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Abstract. We describe deformations of noncompact Calabi–Yau threefolds

Wk := Tot(OP1(−k)⊕OP1(k − 2)),

for k = 1, 2, 3. We compute deformations concretely by calculations of the co-
homology group H1(Wk, TWk) via Čech cohomology. We show that for each
k = 1, 2, 3 the associated structures are qualitatively different, and we also
comment on their differences from the analogous structures of simpler non-
compact twofolds Tot(OP1(−k)).
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Resumen. Describimos deformaciones de 3-variedades Calabi-Yau no com-
pactas

Wk := Tot(OP1(−k)⊕OP1(k − 2)),

para k = 1, 2, 3. Concretamente, calculamos las deformaciones a través del
primer grupo de cohomoloǵıa H1(Wk, TWk) v́ıa cohomoloǵıa de Čech. Mos-
tramos que para cada k = 1, 2, 3, las estructuras asociadas son cualitativa-
mente distintas y, además, comentamos sobre sus diferencias con las estruc-
turas análogas de las 2-variedades no compactas Tot(OP1(−k)).

Palabras y frases clave. Calabi-Yau, Deformaciones de variedades no compactas.
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1. Motivation

Our motivation to study deformations of Calabi–Yau threefolds comes from
mathematical physics. In fact, deformations of complex structures of Calabi–
Yau threefolds enter as terms of the integrals defining the action of the theories
of Kodaira–Spencer gravity [3]. As we shall see, in general our threefolds will
have infinite-dimensional deformation spaces, thus allowing for rich applica-
tions.

We consider smooth Calabi–Yau threefolds Wk containing a line ` ∼= P1. For
the applications we have in mind for future work it will be useful to observe
the effect of contracting the line to a singularity. The existence of a contraction
of ` imposes heavy restrictions on the normal bundle [6], namely N`/W must
be isomorphic to one of

(a) OP1(−1)⊕OP1(−1) , (b) OP1(−2)⊕OP1(0) , or (c) OP1(−3)⊕OP1(+1) .

Conversely, Jiménez [6] states that if P1 ∼= ` ⊂W is any subspace of a smooth
threefold W such that N`/W is isomorphic to one of the above, then:

• in (a) ` always contracts,

• in (b) either ` contracts or it moves, and

• in case (c) there exists an example in which ` does not contract nor does
any multiple of ` (i.e. any scheme supported on `) move.

W1 is the space appearing in the basic flop. Let X be the cone over the ordinary
double point defined by the equation xy − zw = 0 on C4. The basic flop is
described by the diagram:

p1 p2

π1 π2

X

W+
1W−1

W

Here W := Wx,y,z,w is the blow-up of X at the vertex x = y = z = w = 0,
W−1 := Zx,z is the small blow-up of X along x = z = 0 and W+

1 := Zy,w is
the small blow-up of X along y = w = 0. The basic flop is the rational map
from W− to W+. It is famous in algebraic geometry for being the first case of
a rational map that is not a blow-up.

Thus, we will focus on the Calabi–Yau cases

Wk := Tot
(
OP1(−k)⊕OP1(k − 2)

)
for k = 1, 2, 3.
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DEFORMATIONS OF NONCOMPACT CALABI–YAU THREEFOLDS 43

We will also consider surfaces of the form

Zk := Tot
(
OP1(−k)

)
for comparison in Sections 4 and 5.

2. Statements of results

We describe deformations of complex surfaces and threefolds which are the total
spaces of vector bundles on the complex projective line P1. We focus on the
case of Calabi–Yau threefolds. Even though there is no well established theory
of deformations for noncompact manifolds, we obtain deformations working
by analogy with Kodaira theory for the compact case, see [7]. Namely, we
calculate cohomology with coefficients in the tangent bundle, and then proceed
to show that the directions of infinitesimal deformations parametrized by first
cohomology are integrable, see Section 3.

In the case of surfaces Zk, with k > 0, we prove that the deformations of
the surfaces Zk, described in [2], can be obtained from the deformations of the
Hirzebruch surfaces Fk, Lemma 5.5.

Our results on deformations of the threefolds Wk are as follows. We show
that W1 is formally rigid, Theorem 6.1, whereas W2 has an infinite-dimensional
deformation space, Theorem 6.3. Furthermore, we exhibit a deformationW2 of
W2 which turns out to be a non-affine manifold, a very different case from that
of surfaces Zk, k > 0, where all the deformations are affine varieties. Finally, we
give an infinite-dimensional family of deformations of W3 which is not universal,
but is semiuniversal, Corollary 6.13. The case W3 is quite different from W1,
W2, or the surfaces. The tools used here to describe deformation spaces were
not sufficient for W3, therefore we must look for more effective techniques. The
cases k ≥ 3 present similar features; we will continue their study in future work.

3. Deformations of noncompact manifolds

In this section we describe our methods to find infinitesimal deformations of
noncompact manifolds. When looking for deformations of noncompact mani-
folds one needs to keep in mind the caveat that cohomology calculations are
generally not enough to decide questions of existence of infinitesimal deforma-
tions, as the following example illustrates.

Example 3.1. Edoardo Ballico gave us the following illustration that coho-
mological rigidity does not imply absence of deformations.

We consider deformations of X = C. Clearly H1(X,TX) = 0. However,
there do exist nontrivial deformations of X as the following family shows.

Consider π : P1 ×D → D with D any smooth manifold (even P1 or a disc)
and a specific o ∈ D. Take s∞ : D → P1 ×D the section of π defined by

s∞(x) = (∞, x),
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44 E. GASPARIM, T. KÖPPE, F. RUBILAR & B. SUZUKI

then take another section s of π with

s(o) = (∞, o), s(x) = (ax, x)

with ax ∈ C = P1 \ {∞}. Take as the total space for our family Y P1 × D
minus the images of the two sections. Then we obtain a deformation of C in
which at all points of D\{o} you have C\{0}, thus not a trivial deformation in
any reasonable sense. Hence, vanishing of cohomology does not imply nonexis-
tence of deformations. Nevertheless, cohomology calculations are useful to find
deformations.

In this work, by deformation we mean the following:

Definition 3.2. A deformation of a complex manifold X is a holomorphic fiber
bundle X̃

π→ D, where D is a complex disc centered at 0 (possibly a vector
space, possibly infinite dimensional), satisfying:

• π−1(0) = X,

• X̃ is trivial in the C∞ (but not necessarily in the holomorphic) category.

Remark 3.3. Our choice for the dimension of D is n = h1(X,TX) whenever
possible. The case n = 0 corresponds to the following definition.

Definition 3.4. We call a manifold X formally rigid when H1(X,TX) = 0.

We show in 6.1 that W1 is formally rigid.

Definition 3.5. We call a manifold X rigid if any deformation X̃
π→ D is

biholomorphic to the trivial bundle X ×D → D.

In general, formally rigid does not imply rigid. With Definition 3.2 we do
not claim to solve the problem that a manifold X does not deform under the
condition H1(X,TX) = 0, however we eliminate some unwanted cases such as
the one in Example 3.1.

Observe that the deformations considered in [2] satisfy Definition 3.2, hence
maintain the C∞ type of the manifold. Moreover, for these surfaces, all defor-
mations are affine.

We show that H1(W2, TW2) 6= 0 and then prove that directions of deforma-
tions parametrized by such cohomology are integrable by explicitly constructing
families. The details for other threefolds will remain for future work.

Note that since X is covered by 2 affine (Stein) open sets, second coho-
mologies with coherent coefficients vanish, hence there are no obstructions to
deformations.
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4. Comparison with the deformation theory of surfaces

Deformations of the surfaces Zk were described in [2]. It turned out rather
interestingly that the results we obtained for threefolds are not at all analogous
to the ones for surfaces.

Regarding applications to mathematical physics, the deformations of sur-
faces turned out rather disappointing, because instantons on Zk disappear un-
der a small deformation of the base [2, Thm. 7.3]. This resulted from the fact
that deformations of Zk are affine varieties. The case of threefolds is a lot more
promising, since for k > 1, Wk has deformations which are not affine.

Nevertheless, deformations of the surfaces Zk turned out to have an interest-
ing application to a question motivated by the Homological Mirror Symmetry
conjecture: [1, Sec. 2] showed that the adjoint orbit of sl(2,C) has the com-
plex structure of the nontrivial deformation of Z2 and used this structure to
construct a Landau–Ginzburg model that does not have projective mirrors.
Further applications to mirror symmetry give us another motivation to study
deformation theory for Calabi–Yau threefolds.

5. Zk, their bundles and deformations

In this section we obtain properties about the surfaces Zk that will be used in
the development of the theory of threefolds.

5.1. A holomorphic bundle on Z(−1) that is not algebraic

By definition Z(−1) = Tot(OP1(+1)), and in canonical coordinates Z(−1) =
U ∪ V , where U = {(z, u)} and V = {(ξ, v)}, U ∩ V ∼= C∗ × C, with change of
coordinates given by:

(ξ, v) 7→ (z−1, z−1u) .

Notation 1. We denote by OZ(−1)
(−j) = p∗(OP1(−j)) the pullback bundle of

OP1(−2), where p : Z(−1) → P1 is the natural projection.

Lemma 5.1. H1(Z(−1),OZ(−1)
(−2)) is infinite-dimensional over C. It consists

of holomorphic functions of the form∑
l≤−1

∑
i≥0

aliz
lui

such that l + i+ 2 > 0.

Proof. A 1-cocycle σ can be written in the form

σ =

+∞∑
i=0

+∞∑
l=−∞

σi,lz
lui .
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Since monomials containing nonnegative powers of z are holomorphic in U ,
these are coboundaries, thus

σ ∼
+∞∑
i=0

−1∑
l=−∞

σi,lz
lui ,

where ∼ denotes cohomological equivalence. Changing coordinates, we obtain

Tσ = z2
+∞∑
i=0

−1∑
l=−∞

σi,lz
lui =

+∞∑
i=0

−1∑
l=−∞

σi,lz
l+2ui =

+∞∑
i=0

−1∑
l=−∞

σi,lξ
−l−2−ivi ,

where terms satisfying −l − 2− i ≥ 0 are holomorphic on V .

Thus, the nontrivial terms on H1(Z(−1),OZ(−1)
(−2)) are

z−1 z−1u z−1u2 z−1u3 · · ·
z−2u z−2u2 z−2u3 · · ·

z−3u2 z−3u3 · · ·
z−4u3 · · ·

. . .

�X

Proposition 5.2. The bundle E over Z(−1) defined in canonical coordinates
by the matrix [

z1 z−1eu

0 z−1

]
(1)

is holomorphic but not algebraic.

Proof. This bundle E can be represented by the element

z−1eu ∈ Ext1(OZ(−1)
(1),OZ(−1)

(−1)) ' H1(Z(−1),OZ(−1)
(−2)).

We have [
z1 z−1eu

0 z−1

]
=

[
z1 zσ

0 z−1

]
(2)

with z−2eu = σ ∈ H1(Z(−1),OZ(−1)
(−2)), see [5, p. 234]. Observe that

z−2eu = z−2

(
1 + u+

u2

2
+ · · ·+ un

n!
+ · · ·

)
= z−2 + z−2

(
u+

u2

2
+
u3

6
+ · · ·+ un

n!
+ · · ·

)
︸ ︷︷ ︸

(γ)

,
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where the monomials in γ represent pairwise distinct nontrivial classes in
H1(Z(−1),OZ(−1)

(−2)) as shown in Lemma 5.1. Consequently, the class zσ ∈
Ext1(OZ(−1)

(1),OZ(−1)
(−1)) corresponding to the bundle E cannot be repre-

sented by a polynomial, hence E is holomorphic but not algebraic. �X

Corollary 5.3. The threefold W3 has holomorphic bundles that are not alge-
braic.

Proof. Consider the map p : W3 → Z(−1) given by projection on the first and
third coordinates, that is, in canonical coordinates as in (7) we see Z(−1) as
cut out inside W3 by the equation u1 = 0. Then the pullback bundle p∗E
is holomorphic but not algebraic on W3. In fact, the same proof works as in
Proposition 5.2. �X

5.1.1. A similar bundle on Z1

It is instructive to verify the result of defining a bundle by the same matrix, but
over the surface Z1 instead. Recall that Z1 = U ∪V , with change of coordinates
given by

(ξ, v) 7→ (z−1, zu) .

Consider the bundle E on Z1, given by transition matrix[
z1 z−1eu

0 z−1

]
. (3)

Note that this is the same matrix used in (1). Thus E corresponds to the
element z−1eu ∈ Ext1(OZ1

(1),OZ1
(−1)) ' H1(Z1,OZ1

(−2)). Consequently,
we may rewrite the transition function[

z1 z−1eu

0 z−1

]
=

[
z1 zσ

0 z−1

]
(4)

where z−2u = σ ∈ H1(Z1,OZ1
(−2)). But σ = ξ3v is holomorphic on the V

chart, and hence a coboundary. Thus σ = 0 ∈ H1(Z1,OZ1(−2)), and accord-
ingly z−1eu = 0 ∈ Ext1(OZ1(1),OZ1(−1)). Therefore the extension splits and

E = OZ1
(−1)⊕OZ1

(1).

In [4], Gasparim proved that every holomorphic bundle on Zk is algebraic with
k ≥ 1.
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5.2. Deformations of Zk

Recall that a family is semiuniversal (in the sense of [8, Def. 1.35]) if the
Kodaira-Spencer map is bijective. In [2, Thm. 5.3], Barmeier and Gasparim
constructed a (k − 1)-dimensional semiuniversal deformation space Z for Zk
given by

(ξ, v, t1, . . . , tk−1) = (z−1, zku+ tk−1z
k−1 + · · ·+ t1z, t1, . . . , tk−1). (5)

We now prove that this family fits our definition of deformation.

Lemma 5.4. The deformation given by eq. 5 is a C∞-trivial fiber bundle.

Proof. Note that for any C∞ function f : U → C, the manifold given by gluing
the charts V = C2

ξ,v and U = C2
z,u by

(ξ, v, t1, . . . , tk−1) = (z−1, zku+ f(z, u))

whenever z 6= 0 and ξ 6= 0 is diffeomorphic to Zk.

We have that z−1 and zku is C∞. Then u is C∞, as well as Re(u) and
Im(u), respectively the real and imaginary parts of u. Hence

zu+ zū

2Re(u)
and

zu− zū
2iIm(u)

are C∞ and coincide with z whenever Re(u) and Im(u) are not equal to 0,
respectively. We define then

f(z, u) =


zu+ zū

2Re(u)
,Re(u) 6= 0

zu− zū
2iIm(u)

, Im(u) 6= 0

z, u = 0

,

which is C∞ on the intersection. Furthermore, f coincides with z.

We conclude that g(z, u) = tk−1z
k−1 + · · ·+ t1z, t1, . . . , tk−1 is C∞. �X

Lemma 5.5. Deformations of Zk can be obtained from deformations of
Fk. Thus, the family Z is is not universal.

Proof. We compare deformations of the surfaces Zk with those of the Hirze-
bruch surfaces. Choose coordinates (t1, . . . , tk−1, [l0, l1], [x0, . . . , xk+1]) for the
product Ck−1

t × P1
l × Pk+1

x . [8, Chap. II] shows that the Hirzebruch surface Fk
has a (k−1)-dimensional semiuniversal deformation space given by the smooth
subvariety M ⊂ Ck−1

t × P1
l × Pk+1

x cut out by the equations

l0(x1, x2, . . . , xk) = l1(x2 − t1x0, . . . , xk − tk−1x0, xk+1) . (6)
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Let Z and M denote the deformations given by 5 and 6, respectively. Now
consider the following map:

f : Z → M

(z, u, t1, . . . , tk−1) 7→ (t1, . . . , tk−1, [1, z], [−1, z1, . . . , zk, u])

(ξ, v, t1, . . . , tk−1) 7→ (t1, . . . , tk−1, [ξ, 1], [−1, v, ξ2, . . . , ξk+1])

where we used the following notation:

z1 = zku+ tk−1z
k−1 + · · ·+ t1z ξ2 = ξv − t1

z2 = zk−1u+ tk−1z
k−2 + · · ·+ t2z ξ3 = ξ2v − t1ξ − t2

...
...

zk−1 = z2u+ tk−1z ξk = ξk−1v − t1ξk−2 − · · · − tk−1

zk = zu ξk+1 = ξkv − t1ξk−1 − · · · − tk−1ξ

It turns out that this map is injective and satisfies f(Zt) ⊂Mt for all t ∈ Ck−1.
Notice that, for each t ∈ Ck−1, we can decompose Mt as

Mt = At ∪Bt ,

where At = {p ∈Mt, x0 = 0} and Bt = {p ∈Mt, x0 6= 0}. It then follows that

• Bt = f(Zt), and

• At is the boundary of Bt,

implying as a corollary that: Mt = Mt′ if and only if Zt = Zt′ .
So we conclude that each Zk has as many deformations as Fk, specifically,

bk/2c. In particular, Zk is not universal. �X

6. Deformations of Calabi–Yau threefolds

6.1. Rigidity of W1

Theorem 6.1. ([9]) W1 is formally rigid.

Proof. Formal infinitesimal deformations of complex structures are param-
eterized by first cohomology with coefficients in the tangent bundle. Direct
calculation of Čech cohomology shows that H1(W1, TW1) = 0. Hence W1 is
formally rigid, Definition 3.4. �X
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6.2. Deformations of W2

Since we have H2(W2, TW2) = 0, we can make an analogy with unobstructed
deformations in the compact case, where the theorem of existence [7, Thm. 5.6]
guarantees integrability of the cocycles in H1(W2, TW2). This theorem does
not apply in the noncompact case. For the case that we consider, we will prove
existence by explicitly constructing the corresponding manifold as Lemma 6.5
shows.

It is possible to obtain some deformations using compactifications, in which
case we can use the well developed theory of deformations from [7]. However,
given the results of Theorem 6.3, infinitely many directions of deformations of
W2 would be lost if we worked with the compactification. Hence, we favor an
approach using Definition 3.2.

For instance, suppose we consider the compactification of W2 given by:

W 2 = Proj
(
OP1(−2)⊕OP1 ⊕OP1

)
.

Lemma 6.2. W 2 has only two directions of deformation.

Proof. The first cohomology group of W 2 is isomorphic to C2 as a vector
space, that is, H1(W 2, TW 2) = C2. �X

In fact, many non affine deformations would remain unfound with this
method.

Theorem 6.3. ([9]) W2 has an infinite-dimensional family of deformations.

Proof. The proof will follow from Lemmas 6.4 and 6.5 below. First we show
that the first cohomology with tangent coefficients is infinite-dimensional. Then
we show that its cocycles are integrable, and thus they parameterize deforma-
tions of W2. �X

Lemma 6.4. H1(W2, TW2) is infinite dimensional over C. If consists of holo-
morphic sections of the form

∑
j≥0

 0

z−1uj2
0


(written in canonical coordinates).

Proof. W2 can be covered by

U = {(z, u1, u2)} and V = {(ξ, v1, v2)} ,
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with U ∩ V = C− {0} × C× C and transition function given by

(ξ, v1, v2) = (z−1, z2u1, u2) .

We have then that the transition function for TW2 is

A =

 −z−2 0 0

2zu1 z2 0

0 0 1

 .
Let σ be a 1-cocycle, i.e. a holomorphic function on U ∩ V :

σ =

∞∑
j=0

∞∑
i=0

∞∑
l=−∞

 alij
blij
clij

 zlui1uj2 .

But

∞∑
j=0

∞∑
i=0

∞∑
l=0

 alij
blij
clij

 zlui1uj2
is a coboundary, so

σ ∼
∞∑
j=0

∞∑
i=0

−1∑
l=−∞

 alij
blij
clij

 zlui1uj2 = σ′,

where ∼ denotes cohomological equivalence. So

Aσ′ =

∞∑
j=0

∞∑
i=0

−1∑
l=−∞

 −alijz−2

2alijzu1 + blijz
2

clij

 zlui1uj2
=

∞∑
j=0

∞∑
i=0

−1∑
l=−∞

 −alijz−4

2alijz
−3(z2u1) + blij
clijz

−2

 z2+l−2i(z2u1)iuj2

=

∞∑
j=0

∞∑
i=0

−1∑
l=−∞

 −alijξ4

2alijξ
3v1 + blij
clijξ

2

 ξ2i−l−2vi1v
j
2.

Except for the case where l = −1 and i = 0, we have that 2i− l − 2 ≥ 0, thus
the corresponding monomials are holomorphic in V and hence coboundaries.
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It follows that

Aσ′ ∼
∞∑
j=0

 −ajξ4

2ajξ
3v1 + bj
cjξ

2

 ξ−1vj2

∼
∞∑
j=0

 0

bj
0

 ξ−1vj2,

where we omit the indices −1 for l and 0 for i for simplicity. We conclude then
that H1(W2, TW2) is infinite-dimensional, generated by the sections

σj =

 0

z−1uj2
0


for j ≥ 0. �X

Lemma 6.5. All cocycles in H1(W2, TW2) are integrable.

Proof. We can write the transition function of W2 as: ξ

v1

v2

 =

 z−1

z2u1

u2

 =

 z−2 0 0

0 z2 0

0 0 1

 z

u1

u2

 .
As we computed in Lemma 6.4, H1(W2, TW2) is generated by the sections 0

z−1uj2
0


for j ≥ 0. Then we can express the deformation family for W2 as ξ

v1

v2

 =

 z−2 0 0

0 z2 0

0 0 1

 z

u1

u2

+
∑
j≥0

tj

 0

z−1uj2
0



=

 z−1

z2u1 +
∑
j≥0 tjzu

j
2

u2

 ,
i.e. we have an infinite-dimensional deformation family given by

U = C3
z,u1,u2

× C[tj ] and V = C3
ξ,v1,v2 × C[tj ]
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with

(ξ, v1, v2, t0, t1, . . .) =

z−1, z2u1 +
∑
j≥0

tjzu
j
2, u2, t0, t1, . . .


on the intersection U ∩ V = (C− {0})× C2 × C[tj ]. �X

The proof that this family is C∞ trivial is similar to the proof of Lemma
5.4.

6.2.1. A non-affine deformation

The proof of Lemma 6.5 gives us that deformations of W2 are threefolds given
by change of coordinates of the form

(ξ, v1, v2) =

z−1, z2u1 +
∑
j≥0

tjzu
j
2, u2

 .

We consider now the exampleW2 that occurs when t1 = 1 and all tj vanish for
j 6= 1, that is, the one with change of coordinates

(ξ, v1, v2) =
(
z−1, z2u1 + zu2, u2

)
.

Lemma 6.6. Let OW2
(−j) = p∗(OP(−j)) denote the pullback bundle of OP(−j),

where p : W2 → P is the natural projection. Then H1(W2,OW2
(−4)) 6= 0.

Proof. Consider the 1-cocycle σ written in the U coordinate chart as σ = z−1.
Suppose σ is a coboundary, then we must have

σ = α+ T−1β

where α ∈ Γ(U) and β = Γ(V ). Consequently

z−1 = α(z, u1, u2) + z−4β(z−1, z2u1 + zu2, u2) .

But α has only positive powers of z, and the highest power of z appearing on
z−4β is −4, hence the right-hand side has no terms in z−1 and the equation is
impossible, a contradiction. �X

Corollary 6.7. W2 is not affine.

Remark 6.8. Note that this result contrasts with the situation for surfaces,
since [2, Thm. 6.15] proves that all nontrivial deformations of Zk are affine.

Remark 6.9. The referee pointed out that all deformations of W2 such that
t0 = 0 are affine since they contain a P1.
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6.3. Deformations of W3

We start by computing the group H1(W3, TW3) which parameterizes formal
infinitesimal deformations of W3. Recall that W3 can be covered by U =
{(z, u1, u2)} and V = {(ξ, v1, v2)}, with U ∩ V = C − {0} × C2 and transi-
tion function given by:

(ξ, v1, v2) = (z−1, z3u1, z
−1u2) (7)

Theorem 6.10. There is a semiuniversal deformation spaceW for W3 parame-
trised by cocycles of the form alij

blij
clij

 zlui1uj2 3i− 3− l − j < 0.

Proof. In canonical coordinates, the transition matrix for the tangent bundle
TW3 is given by

T =

 −z−2 0 0

3z2u1 z3 0

−z−2u2 0 z−1

 '
z−1 0 −z−2u2

0 z3 3z2u1

0 0 −z−2

 , (8)

where ' denotes isomorphism, and the latter expression is handier for calcula-
tions. A 1-cocycle can be expressed in U coordinates in the form

σ =

∞∑
j=0

∞∑
i=0

∞∑
l=−∞

 alij
blij
clij

 zlui1uj2
∼
∞∑
j=0

∞∑
i=0

−1∑
l=−∞

 alij
blij
clij

 zlui1uj2,
where ∼ denotes cohomological equivalence. Changing coordinates we obtain

Tσ =
∞∑
j=0

∞∑
i=0

−1∑
l=−∞

alijz−1 − clijz−2u2

3alijz
2u1 + blijz

3

−clijz−2

 zlui1uj2

where all terms inside the matrix are holomorphic on V except for 0

blijz
3

0

 .
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These impose the condition for a cocycle to be nontrivial. Since we have

z3zlui1u
j
2 = zl+3−3i+j(z3u1)i(z−1u2)j = ξ3i−3−l−jui1u

j
2 ,

a nontrivial cocycle satisfies 3i− 3− l − j < 0. �X

We now give a partial description of deformations of W3.

Lemma 6.11. The sections

σ1 =

 0

z−1

0

 and σ2 =

 0

z−2

0


are nonzero cocycles on H1(W3, TW3).

Proof. Let

σl =

 o

z−l

0


for l = 1, 2. Then σl is not a coboundary on the chart U . We change coordinates
by multiplying by the transition T given in 8,

Tσl =

 0

zl+3

0

 =

 0

ξ−l−3

0

 ,
which is not holomorphic on the chart V and therefore not a coboundary. �X

Lemma 6.12. The following 2-parameter family of deformations of W3 is
contained in W:

(ξ, v1, v2) = (z−1, z3u1 + t2z
2 + t1z, z

−1u2)

Proof. The transition for W3 is given by,

(ξ, v1, v2) = (z−1, z3u1, z
−1u2).

In matrix form:  ξ

v1

v2

 =

 z−2 0 0

0 z3 0

0 0 z−1

 z

u1

u2

 .
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So we can construct a deformation family for W3 using the cocycles from
Lemma 6.11: ξ

v1

v2

 =

 z−2 0 0

0 z3 0

0 0 z−1

 z

u1

u2

+ t2

 0

z−1

0

+ t1

 0

z−2

0


=

 z−1

z3u1 + t2z
2 + t1z

z−1v2


Now it suffices to observe that, by Lemma 6.11, σ1 and σ2 are nontrivial direc-
tions in W. �X

Corollary 6.13. The family presented in Theorem 6.12 is formally semiuni-
versal but not universal.

Proof. As a consequence of Lemma 6.12 and Corollary 5.5, we have that the
deformations in the directions of the cocycles of Lemma 6.11 are isomorphic.
Indeed, these deformations are induced by Z3 which, as F3, only has one non-
trivial direction of deformation. �X
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