any tessellation of the space into small polygons. To little (or big)
surprise, it is very important that the resulting homology group is independent
of the tessellation (cell decomposition). More general homology theory [23] is
beyond the scope of this note, but one can think of a toy version where one
square from our tessellation is divided into two triangles. In this case one can
show that the homology groups remain the same. On top of this, one can show
that any two tessellations can be refined by a process of such subdivisions to
become the same tessellation, which leads the independence of the homology
group on tessellations. The simplest tessellation would be to have only a single
square to cover the entire space (the two-dimensional torus), with vertices and
edges properly identified. This is to set L = 1 in our earlier discussion, in which
case the homology groups are clearly seen as H0 = F2, H1 = F2

2, and H2 = F2.

Excercise 5.17. What is the code space dimension of the toric code under
periodic boundary conditions? What is the code distance? �

5.5. Dimension three and beyond

As of this writing, there is no known structure theorem for stabilizer modules in
three or higher dimensions. In terms of pure commutative algebra this problem
appears not too well guided, since under a fairly mild condition any chain
complex obtained by continued calculation of kernels (free resolution) gives
rise to stabilizer module with large code distances. General one-dimensional
and CSS two-dimensional cases were fortunately simple enough that we could
handle directly.

From a physical viewpoint, one can focus on the behavior of excitations. We
briefly defined the excitations as a flipped term of a Hamiltonian, but we did
not give any further attributes to the excitations. The most important notion
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to begin with is that of topological excitations — an excitation that cannot
be created alone from a ground state by any local operator. The topological
excitation is insensitive to local basis change (Clifford transformations), rela-
beling of terms of the Hamiltonian, or the translation structure. The set of
all point-like topological excitations is identified with the torsion submodule
of the cokernel of the excitation map [19], and it is no coincidence that we
introduced the torsion submodule in the structure theorem for 2D CSS codes.
It is a characteristic of a code that is invariant under various basis changes.

There is conceptual progress from our consideration of additive codes and
corresponding Hamiltonians, which is surprising from a conventional perspec-
tive on topological order. It has been for long taken granted that a point-like
topological excitations has well-defined “statistics,” a consistent number that
the quantum mechanical state vector acquires upon exchanging two such exci-
tations. Following our formalism, it is easy to show that this is not always the
case. In three or higher dimensions, there are many systems of which point-like
topological excitations cannot have well-defined “statistics” since their motion
is ill-defined [11, 6, 18, 39].

To illustrate the point more clearly, consider the toric code excitation map:
ε = (x−1, y−1), the cokernel of which is F2[x±, y±]/(x−1, y−1) ∼= F2. An ele-
ment of the cokernel is an equivalence class of flipped terms in the Hamiltonian
modulo those that can be flipped by local Pauli operators. Thus, the element
of coker ε is precisely what we call a topological excitation. The action from
the translation group on coker ε ∼= F2 is trivial. This means that a topological
excitation at one location is connected to that at other location by some local
operator, implying that the “motion” is allowed by some other interaction. The
algebraic origin to this conclusion is that the excitation map have binomial ele-
ments x−1 and y−1 in the image im ε. In higher dimensions, there is no reason
for the excitation map to have a binomial term in the image, in which case the
notion of motion for topological excitations becomes ambiguous. An example
in three dimensions is given by εcubic = (1 + x + y + z, 1 + xy + yz + zx),
known as the cubic code [18]. The reader is encouraged to show that εcubic

cannot generate a binomial term in the image. In fact, coker ε does not have
any binomial zero-divisor.

The behavior of topological excitations can be even richer. In four or higher
dimensions, there is a system in which a single Hamiltonian term cannot be
flipped alone [12], but they have to appear as a line or in some other more
complicated shape. There is a way of defining line-like topological excitations
if the Hamiltonian consists of commuting terms [20], but a concise algebraic
characterization for additive code systems is immature.
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