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Two Posets of Noncrossing Partitions

Coming From Undesired Parking

Spaces

Dos posets de particiones sin cruces provenientes de espacios de
parqueo prohibidos

Henri Mühle

Technische Universität Dresden, Dresden, Germany

Abstract. Consider the noncrossing set partitions of an n-element set which,
either do not use the block {n− 1, n} or which do not use both the singleton
block {n} and a block containing 1 and n − 1. In this article we study the
subposet of the noncrossing partition lattice induced by these elements, and
show that it is a supersolvable lattice, and therefore lexicographically shellable.
We give a combinatorial model for the NBB bases of this lattice and derive an
explicit formula for the value of its Möbius function between least and greatest
element.

This work is motivated by a recent article by M. Bruce, M. Dougherty,
M. Hlavacek, R. Kudo, and I. Nicolas, in which they introduce a subposet
of the noncrossing partition lattice that is determined by parking functions
with certain forbidden entries. In particular, they conjecture that the resulting
poset always has a contractible order complex. We prove this conjecture by
embedding their poset into ours, and showing that it inherits the lexicographic
shellability.

Key words and phrases. noncrossing partition, supersolvable lattice, left-modu-
lar lattice, parking function, lexicographic shellability, NBB base, Möbius
function.
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Resumen. Considere las particiones sin cruces de un conjunto de n elementos
que no usan el bloque {n− 1, n}, ni usan a la vez el bloque {n} y un bloque
que contenga a 1 y n− 1. En este art́ıculo estudiamos el subposet del ret́ıculo
de particiones sin cruces inducido por estos elementos. Probamos que este
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ret́ıculo es supersoluble, y por lo tanto es lexicográficamente descascarable.
También damos un modelo combinatorio de las bases NBB de este ret́ıculo y
derivamos una fórmula explicita para el valor de su función de Möbius entre
el elemento mı́nimo y el máximo.

Este trabajo es motivado por un art́ıculo reciente de M. Bruce, M. Dougher-
ty, M. Hlavacek, R. Kudo, e I. Nicolas en el cual introducen un subposet del
ret́ıculo de particiones sin cruces que es determinado por funciones de parqueo
con ciertas entradas prohibidas. En particular, ellos conjeturan que el poset
resultante siempre tiene un complejo de orden contráctil. En este art́ıculo
probamos esta conjetura, sumergiendo su poset en el nuestro y mostrando
que esta inmersión hereda la descascarabilidad lexicográfica.

Palabras y frases clave. Particiones sin cruces, ret́ıculo supersoluble, ret́ıculo
modular izquierdo, funciones de parqueo, descascarabilidad lexicográfica, bases
NBB, función Möbius.

1. Introduction

A set partition of [n] = {1, 2, . . . , n} is noncrossing if there are no indices i <
j < k < l such that i, k and j, l belong to distinct blocks. Let us denote the set
of all noncrossing set partitions by NCn. We can partially order noncrossing set
partitions by dual refinement, meaning that x ∈ NCn is smaller than y ∈ NCn

if every block of x is contained in a block of y. Let us denote this partial order
by ≤dref.

The lattice (NCn,≤dref) of noncrossing set partitions is a remarkable poset
with a rich combinatorial structure. It was introduced by G. Kreweras in the
early 1970s [9], and has gained a lot of attention since then. It has, among
other things, surprising ties to group theory, algebraic topology, representation
theory of the symmetric group, and free probability. See [14] and [11] for surveys
on these lattices.

A parking function of length n is a function on an n-element set with the
property that the preimage of [k] has at least k elements for every k ≤ n. They
were introduced in [8], and play an important role in the study of the spaces
of diagonal harmonics, see [6] and [5, Chapter 5].

The maximal chains of (NCn,≤dref) are naturally in bijection with parking
functions of length n − 1, see [17]. This connection was used in [4] to define
a subposet of (NCn,≤dref) as follows. Fix some k ≤ n and take the set of all
parking functions which do not have k in their image, but every value larger
than k. Let us consider the poset (PEn,k,≤pchn), which is the subposet of
(NCn,≤dref) determined by the maximal chains corresponding to these parking
functions. In the case where n = k we simply write (PEn,≤pchn). For n ≤ 2,
the poset (PEn,≤pchn) is the empty poset.

Let 0 denote the discrete partition into singleton blocks, and let 1 denote
the full partition into a single block. It is the statement of [4, Theorem C] that
the Möbius function of (PEn,k,≤pchn) always vanishes between 0 and 1. It was
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TWO POSETS OF NONCROSSING PARTITIONS 67

moreover conjectured there that the order complex of (PEn,k,≤pchn) with 0
and 1 removed is contractible. The main purpose of this article is to prove this
conjecture.

In fact we prove the following result stating that (PEn,≤pchn) is lexico-
graphically shellable.

Theorem 1.1. For n ≥ 3 the poset (PEn,≤pchn) is lexicographically shellable.

The fact that the order complex of (PEn,≤pchn) with 0 and 1 removed is
contractible, is then an immediate corollary of Theorem 1.1 and [4, Theorem C].

Corollary 1.2. For n ≥ 3 the order complex of (PEn,≤pchn) with 0 and 1
removed is contractible.

Theorem 3.5 in [4] states that (PEn,k,≤pchn) is isomorphic to the direct
product of (PEk,≤pchn) and the Boolean lattice of rank n− k. Since the latter
is known to be lexicographically shellable [1, Theorem 3.7], and lexicographic
shellability is preserved under taking direct products [1, Theorem 4.3], Theorem
1.1 indeed suffices to resolve the main conjecture of [4].

In order to prove Theorem 1.1, we take a detour through a slightly larger
subposet of (NCn,≤dref). In fact, we consider the induced subposet (PEn,≤dref),
and show that it is a supersolvable lattice.

Theorem 1.3. For n ≥ 3 the poset (PEn,≤dref) is a supersolvable lattice.

It is well known that supersolvable lattices possess an edge-labeling that
implies their lexicographic shellability [1, Theorem 3.7]. The last step in proving
Theorem 1.1 is to show that the restriction of this edge-labeling to (PEn,≤pchn)
retains its crucial properties. Observe that for n ≥ 5, the poset (PEn,≤pchn) is
not a lattice.

We remark that the edge-labeling coming from Theorem 1.3 differs from
the usual labeling of (NCn,≤dref), which is defined as follows. If xldref y, then
there are two blocks B,B′ in x that are joined in y. If the smallest element
of B is smaller than the smallest element of B′, then the label of this cover
relation is n minus the largest element of B that is smaller than every element
in B′. The restriction of this labeling to (PEn,≤pchn) does, however, not have
the necessary properties to guarantee lexicographic shellability.

The last main result of this article is the explicit computation of the value
of the Möbius function in (PEn,≤dref) between 0 and 1.

Theorem 1.4. For n ≥ 3 we have

µ(PEn,≤dref)(0,1) = (−1)n−1 4

n

(
2n− 5

n− 4

)
,

which is [15, A099376] up to sign.
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We prove Theorem 1.4 by using A. Blass and B. Sagan’s NBB bases [3]. In
fact we give a combinatorial model in terms of trees for these NBB bases, from
which we derive their enumeration.

The rest of the article is organized as follows. In Section 2 we recall the
necessary lattice- and poset-theoretic notions (Section 2.1), and formally de-
fine noncrossing set partitions (Section 2.2). In Section 3 we define the poset
(PEn,≤dref), and prove Theorem 1.3 (Section 3.1), and Theorem 1.4 (Sec-
tion 3.2). In Section 4 we turn our attention to the poset (PEn,≤pchn) and
conclude the proof of Theorem 1.1.

2. Preliminaries

2.1. Posets and Lattices

Let L = (L,≤) be a finite partially ordered set (poset for short). If L has a
least and a greatest element (usually denoted by 0̂ and 1̂, respectively), then L
is bounded. If any two elements x, y ∈ L have a least upper bound (their join;
denoted by x ∨ y) and a greatest lower bound (their meet; denoted by x ∧ y),
then L is a lattice.

An element y ∈ L covers another element x ∈ L if x < y and for all z ∈ L
with x ≤ z ≤ y we have x = z or z = y. We then write xly, and we sometimes
say that (x, y) is a cover relation. If L has a least element, then any element
covering it is an atom.

A chain is a subset X ⊆ L that can be written as C = {x1, x2, . . . , xk}
such that x1 ≤ x2 ≤ · · · ≤ xk. A chain is saturated if it can be written as
x1 l x2 l · · ·l xk. A saturated chain is maximal if it contains a minimal and
a maximal element of L. Let C (L) denote the set of maximal chains of L.

The rank of L is one less than the maximum size of a maximal chain; denoted
by rk(L). We say that L is graded if all maximal chains have the same size. An
interval of L is a set [x, y] = {z | x ≤ z ≤ y}.

Two lattice elements x, z ∈ L form a modular pair if for all y ≤ z it holds
that (y ∨ x) ∧ z = y ∨ (x ∧ z); we then usually write xMz. Moreover, x ∈ L
is left-modular if xMz for all z ∈ L. If x satisfies both xMz and zMx for
all z ∈ L, then x is modular. A maximal chain is (left-)modular if it consists
entirely of (left-)modular elements.

A lattice is modular if all its elements are modular, and it is left-modular if it
contains a left-modular chain. A lattice is supersolvable if it contains a maximal
chain M with the property that for every chain C the sublattice generated by
M and C is distributive. (In other words, the smallest sublattice containing
M and C is distributive.) Chains with this property are called M -chains. It
follows from [16, Proposition 2.1] that every element of an M -chain is modular,
and supersolvable lattices are therefore left-modular. For graded lattices, these
two notions actually coincide.
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TWO POSETS OF NONCROSSING PARTITIONS 69

Theorem 2.1. ([12, Theorem 2]) A finite graded lattice is left-modular if and
only if it is supersolvable.

For any bounded poset L = (L,≤) let H (L) =
{

(x, y) | xl y
}

denote the
set of cover relations of L. An edge-labeling of L is a map λ : H (L) → Λ, for
some poset (Λ,≺). For a saturated chain C = {x1, x2, . . . , xk} we denote by
λ(C) =

(
λ(x1, x2), λ(x2, x3), . . . , λ(xk−1, xk)

)
the associated sequence of edge-

labels. We then say that C is rising if λ(C) is strictly increasing with respect to
≺. An edge-labeling of L is an EL-labeling if the following two conditions hold
for every interval [x, y] of L: (i) there exists a unique rising maximal chain C
in [x, y], and (ii) for every other maximal chain C ′ of [x, y] we have that λ(C)
is lexicographically smaller than λ(C ′). A poset that admits an EL-labeling is
EL-shellable.

Theorem 2.2 ([10]). Let L = (L,≤) be a left-modular lattice of length n with
left-modular chain x0 l x1 l · · ·l xn. The labeling

λ(y, z) = min{i | y ∨ xi ∧ z = z} (1)

is an EL-labeling of L.

The existence of an EL-labeling of L has further implications on the ho-
motopy type of the order complex associated to L, i.e. the simplicial complex
whose faces are the chains of L.

Theorem 2.3. [2, Theorem 5.9] Let L be a bounded graded poset of rank n
with µ(0̂, 1̂) = k. If L is EL-shellable, then the order complex of L with 0̂ and
1̂ removed has the homotopy type of a wedge of |k|-many (n − 2)-dimensional
spheres. Moreover, k is precisely the number of maximal chains of L with weakly
decreasing label sequence.

2.2. Noncrossing Set Partitions

A set partition of n is a covering x =
{
B1, B2, . . . , Bs} of [n] into non-empty,

mutually disjoint sets; which we call blocks. Let Πn denote the set of all set
partitions of n. For i, j ∈ [n] and x ∈ Πn we write i ∼x j if there is B ∈ x
with i, j ∈ B. It is easily seen that ∼x is an equivalence relation; in fact set
partitions of [n] and equivalence relations on [n] are in bijection. Let 0 be the
discrete partition which consists of n singleton blocks, and let 1 be the full
partition which consists only of a single block.

A set partition x is noncrossing if for any four indices 1 ≤ i < j < k < l ≤ n
the relations i ∼x k and j ∼x l imply i ∼x j. Let NCn denote the set of
noncrossing set partitions of n.

Set partitions can be partially ordered as follows. Let x,x′ ∈ Πn, and say
that x = {B1, B2, . . . , Bs} and x′ = {B′1, B′2, . . . , B′s′}. We have x ≤dref x

′ if
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and only if for each i ∈ [s] there exists i′ ∈ [s′] such that Bi ⊆ B′i′ . We call ≤dref

the dual refinement order. It is quickly verified that 0 is the least element and
1 is the greatest element with respect to this partial order. Figure 1 shows the
poset (Π4,≤dref); the non-highlighted part indicates the subposet (NC4,≤dref).
We have omitted braces in the labeling of the vertices, and have separated
blocks by vertical lines instead.

The posets (Πn,≤dref) and (NCn,≤dref) are in fact lattices, and we can
explicitly describe the meet and join operations. The meet of two set partitions
x,x′ ∈ Πn is

x ∧Π x′ = {B ∩B′ | B ∈ x, B′ ∈ x′, and B ∩B′ 6= ∅}. (2)

In order to describe the join of x and x′, consider the bipartite graph

Px,x′ =
(
[n] ] (x ∪ x′), E

)
,

1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 13|24 14|23 134|2 124|3

1234

Figure 1. The poset (Π4,≤dref). The non-highlighted edges induce the subposet
(NC4,≤dref).

where (v1, v2) ∈ E if and only if v1 ∈ [n], v2 ∈ (x ∪ x′), and v1 ∈ v2. We have

x ∨Π x′ =
{
C ∩ [n] | C is a connected component of Px,x′

}
. (3)

Example 2.4. Let

x =
{
{1}, {2}, {4}, {3, 5, 7, 8}, {6}

}
and x′ =

{
{1, 3}, {2, 4}, {5, 6, 8}, {7}

}
.

We observe that x is non-crossing, while x′ is not, since 1 ∼x′ 3 and 2 ∼x′ 4,
but 1 6∼x′ 2. Their meet is

x ∧Π x′ =
{
{1}, {2}, {3}, {4}, {5, 8}, {6}, {7}

}
.
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TWO POSETS OF NONCROSSING PARTITIONS 71

The graph Px,x′ is

2 4 1 3 5 87 6

{2} {2, 4} {4} {1} {1, 3} {3, 5, 7, 8} {5, 6, 8}{7} {6}

which implies x ∨Π x′ =
{
{1, 3, 5, 6, 7, 8}, {2, 4}

}
.

For x ∈ Πn denote by x the noncrossing closure of x, which is defined by
successively joining crossing blocks. It is immediate that x ≤dref x, and [9,
Théorème 1] states that x is the smallest noncrossing partition (weakly) above
x. The meet of two noncrossing set partitions x,x′ ∈ NCn is then

x ∧NC x′ = x ∧Π x′, (4)

while their join is
x ∨NC x′ = x ∨Π x′. (5)

Example 2.5. Let x′ be the crossing set partition from Example 2.4. We
obtain

x′ =
{
{1, 2, 3, 4}, {5, 6, 8}, {7}

}
,

and x ∧NC x′ = x ∧Π x′ and x ∨NC x′ = 1.

Let us summarize this in a theorem.

Theorem 2.6. (Folklore, [9, Théorèmes 2 and 3]) For n ≥ 1, the posets
(Πn,≤dref) and (NCn,≤dref) are graded lattices. The rank of a (noncrossing)
set partition is given by n minus the number of its blocks.

For i ∈ [n] define xi to be the noncrossing partition with the unique non-
singleton block [i − 1] ∪ {n}. We thereby understand x1 = 0 and xn = 1. It
follows that

C = {x1,x2, . . . ,xn} (6)

is a maximal chain in (NCn,≤dref).

Proposition 2.7. For i ∈ [n] the element xi is left-modular in (NCn,≤dref).

Proof. Let X = [i− 1] ∪ {n} be the unique non-singleton block of xi, and let
z ∈ NCn.

We show that xiMz. Pick y ≤dref z, and let B be a block of y. There exists
a unique block B′ of z with B ⊆ B′. Let A = B′∩X. We distinguish two cases.

(i) B∩X = ∅. It follows that B is a block of y∨NC xi, and it is thus a block
of (y ∨NC xi) ∧NC z, too. In xi ∧NC z we see that A is a block, while B′ \A is
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split into singleton blocks. By assumption B ⊆ (B′ \A), and we conclude that
B is a block of y ∨NC (xi ∧NC z).

(ii) B ∩ X 6= ∅. It follows that B ∪ X is a block of y ∨NC xi, and that
therefore A ∪ B is a block of (y ∨NC xi) ∧NC z. In xi ∧NC z we see that A is
a block, while B′ \A is split into singleton blocks. By assumption B ∩A 6= ∅,
and we thus obtain that A ∪B is a block of y ∨NC (xi ∧NC z). �X

Corollary 2.8. The chain in (6) is a left-modular chain in (NCn,≤dref), which
is thus a supersolvable lattice.

Proof. Proposition 2.7 implies that every element in (6) is left-modular, and
Theorem 2.6 implies that (NCn,≤dref) is graded. In view of Theorem 2.1 we
conclude that (NCn,≤dref) is supersolvable. �X

The fact that (NCn,≤dref) is supersolvable was established before in [7,
Theorem 4.3.2].

Corollary 2.9. For n ≥ 1, the lattice (NCn,≤dref) is EL-shellable.

Proof. This follows from Theorem 2.2 and Corollary 2.8. �X

The fact that (NCn,≤dref) is EL-shellable was established before in [1, Ex-
ample 2.9].

3. A Subposet of (NCn,≤dref)

Let us define two subsets L1, L2 ⊆ NCn by

L1 =
{
x ∈ NCn | {n− 1, n} ∈ x

}
,

L2 =
{
x ∈ NCn | 1 ∼x n− 1 and {n} ∈ x

}
.

Finally, for n ≥ 3 define

PEn = NCn \
(
L1 ∪ L2

)
. (7)

Lemma 3.1 ([4]). We have
∣∣PE3

∣∣ = 3, and for n ≥ 4 we have∣∣∣PEn

∣∣∣ =

(
5

n+ 1
+

9

n− 3

)(
2n− 4

n− 4

)
,

which is [15, A071718] with offset 2.

Proof. Define the nth Catalan number to be Cat(n) = 1
n+1

(
2n
n

)
. It was ob-

served in [4] that ∣∣∣PEn

∣∣∣ = Cat(n)− 2Cat(n− 2).
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We can therefore immediately verify the claim for n = 3. For n ≥ 4, we obtain∣∣∣PEn

∣∣∣ = Cat(n)− 2Cat(n− 2)

=
1

n+ 1

(
2n

n

)
− 2

n− 1

(
2n− 4

n− 2

)
=

(
4(2n− 1)(2n− 3)

(n+ 1)(n− 2)(n− 3)
− 2n

(n− 2)(n− 3)

)(
2n− 4

n− 4

)
=

(
14n2 − 34n+ 12

(n+ 1)(n− 2)(n− 3)

)(
2n− 4

n− 4

)
=

(
14n− 6

(n+ 1)(n− 3)

)(
2n− 4

n− 4

)
=

(
5

n+ 1
+

9

n− 3

)(
2n− 4

n− 4

)
.

�X

3.1. (PEn,≤dref) is a Supersolvable Lattice

Let us now investigate a few properties of the poset (PEn,≤dref). Our first main
result establishes that this poset is in fact a lattice.

Theorem 3.2. For n ≥ 3, the poset (PEn,≤dref) is a lattice.

Proof. Let x,x′ ∈ PEn. Let w = x ∧NC x′, and write w = {B1, B2, . . . , Bs}.
If w ∈ PEn, define x ∧PE x′ = w. If w /∈ PEn, then there are two options.

(i) {n−1, n} ∈ w. Without loss of generality say that Bs = {n−1, n}. Define
w′ =

{
B1, B2, . . . , Bs−1, {n − 1}, {n}

}
. Then, w′ ∈ PEn, and w′ ≤dref w,

which in particular implies that w′ ≤dref x and w′ ≤dref x
′. Let z ∈ PEn with

z ≤dref x and z ≤dref x′. We must thus have z ≤dref w, and {n − 1, n} /∈ z,
which implies {n− 1}, {n} ∈ z and every block of z is contained in some Bi for
i ∈ [s]. It follows that z ≤dref w

′. We thus put x ∧PE x′ = w′ for this case.

(ii) {n} ∈ w and 1 ∼w n − 1. Without loss of generality we can assume
that Bs = {n}. By definition we must have 1 ∼x n− 1 and 1 ∼x′ n− 1. Since
x,x′ ∈ PEn we conclude that there are indices i 6= j with i ∼x n and j ∼x′ n.
Since {n} ∈ w we conclude 1 < i, j < n− 1, which contradicts x,x′ ∈ NCn. It
follows that this case cannot occur.

Now let w = x∨NC x′, and write w = {B1, B2, . . . , Bs}. If w ∈ PEn, define
x ∨PE x′ = w. If w /∈ PEn, then there are two options again.

(i) {n − 1, n} ∈ w. In view of (3) we conclude {n − 1, n} ∈ x,x′, which
contradicts x,x′ ∈ PEn. It follows that this case cannot occur.

(ii) {n} ∈ w and 1 ∼w n−1. Without loss of generality let 1, n−1 ∈ B1, and
let Bs = {n}. Define w′ = {B1 ∪Bs, B2, . . . , Bs−1}. We then have w ≤dref w

′,
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and consequently x ≤dref w
′ and x′ ≤dref w

′. Let z ∈ PEn with x ≤dref z and
x′ ≤dref z. Again by (3) we conclude {n} ∈ x,x′, and since x,x′ ∈ PEn we see
that 1 6∼x n− 1 and 1 6∼x′ n− 1. Since 1 ∼w n− 1 there must be i ∈ [n] with
1 ∼x i and i ∼x′ n − 1. We thus conclude 1 ∼z n − 1, and since z ∈ PEn we
further conclude n−1 ∼z n. This implies w′ ≤dref z. We thus put x∨PEx′ = w′

for this case. �X

Lemma 3.3. For n ≥ 3, the lattice (PEn,≤dref) is graded.

Proof. Let x,y ∈ PEn with x ldref y in (PEn,≤dref). Assume that there is
z ∈ NCn with x <dref z <dref y. It follows that z ∈ NCn \ PEn. There are two
cases.

(i) {n − 1, n} is a block of z. Since {n − 1, n} is neither a block of x, nor
of y, it must be that n− 1 and n constitute singleton blocks in x and there is
some j ∈ [n− 2] and some block B of y containing {j, n− 1, n}. Consider the
partition w that has all blocks of y except that B is replaced by the two blocks
B \{n−1} and {n−1}. Since y ∈ PEn ⊆ NCn we conclude that w ∈ NCn, and
we have wldref y. By construction, w ∈ PEn. It follows further from x ≤dref y
that x <dref w (since n − 1 and n constitute singleton blocks of x). This is a
contradiction to xldref y in (PEn,≤dref).

(ii) {n} is a block of z and 1 ∼z n − 1. It follows that 1 ∼y n − 1, which
forces n − 1 ∼y n. Moreover, it follows that {n} must be a block of x, which
implies that 1 6∼x n − 1. Let B be the block of x containing 1. Consider the
partition w that consists of all the blocks of x except that B is replaced by
B ∪ {n}. Then, x ∈ NCn implies w ∈ PEn. Moreover, xldref w <dref y, which
is a contradiction to xldref y in (PEn,≤dref). �X

It follows by definition that the chain (6) belongs to (PEn,≤dref). It is our
next goal to show that this chain is also left-modular in (PEn,≤dref). We first
prove an auxiliary result.

Proposition 3.4. For i ∈ [n] and y ∈ PEn we have xi ∧PE y = xi ∧NC y and
xi ∨PE y = xi ∨NC y.

Proof. Let y ∈ PEn. If xi ∧PE y <dref xi ∧NC y, then it follows from the
proof of Theorem 3.2 that there exists a block B of xi with {n − 1, n} ⊆ B.
By definition this forces i = n, so that xi is the full partition. In particular
y ≤dref xi, which yields the contradiction y = xi ∧PE y <dref xi ∧NC y = y.

If xi ∨NC y <dref xi ∨PE y, then it follows from the proof of Theorem 3.2
that {n} is a block of xi. By definition, this forces i = 1, so that xi is the
discrete partition. In particular xi ≤dref y, which yields the contradiction y =
xi ∨NC y <dref xi ∨PE y = y. �X

Proposition 3.5. For n ≥ 3, the chain in (6) is left-modular in (PEn,≤dref).
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Proof. The elements x1 and xn are the least and the greatest element of
(PEn,≤dref), so they are trivially left-modular. Let us therefore assume that
i ∈ {2, 3, . . . , n − 1}. In particular, n − 1 6∼xi n and {n} is not a block of xi.
Let z ∈ PEn.

We show that xiMz holds in (PEn,≤dref). Let y ∈ PEn with y ≤dref z.
Proposition 3.4 implies that q = y ∨PE xi = y ∨NC xi. Assume that q∧PE z 6=
q∧NCz. The proof of Theorem 3.2 implies that this can only happen if {n−1, n}
is a block of q ∧NC z. For this to happen, we need n − 1 ∼q n, which forces
the existence of some j ∈ [i − 1] ∪ {n} with j ∼y n − 1. If j < i, then we
obtain the contradiction that q∧NC z has a block containing {j, n− 1, n} since
i ≤ n−1. We thus have j = n. Since i > 1 we see that q has a block containing
{i− 1, n− 1, n}, which forces z to contain the block {n− 1, n}; a contradiction
to z ∈ PEn. We therefore have

(y ∨PE xi) ∧PE z = (y ∨NC xi) ∧NC z. (8)

On the other hand, Proposition 3.4 also implies that q′ = xi ∧PE z = xi ∧NC z.
Assume that y ∨PE q′ 6= y ∨NC q′. The proof of Theorem 3.2 implies that
this can only happen if {n} is a block of y ∨NC q′ and 1 ∼y∨NCq′ n − 1. By
definition of the join, {n} must be a block of both y and q′. Since i < n we see
that {n− 1} is a singleton block in q′, which forces 1 ∼y n− 1; a contradiction
to y ∈ PEn. We therefore have

y ∨PE (xi ∧PE z) = y ∨NC (xi ∧NC z). (9)

Proposition 2.7 implies the equality of the right-hand sides of (8) and (9), which
implies xiMz in (PEn,≤dref). �X

We now conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. It follows from Theorem 3.2, Lemma 3.3, and Proposi-
tion 3.5 that (PEn,≤dref) is a graded left-modular lattice. Theorem 2.1 implies
then that it is supersolvable. �X

Corollary 3.6. For n ≥ 3, the lattice (PEn,≤dref) is EL-shellable.

Proof. This follows from Theorems 1.3 and 2.2. �X

Figure 2 shows (PE4,≤dref) together with the EL-labeling coming from the
left-modular chain in (6). The unique rising maximal chain from 0 to 1 is
highlighted.
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1|2|3|4

1|24|3 1|23|4 12|3|4 14|2|3

1|234 124|3 14|23 134|2

1234

2 3 2 1

3

1 2 1 1

2 3 3

1 3 2 2

Figure 2. The lattice (PE4,≤dref). The highlighted chain is (6), and the labeling is
the one defined in (1).

3.2. The Möbius Function of (PEn,≤dref)

In this section we determine the value of the Möbius function of (PEn,≤dref)
between 0 and 1. Recall that the Möbius function of a poset L = (L,≤) is
defined recursively by

µL(x, y) =


1, if x = y,

−
∑

x<z≤y µ(z, y), if x < y,

0, otherwise

(10)

for all x, y ∈ L. It was shown in [3] that in a lattice L, we can compute the
value µL(0̂, x) for any x ∈ L by summing over the NBB bases for x. Let us
recall the necessary concepts. Let A denote the set of atoms of L, and let E
be an arbitrary partial order on A. A set X ⊆ A is bounded below (or BB for
short) if for every d ∈ X there exists some a ∈ A such that a / d and a <

∨
X.

A set X ⊆ A is NBB if none of its nonempty subsets is BB. If X is NBB and∨
X = x, then X is an NBB base for x. We have the following result.

Theorem 3.7. ([3, Theorem 1.1]) Let L = (L,≤) be a finite lattice, and let E
be any partial order on the atoms of L. For x ∈ L we have

µL(0̂, x) =
∑
X

(−1)|X|,

where the sum is over all NBB bases for x with respect to E.
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a1,5

a1,2 a2,5

a1,3 a2,3 a3,5

a1,4 a2,4 a3,4 a4,5

Figure 3. The poset (A5,E).

In the remainder of this section we give a combinatorial model for the NBB
bases of 1 in (PEn,≤dref) with respect to a suitable partial order on its atoms,
and conclude Theorem 1.4.

For i, j ∈ [n] with i < j, define ai,j to be the set partition whose unique
non-singleton block is {i, j}. The set An = {ai,j | 1 ≤ i < j ≤ n} is the set of
all atoms of {NCn,≤dref). The set Ān = An \ {a1,n−1,an−1,n} is then the set
of atoms of (PEn,≤dref). Consider the partition of An given by

Ai = {a ∈ An | a ≤dref xi and a 6≤dref xi−1}

for i ∈ [n− 1]. Let Āi be the restriction of Ai to Ān. Define a partial order on
An by setting a E a′ if and only if a ∈ Ai and a′ ∈ Aj for i < j. The poset
(A5,E) is depicted in Figure 3.

Lemma 3.8. For j ∈ [n − 1] we have Aj =
{
ai,j | 1 ≤ i < j

}
∪
{
aj,n

}
.

Moreover, we have Āj = Aj for j ∈ [n−2], and Ān−1 = An−1\{a1,n−1,an−1,n}.

Proof. Let ai,j ∈ An for 1 ≤ i < j ≤ n. If j < n, then ai,j ≤dref xj , but
ai,j 6≤dref xj−1. If j = n, then ai,n ≤dref xi, but ai,n 6≤dref xi−1. �X

Since we want to consider NBB bases in the two related posets (NCn,≤dref) and
(PEn,≤dref), we use the prefixes “NC” and “PE” to indicate which lattice we
consider. Theorem 3.2 implies that for x,y ∈ PEn we always have x∨NCy ≤dref

x ∨PE y. Therefore, if X ⊆ Ān is NC-BB, then it is automatically PE-BB.

Lemma 3.9. If a ∨Π a′ is crossing, then
{
a,a′} is NC-BB.

Proof. Let ai,j ,ak,l ∈ An. If ai,j∨Πak,l is crossing, then i < k < j < l, and the
join ai,j ∨NC ak,l has the unique non-singleton block {i, j, k, l}. We distinguish
two cases.

(i) If l < n, then Lemma 3.8 implies ai,j ∈ Aj and ak,l ∈ Al. Since j < l
we obtain ai,j / ak,l, and since k < j, Lemma 3.8 implies that ai,k / ai,j . We
clearly have ai,k <dref ai,j ∨NC ak,l, which implies that {ai,j ,ak,l} is NC-BB.
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(ii) If l = n, then Lemma 3.8 implies ai,j ∈ Aj and ak,n ∈ Ak. Since k < j we
obtain ak,n/ai,j , and since i < k, Lemma 3.8 implies that ai,n/ak,n. We clearly
have ai,n <dref ai,j ∨PE ak,n, which implies that {ai,j ,ak,n} is NC-BB. �X

Lemma 3.10. If a,a′ ∈ Aj for j ∈ [n− 1], then {a,a′} is NC-BB.

Proof. Let ai,j ,ak,j ∈ Aj . Note that ai,j∨NC ak,j has the unique non-singleton
block {i, k, j}. There are again two cases.

(i) If i < j and k < j, then Lemma 3.8 implies ai,k ∈ Ak, and thus ai,k /ai,j
and ai,k / ak,j . We clearly have ai,k <dref ai,j ∨NC ak,j , which implies that
{ai,j ,ak,j} is NC-BB.

(ii) If i < j and k > j. Lemma 3.8 implies that k = n, and that ai,n ∈ Ai.
Therefore ai,n / ai,j and ai,n / aj,n. We clearly have ai,n <dref ai,j ∨NC aj,n,
which implies that {ai,j ,aj,n} is NC-BB. �X

Lemma 3.11. Let X ⊆ Ān satisfy
∨

PE X = 1. If |X| < n − 1, then X is
PE-BB.

Proof. Suppose that |X| = k. Observe that if X is a set of pairwise non-
crossing atoms, then

∨
NC X =

∨
ΠX. By (3)

∨
ΠX has exactly n− k blocks.

Moreover, by Theorem 3.2 the number of blocks of
∨

PE X is either n − k or
n− k − 1. Since we assumed

∨
PE X = 1, we conclude that k ∈ {n− 2, n− 1}.

Let z =
∨

NC X.

If k = n − 2, then we conclude that 1 ∼z n − 1, and {n} is a block of z.
It follows that a1,n /∈ X, which in view of Lemma 3.8 implies a1,n / a for all
a ∈ X. Since a1,n <dref 1, we conclude that X is PE-BB. �X

Let us denote by Bn the set of all NC-NBB bases for 1, and let B̄n denote
the set of all PE-NBB bases for 1. By construction we have B̄n ⊆ Bn.

Corollary 3.12. Every element of Bn has cardinality n− 1. Consequently the
same is true for the elements of B̄n.

Proof. The claim for the cardinality of the elements in Bn follows directly
from (5) and Lemmas 3.9 and 3.10.

The claim for the cardinality of the elements in B̄n can be verified directly
using Lemmas 3.9–3.11. �X

For the moment, let us focus on the elements of Bn. In view of Corollary 3.12
these elements are certain maximal chains of (An,E). We can naturally asso-
ciate a graph with X ∈ Bn by connecting the vertices i and j if and only if
ai,j ∈ X. Denote the resulting graph by τ(X).

Lemma 3.13. If X ∈ Bn, then τ(X) is a tree.
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Proof. Since
∨

NCX = 1 it follows from (3) that τ(X) is connected. Now
suppose that τ(X) contains a cycle C = (ai1,i2 ,ai2,i3 , . . . ,ais,i1). We then have
i1 < i2 < · · · < is, and 3 ≤ s < n.

If is < n, then ais−1,is ,ai1,is ∈ Ais , which contradicts Lemma 3.10. If is = n,

then ais−2,is−1
,ais−1,is ∈ Ais−1

, which contradicts Lemma 3.10. �X

Since a1,n is the least element in (An,E) any of the trees in Lemma 3.13
contains an edge between 1 and n.

Lemma 3.14. Let X ∈ Bn, and let τ(X) be the corresponding tree. If we
remove the edge between 1 and n, we obtain two trees τ1 and τ2, where τ1 has
vertex set [k] and τ2 has vertex set {k + 1, k + 2, . . . , n} for some k ∈ [n− 1].

Proof. Suppose that τ1 and τ2 are the two trees obtained by removing the
edge connecting 1 and n in τ(X). The claim is certainly true for n ≤ 3, so
suppose that n > 3. Assume that there is a vertex k in τ1 such that there
exists i ∈ [k − 1] which is a vertex of τ2, and choose k minimal with this
property. Since τ1 is a tree, there is a unique path from 1 to k, and let k′ be
the predecessor of k along this path. It follows that ak′,k ∈ X, and thus k′ < k.
The minimality of k implies that there is l in {k′+ 1, k′+ 2, . . . , k− 1} which is
a vertex of τ2. Let l = l0 < l1 < · · · < ls = n denote the elements (in order) on
the unique path from l to n in τ2. Again by construction we have ali−1,li ∈ X
for i ∈ [s]. Moreover, there exists a unique index i ∈ [s] such that li−1 < k
and li > k. Then, however, Lemma 3.9 implies that {ak′,k,ali−1,li} is NC-BB,
which contradicts the fact that X is an NC-NBB base for 1. This completes
the proof. �X

We say that the trees occurring as τ(X) for some X ∈ Bn are noncrossing.
Recall that the Catalan numbers are defined by Cat(n) = 1

n+1

(
2n
n

)
, and they

satisfy the recurrence relation

Cat(n+ 1) =

n∑
k=0

Cat(k)Cat(n− k), (11)

with initial condition Cat(0) = 1 [13].

Corollary 3.15. For n ≥ 1 we have
∣∣Bn∣∣ = Cat(n− 1).

Proof. Let Cn =
∣∣Bn∣∣. Lemma 3.14 implies that Cn =

∑n−1
k=1 CkCn−k, and

it is quickly verified that C1 = 1. Therefore the numbers Cn and Cat(n − 1)
satisfy the same recurrence relation and the same initial condition and must
thus be equal. �X

In view of Theorem 3.7 we obtain the following well-known corollary.
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Corollary 3.16. ([9, Théorème 6]) For n ≥ 1 we have

µ(NCn,≤dref)(0,1) = (−1)n−1Cat(n− 1).

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. In view of Corollary 3.15 it remains to determine the
size of Bn \ B̄n. Essentially this set consists of three types of elements; those
that contain a1,n−1, those that contain an−1,n, and those that (after removal
of a1,n) join to 1 in (PEn,≤dref). Since every element of Bn contains a1,n,
Lemma 3.13 implies that X ∈ Bn cannot contain both of a1,n−1 and an−1,n.

Let S(1)
n = {X ∈ Bn | a1,n−1 ∈ X} and S(2)

n = {X ∈ Bn | an−1,n ∈ X}, and
let

Rn =
{
X ∈ Bn |

∨
PE

(
X \ {a1,n}

)
= 1

}
.

By construction we have B̄n = Bn \
(
S(1)
n ∪ S(2)

n ∪Rn

)
.

The proof of Theorem 3.2 implies that for X ∈ Rn the only vertex adjacent

to n in the corresponding tree τ(X) is 1. As a consequence S(1)
n ⊆ Rn, and

S(2)
n ∩ Rn = ∅. It therefore suffices to determine the cardinalities of S(2)

n and
Rn.

Let X ∈ S(2)
n , and let τ(X) be the corresponding noncrossing tree. Lemma

3.14 implies that there is some k ∈ [n − 1] such that after removing the edge
between 1 and n we are left with a noncrossing tree τ1 on vertex set [k] and a
noncrossing tree τ2 on vertex set {k+1, k+2, . . . , n} which has an edge between
n− 1 and n. As a consequence, k < n− 1 and we can view τ2 as a noncrossing

tree on n− k − 1 vertices. We obtain
∣∣∣S(2)

1

∣∣∣ = 1, and

∣∣∣S(2)
n

∣∣∣ =

n−2∑
k=1

∣∣∣Bk∣∣∣ · ∣∣∣Bn−k−1

∣∣∣,
which in view of (11) implies

∣∣∣S(2)
n

∣∣∣ = Cat(n− 2).

Let X ∈ Rn. We have seen already that in τ(X) the only edge adjacent to
n is 1. It follows that the elements of Rn correspond bijectively to noncrossing

trees on n− 1 vertices. Corollary 3.15 then implies that
∣∣∣Rn

∣∣∣ = Cat(n− 2).

We thus obtain
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∣∣∣B̄n∣∣∣ = Cat(n− 1)− 2Cat(n− 2)

=
1

n

(
2n− 2

n− 1

)
− 2

n− 1

(
2n− 4

n− 2

)
=

(
4(2n− 3)

n(n− 3)
− 4

n− 3

)(
2n− 5

n− 4

)
=

4

n

(
2n− 5

n− 4

)
,

and the claim follows from Theorem 3.7. �X

Figure 4 illustrates the proof of Theorem 1.4 for n = 5. It displays the
noncrossing trees corresponding to the elements of B5. We have crossed out the

trees corresponding to elements of S(2)
5 in red, to elements of S(1)

5 in blue, and
to elements of R5 in green.

1

2 5

3

4

1

2 5

3 4

1

2 3 5

4

1

2 4 5

3

1 2

5 3

4

1 4

2 5

3

1 3

2 5 4

1 3 4

2 5

1 4

2 3 5

1

2 3 4 5

1 4 2

5 3

1 2

5 3 4

1 2 3

5 4

1 2 3 4

5

Figure 4. The noncrossing trees corresponding to the NC-NBB bases for 1 in
(NC5,≤dref). We have crossed out certain trees as indicated in the proof
of Theorem 1.4.

We can use the combinatorial model from above to compute NC-NBB bases
for any element of NCn, by simply picking at most one element of each rank
of (An,E) keeping the restriction that their join in the partition lattice is
again noncrossing. This process works since every interval in (NCn,≤dref) is
a direct product of smaller noncrossing partition lattices. The analogous pro-
cedure for (PEn,≤dref) does not work, due to the extra condition for PE-
NBB bases (Lemma 3.11). Moreover, the subintervals of (PEn,≤dref) do not
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factor nicely into direct products of smaller lattices. Consider the interval
[an−2,n−1,1] in (PEn,≤dref). The cardinalities of these intervals are given by
Cat(n−1)−Cat(n−3) as observed by J. Lewis; see [15, A280891]. We observe
that large prime factors appear in this sequence. It seems, however, that every
proper interval of (PEn,≤dref) can be written as a direct product of an interval
of the previous form and some noncrossing partition lattice.

4. A Subposet of (PEn,≤dref)

Now we consider a subposet of (PEn,≤dref) that was introduced in [4]. To that
end recall that a function f : [n] → [n] is a parking function if for all k ∈ [n]
the cardinality of f−1

(
[k]
)

is at least k. It is a classical result that the number
of parking functions of length n is (n+ 1)n−1 [6, Proposition 2.6.1].

For two noncrossing partitions x and y with xldref y, there are two unique
blocks B1 and B2 of x such that B1 ∪B2 is a block of y. Suppose without loss
of generality that minB1 < minB2, and define

π(x,y) = max{j ∈ B1 | j ≤ i for all i ∈ B2}. (12)

Clearly π extends to an edge-labeling of (NCn,≤dref); the parking labeling. Let
Cn denote the set of maximal chains of (NCn,≤dref). For any X ∈ Cn the
sequence π(X) is a parking function of length n − 1, and every such parking
function arises in this way [17, Theorem 3.1]. As a consequence

∣∣Cn

∣∣ = nn−2.

Now let Dn =
{
X ∈ Cn | n− 1 /∈ π(X)

}
be the set of all maximal chains of

(NCn,≤dref) whose parking labeling does not contain the value n − 1. Let Ln

be the subposet of (NCn,≤dref) whose maximal chains are precisely Dn, see [4,
Definition 3.3].

Proposition 4.1. ([4, Proposition 3.4]) For n ≥ 3, the ground set of Ln is
precisely PEn.

We can therefore write Ln = (PEn,≤pchn), where ≤pchn is a subset of ≤dref.
Figure 6 shows the poset (PE4,≤pchn). This poset was extensively studied in
[4]. For our purposes the next statement is the most relevant.

Theorem 4.2. ([4, Theorem C]) For n ≥ 3 we have µ(PEn,≤pchn)(0,1) = 0.

The main goal of this section is to prove Theorem 1.1 and Corollary 1.2,
which essentially proves the conjecture in [4]. To that end we show that the
restriction of the EL-labeling of (PEn,≤dref) coming from the left-modular
chain (6) is an EL-labeling of (PEn,≤pchn). First we need to show that the
property of being an EL-labeling is preserved under removing particular cover
relations.

Proposition 4.3. Let L = (L,≤) be a bounded graded poset with an EL-
labeling λ. Let x, y ∈ L \ {0̂, 1̂} with xl y. Let L′ be the poset that arises from
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1|2|3|4

1|23|4 1|2|34 13|2|4 1|24|3 12|3|4 14|2|3

1|234 123|4 12|34 14|23 134|2 124|3

1234

2 3 1 2 1 1

3

1 1

2

1

1

1

3

2

1

2

3 22

1

1

1 3 2 1 1 2

Figure 5. The lattice (NC4,≤dref) with its parking labeling. The highlighted chains
form D4.

1|2|3|4

1|24|3 1|23|4 12|3|4 14|2|3

1|234 124|3 14|23 134|2

1234

2 3 2 1

3

1 1 1

2 3 3

1 3 2 2

Figure 6. The poset (PE4,≤pchn). The labeling is inherited from (PE4,≤dref), see
Figure 2.
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L by removing the cover relation (x, y). If there is some y′ ∈ L with xl y′ and
λ(x, y) � λ(x, y′), then the restriction of λ to L′ is again an EL-labeling.

Proof. Let λ′ denote the restriction of λ to L′, and let x, y be the elements
from the statement. We proceed by contradiction and suppose that λ′ is not
an EL-labeling of L′.

Note that C (L′) ⊆ C (L), and for X ∈ C (L′) we have λ′(X) = λ(X).
Since λ′ is not an EL-labeling of L′, there must be some interval I ′ in L′ in
which the EL-property of λ′ fails. We conclude that x, y ∈ I ′ (since otherwise
λ ≡ λ′ on I ′, which is a contradiction). We can moreover assume without loss
of generality that x is the least element of I ′, i.e. I ′ = [x, z] for some z. Let I be
the corresponding interval in L. There are three possibilities for λ′ to fail to be
an EL-labeling of I ′. The existence of more than one rising maximal chain in I ′

contradicts the assumption that λ is an EL-labeling of I, and the same holds
for the assumption that the unique rising chain of I ′ is not lexicographically
first. It follows that there does not exist a rising maximal chain in I ′. Since
there is a rising maximal chain X in I, we conclude that x, y ∈ X; in particular
x is the first and y is the second element of X. Since λ is an EL-labeling of L,
we conclude that λ(x, y) � λ(x, y′) for all y′ ∈ L with xl y′. �X

By definition (PEn,≤pchn) is obtained from (PEn,≤dref) by removing cer-
tain cover relations, and the next result states that these satisfy the condition
from Proposition 4.3.

Proposition 4.4. Let x,y ∈ PEn such that π(x,y) = n−1, where π is the la-
beling defined in (12). There exists y′ ∈ PEn with xldrefy

′ such that π(x,y′) <
n− 1 and λ(x,y) > λ(x,y′), where λ is the EL-labeling of (PEn,≤dref) coming
from the left-modular chain (6).

Proof. Let x and y be as desired. Since π(x,y) = n−1, there must be a block
B of x containing n− 1, and {n} must be a singleton block of x. Moreover, y
must contain the block B ∪ {n}. Since x ∈ PEn we conclude that B 6= {n− 1}
and 1 /∈ B; in particular x 6= 0 and y 6= 1. Let A be the block of x containing 1.
Let y′ be the partition that contains all blocks of x except that A and {n} are
replaced by A ∪ {n}. Since x ∈ PEn, the blocks A and B cannot be crossing,
which implies that y′ ∈ PEn. Moreover, we have x ldref y

′. We claim that y′

is the desired element.

First of all π(x,y′) < n − 1, since n − 1 /∈ A, so that the cover relation
xldref y

′ is still present in (PEn,≤pchn).

Recall that the left-modular chain (6) of (PEn,≤dref) consists of the ele-
ments xi given by the unique non-singleton block [i− 1] ∪ {n}.

Observe that x2 ≤dref y′, since {1, n} is the unique non-singleton block
of x2, and 1 ∼y′ n. Since 1 6∼x n, we conclude x2 6≤dref x. We thus obtain
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x∨PEx2∧PEy′ = y′, which implies λ(x,y′) = 1. (Observe the shift in the indices
of (6) compared to the definition of the labeling λ in (1).) On the other hand,
1 6∼y n implies x ∨PE x2 ∧PE y <dref y. We thus have λ(x,y) > 1 = λ(x,y′).
(In fact we have λ(x,y) = k, where k = minB.) �X

We conclude this article with the remaining proofs.

Proof of Theorem 1.1. This follows by construction from Propositions 4.3 and
4.4. �X

Proof of Corollary 1.2. This follows from Theorem 1.1 and Theorems 4.2 and
2.3. �X
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