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Resumen. Damos una caracterización completa de los grupos abelianos orde-
nados cuyas teoŕıas completas en el lenguaje {+, <, 0} son fuertamente de-
pendientes. El resultado principal de este art́ıculo fue obtenido de manera
independiente por Halevi y Hasson [7] y Farré [5].

Palabras y frases clave. Teoŕıas dependientes, grupos abelianos ordenados.

1. Introduction

Given a general model-theoretic notion which may be interpreted as indicating
that a structure or theory is “tame,” such as stability or the absence of the
independence property (see [9]), it is natural to attempt to characterize within
a general class of algebraic objects which of the structures satisfy the tameness
condition. In this note we carry out this program for the tameness conditions
given by strong dependence and finite dp-rank within the algebraic setting of
ordered Abelian groups.

One of the most important classes of tame theories is the class of NIP
theories (also known as “dependent theories”). It is already known that any
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140 ALFRED DOLICH & JOHN GOODRICK

complete theory of an ordered Abelian group in Loag = {+, <, 0} is NIP (see
[6]), and on the other hand any ordered structure must be unstable.

The most prominent dividing line within unstable NIP theories is given by
the class of strongly NIP (or “strongly dependent”) theories, which we will now
define.

Definition 1.1. A theory T in a language L admits an inp-pattern of depth κ
(for κ a cardinal) if we may find a sequence {ϕi(x, yi) : i ∈ κ} of L-formulas, a
model M of T , and parameters aij for (i, j) ∈ κ × ω in M (where |aij | = |yi|
for all j) so that:

(1) For every i < κ, there is a ki ∈ ω such that

{ϕi(x; aij) : j ∈ ω}

is ki-inconsistent (that is, the conjunction of any ki formulas in the set is
inconsistent); and

(2) for every η : κ→ ω, the set

{ϕi(x; ai,η(i)) : 1 ≤ i ≤ n}

is consistent.

If T is NIP, then T is strongly dependent if it does not admit an inp-pattern of
depth ℵ0, and T has dp-rank equal to n if it admits an inp-pattern of depth n
but does not admit an inp-pattern of depth n+ 1. T is said to be dp-minimal
if it has dp-rank equal to 1.

We can also assume that in the array in Definition 1.1,

(1) The subindices j range over all of Q, which follows by a straightforward
compactness argument; and

(2) the array of parameters aij is “mutually indiscernible”, that is, for each
i < κ, the sequence {ai,j : j ∈ Q} is indiscernible over the set consisting
of the union of all the tuples ai′,j such that i′ 6= i (a proof of this is
sketched in [1, Proposition 6]).

Our definition of dp-rank in terms of inp-patterns only applies to NIP the-
ories; in a general theory, inp-patterns correspond to a different rank known as
burden. For a detailed discussion of these concepts and definitions, see [1] or
[10].

Throughout G is an ordered Abelian group in the language Loag={+, <, 0}.
Recall that a prime p ∈ N is called singular for G if [G : pG] =∞.

We state our main result bounding the dp-rank of ordered Abelian groups
using some notation which will be defined in the following section.
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Theorem 1.2. Suppose that G is an ordered Abelian group considered as an
Loag-structure. Then the dp-rank of G is finite if and only if both of the fol-
lowing two conditions hold:

(1) G has only finitely many singular primes; and

(2) for every singular prime p, the auxiliary sort Sp (see below) is finite.

Moreover, the condition that G is strongly dependent is also equivalent to the
conjunction of conditions (1) and (2) above. Furthermore, when these condi-
tions hold, the dp-rank of G is bounded above by

1 +
∑

p∈Psing

|Sp|,

where Psing is the set of all primes p which are singular for G.

Theorem 1.2 was established independently by Halevi and Hasson in their
preprint “Strongly dependent ordered abelian groups and Henselian fields” [7],
as well as by Rafel Farré in the preprint “Strong ordered Abelian groups and
dp-rank” [5]. We also note that this characterization of strongly dependent
ordered Abelian groups has already been used by Halevi and Hasson to prove
that for any strongly dependent pure field K and any henselian valuation v on
K, the two-sorted structure (K, vK) is strongly dependent [7].

Our intention in publishing these notes was not to pre-empt either of these
works but rather to provide an alternate and potentially more näıve proof of
the basic theorem. We encourage the reader to consult either [5] or [7] for more
definitive accounts of these results.

2. The languages Leq and L2 for quantifier elimination

In this section we will review some notation and fundamental results by Cluck-
ers and Halupczok from [3] on a useful language Leq for partially eliminating
quantifiers in ordered Abelian groups (modulo some quantifiers over linearly
ordered auxiliary sorts). We will recall the language Leq, and then we will de-
fine a simpler language L2 (essentially like the langage Lshort given by Jahnke,
Simon, and Walsberg [8]) which will suffice for eliminating quantifiers when all
the Sp are finite, as is always the case when the group has finite dp-rank (see
Theorem 3.1).

The language Leq of Cluckers and Halupczok is multi-sorted, and to begin
we need to recall the definitions of the imaginary sorts Sn, Tn, and T +

n . As
always, G is some ordered Abelian group.

Before continuing, we recall two simple facts for the reader that will be used
repeatedly in what follows.

Fact 2.1 Let (G,+, <) be an ordered Abelian group.

Revista Colombiana de Matemáticas
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(1) G is torsion free.

(2) If H ⊆ G is a convex subroup, n ∈ N, and ng ∈ H then g ∈ H.

The following definition is central for the rest of this paper:

Definition 2.1. For a positive integer n and a ∈ G \ nG, Hn(a) is the largest
convex subgroup of G such that

a /∈ Hn(a) + nG,

which turns out to always be a definable subgroup of G, in fact uniformly
definable in a (see [3, Lemma 2.1]). If a ∈ nG, we set Hn(a) = {0}.

For a, a′ ∈ G, say a ∼ a′ if Hn(a) = Hn(a′), and let Sn be the imaginary
sort G/ ∼. Each of the sorts Sn is linearly ordered by inclusion. Let sn : G→ Sn
be the canonical surjection.

If α ∈ Sn and α = sn(a), then we write “Gα” as an abbreviation for Hn(a).

Remark 2.2. As pointed out in [3, Lemma 2.2], for any fixed n, the class
of subgroups {Gα |α ∈ Sn} is equal to {Gα |α ∈ Sp, p is prime, and p|n}.
Therefore from now on we will only need to consider sorts Sp for p prime.

We write H ≤con G if H is a convex subgroup of G.

Definition 2.3. If α ∈ Sp and m is a positive integer,

G[m]
α =

⋂
{H +mG : H ≤con G,H ) Gα} .

If m,m′ are positive integers and x, y ∈ G, write

x ≡[m′]
m,α y

for the relation

x− y ∈ G[m′]
α +mG.

The groups G
[m]
α and the relations x ≡[m]

m,α y are always definable, by the
following fact (Lemma 2.4 from [3]):

Fact 2.2.
G[n]
α =

⋂
{Gα′ + nG : α′ ∈ Sn, α′ > α} .

Given an ordered Abelian group (G,+, <), Cluckers and Halupczok introduce
additional auxiliary sorts Tp and T +

p as follows. For any p prime and b ∈ G, let

H ′b =
⋃

α∈Sp,b/∈Gα

Gα,
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and let Tp = G/ ∼ where b ∼ b′ if H ′b = H ′b′ . For α ∈ Tp, let Gα be the
corresponding subgroup (that is, H ′b for any b in the class α). Finally, if β ∈ Tp,
let

Gβ+ =
⋂

α∈Sp,Gα)Gβ

Gα

and define T +
p be the corresponding imaginary sort. More precisely, each ele-

ment of T +
p is of the form β+ for β ∈ Tp, and so T +

p is an identical copy of
Tp.

We recall the multi-sorted language Lqe which Cluckers and Halupczok used
for quantifier elmination in [3].

Definition 2.4. Lqe is the multi-sorted language consisting of a home sort
G, infinitely many auxiliary sorts {Sp, Tp, T +

p : p is prime}, and the following
nonlogical symbols:

(1) A constant symbol for 0, a unary function symbol for −, and a binary
operation + in the home sort G.

(2) For each pair of primes (p, p′), a binary relation ≤ between (Sp∪Tp∪T +
p )

and (Sp′ ∪ Tp′ ∪ T +
p′ ), where “α ≤ β” signifies Gα ⊆ Gβ .

(3) For each prime p and each α ∈ Sp ∪ Tp ∪ T +
p , let π : G → G/Gα be the

canonical projection map. For each symbol � ∈ {=, <,≡m : m ∈ N}, the
language Lqe contains a ternary relation �α on G × G × (Sp ∪ Tp ∪ T +

p )
such that x �α y holds if and only if π(x) � π(y) holds in G/Gα (where
“≡m” denotes the relation of congruence modulo m within G/Gα).

(4) With notation as in the previous point, for any k ∈ Z, let kα be k times
the minimal positive element of the group G/Gα in case this group is
discrete, and otherwise let kα be the zero element of this quotient. Then
for each k ∈ Z and each � ∈ {=, <,≡m : m ∈ N}, there are symbols
for ternary relations on G × G × (Sp ∪ Tp ∪ T +

p ) denoting the relation
π(x) � π(y) + kα on the triple (x, y, α).

(5) For each m,m′ ∈ N and p prime, there is a ternary relation symbol on

G×G× Sp for the relation x ≡[m′]
m,α defined above.

(6) For each prime p, a unary predicate discr(α) on Sp which holds if and
only if G/Gα is discretely ordered.

(7) For each prime p, each s ∈ N \ {0} and each ` ∈ N, two more unary
predicates on Sp defining the sets

{α ∈ Sp : dimFp(G[ps]
α + pG)/(G[ps+1]

α + pG) = `}

and
{α ∈ Sp : dimFp(G[ps]

α + pG)/(Gα + pG) = `}.

Revista Colombiana de Matemáticas



144 ALFRED DOLICH & JOHN GOODRICK

Any ordered Abelian group can naturally be interpreted as an Leq-structure
as indicated above.

Cluckers and Halupczuk prove the following result on partial quantifier
elimination:

Fact 2.3. ([3], Theorem 1.8) Suppose that ϕ(x, η) is any Lqe-formula, where x
are the variables from the home sort and η are the variables from the sorts Sp, Tp
and T +

p . Then in the theory of ordered Abelian groups, ϕ(x, η) is equivalent to
an Lqe-formula of the form

k∨
i=1

∃θ
(
ξi(η, θ) ∧ ψi(x, θ)

)
,

where θ are variables from the sorts Sp, Tp and T +
p and the formulas ψi(x, θ)

are conjunctions of literals (atomic formulas or their negations).

The following fact is a direct consequence of the quantifier reduction result
above, and is proved by a similar argument as in [8].

Corollary 2.5. Suppose that for every prime p, the sort Sp is finite. Then
the complete theory of (G,<,+, 0) eliminates quantifiers in the (single-sorted)
extension L2 of Loag which contains the following additional symbols:

(1) A unary function symbol for −.

(2) Binary predicates ≡m for the relation x − y ∈ mG, for each positive
m ∈ N.

(3) Binary predicates ≡m,α for each positive m ∈ N, α ∈ Sp, and p a prime
denoting the relation

x ≡m,α y ⇔ x− y ∈ Gα +mG;

(4) Unary predicates for the (countably many) convex subgroups Gα, where
α ∈ Sp for some prime p.

(5) Constants naming a countable elementary submodel G0 of G.

Proof. First note that since Sp := {Gα : α ∈ Sp} is a finite set of groups
linearly ordered by inclusion, and each group Gα named by α ∈ Tp ∪ T +

p is a
union or intersection of groups in Sp, any such Gα is in fact in Sp (or else is
{0} or all of G). Therefore we need only consider the sorts Sp and the home
sort G.

Suppose that ϕ(x) is any Loag-formula. By Fact 2 above, it is equivalent
(modulo the theory of ordered Abelian groups) to an Lqe-formula of the form

k∨
i=1

∃θ
(
ξi(θ) ∧ ψi(x, θ)

)
Volumen 52, Número 2, Año 2018
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where the ψi(x, θ) are conjunctions of literals in Lqe. So assume that ϕ(x) is in
this form, with the variables θ coming from sorts Sp, as explained above.

Observe that each variable from θ ranges over a single sort Sp, which is
assumed to be finite, so that the existential quantifiers are equivalent to finite
disjunctions over all of their possible values. So without loss of generality, we
can assume that ϕ is of the form

k∨
i=1

ψi(x, θi)

where the ψi are conjunctions of literals as before and θi are fixed values for
parameters in the sorts Sp.

Now we can go through each of the nonlogical symbols of Lqe (from parts (2)
through (7) of Definition 2.4) and verify that they can be replaced by symbols
from L2 in ϕ:

• Clause (2) gives binary symbols ≤ in Lqe between the auxiliary sorts Sp
and Sp′ . Such symbols would only affect the truth conditions on atomic
subformulas ψ(θi) of ψi(x, θi) which do not involve the variables x, since
there are no functions from the sort G into the auxiliary sorts Sp, and
thus any such ψ(θi) can simply be replaced by x = x or ¬(x = x).

• Clause (3) defines ternary relations on G×G× Sp corresponding to the
relations of =, <, and ≡m on quotient groups G/Gα. But since Sp is finite
and each of its corresponding subgroups is named by a predicate in L2,
the relation Gπ(x) = Gπ(y) is expressible as a finite disjunction of atomic
L2-formulas in x and y, and the containment relation Gπ(x) < Gπ(y) is
similarly definable. Finally, for the relation Gπ(x) ≡m Gπ(y), we note that
this is equivalent to the relation x ≡m,α y which we have included in L2.
(Proof: this translates into showing that

x− y ∈ Gα +mG⇔ (x− y) +Gα ∈ m(G/Gα).

But if x− y = g+mh with z ∈ Gα and h ∈ G, then x− y ∈ m(h+Gα) ∈
m(G/Gα); and conversely if (x−y)+Gα = mh+Gα, then x−y = mh+g
for some g ∈ Gα, and thus x− y ∈ Gα +mG.)

• Clause (4) gives symbols for relations π(x) �α π(y) + kα. But if G/Gα is
discrete, then for any k ∈ Z there must be a ∈ G0 such that π(z) = kα,
and so with a constant symbol from L2 for such an element a we can
define these relations as above.

• Clause (5) gives symbols for the relations ≡[m′]
m,α, but by Fact 2, when

every Sp is finite these are equivalent to instances of ≡m,α.
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146 ALFRED DOLICH & JOHN GOODRICK

• The predicates discr(α) on Sp (Clause (6)) can be eliminated in the same
way as the relations ≤ from Clause (2), and likewise for the other unary
predicates on Sp given in Clause (7).

�X

3. Infinite Sp implies not strongly dependent

In [8] Jahnke, Simon, and Walsberg show that if G has no non-singular primes
then G is dp-minimal. In [2] Chernikov, Kaplan, and Simon show that if G has
infinitely many singular primes then G is not strongly dependent. Thus it is
obvious to conjecture that if G has only finitely many singular primes then G
is strongly dependent (and in fact of finite dp-rank). In this section we show
that this is false and that in fact a group can have only one singular prime and
nonetheless still not be strongly dependent.

For convenience, notice the following facts, which are inherent in [3].

Fact 3.1. If a, b ∈ G are equivalent modulo pG then Hp(a) = Hp(b). In parti-
cular if p is non-singular then Sp is finite.

Proof. This follows immediately from the definitions, since for a and b which
are equivalent modulo pG and any convex subgroup H of G, we have that
a ∈ H + pG if and only if b ∈ H + pG. �X

Fact 3.2. IfHp(a) ⊂ Hp(b) then we can find a′ ∈ Hp(b) so thatHp(a) = Hp(a
′).

Proof. Note that by definition a ∈ Hp(b) + pG. Let a = a′ + pg where a′ ∈
Hp(b). Then a and a′ are equivalent modulo pG and thus by the previous fact
Hp(a) = Hp(a

′). �X

Theorem 3.1. Suppose that for some prime Sp is infinite. Then G is not
strongly dependent.

Proof. Without loss of generality we may assume that G is an ω1-saturated
model of Th(G). Thus we may find elements ei, fi,j ∈ G for i, j ∈ ω such that

Hp(e0) ⊂ Hp(e1) ⊂ . . .

and for each i, j ∈ ω,

Hp(ei) ⊂ Hp(fi,j) ⊂ Hp(fi,j+1) ⊂ Hp(ei+1).

By Fact 3 we may assume that ei ∈ Hp(ei+1) and fi,j ∈ Hp(fi,j+1).

Let ci,j = pifi,j and let αi be the element of the sort Sp such that Gαi =
Hp(ei).
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Claim. If j0 6= j1, then
ci,j0 6≡pi+1,αi ci,j1 .

Proof. Without loss of generality, j0 < j1. Suppose, towards a contradiction,
that these two elements are ≡pi+1,αi-equivalent. Then there are g ∈ Hp(ei) and
h ∈ G such that

ci,j0 − ci,j1 = pifi,j0 − pifi,j1 = g + pi+1h.

Thus the element g is divisible by pi, and by convexity of Hp(ei) there is
g′ ∈ Hp(ei) such that g = pig′.

Now comparing with the previous displayed equation above, we can cancel
out the factors of pi to conclude that

fi,j0 − fi,j1 = g′ + ph,

so
fi,j1 = −g′ − ph+ fi,j0 ∈ pG+Hp(fi,j1)

since j0 < j1 implies that fi,j0 ∈ Hp(fi,j1) and g′ ∈ Hp(ei) ⊆ Hp(fi,j1). But
this contradicts the definition of Hp(fi,j1). �X

Claim. For any n ∈ ω and any η : [n] → [n] (where [n] = {1, 2, . . . , n}), the
formula

n∧
i=1

x ≡pi+1,αi ci,η(i)

is consistent, and is satisfied by the element

a :=

n∑
i=1

ci,η(i).

Proof. It suffices to show that if i ∈ [n] and j ∈ [n] \ {i}, then cj,η(j) ∈
pi+1G+Hp(ei). But on the one hand, if j < i, then

cj,η(j) = pjfj,η(j) ∈ Hp(fj,η(j)+1) ⊆ Hp(ei)

and, on the other hand, if j > i, then cj,η(j) = pjfj,η(j) ∈ pi+1G. �X

By the preceding two claims, we conclude that there is an inp-pattern of
depth ω in G whose i-th row consists of the formulas of the form

x ≡pi+1,αi ci,j

as j varies over ω. �X

Notice that Theorem 3.1 together with the result from [2] mentioned above
established the “only if” portion of Theorem 1.2.
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4. Bounding the dp-rank of G from above

In this section we will prove that if conditions (1) and (2) of Theorem 1.2 hold,
then the dp-rank of G is finite. At the same time, we will also establish the
upper bound on the dp-rank given in Theorem 1.2.

From now on, we work in an ordered Abelian group G such that the sorts
Sp are all finite, and we fix such an inp-pattern of depth n in the language L2

described above. By quantifier elimination, we may assume that each formula
ϕi is quantifier-free.

The following is easy and already known, but we include it for convenient
reference:

Lemma 4.1. We may further assume that each formula ϕi is a conjunction
of literals (atomic formulas or negations of atomic formulas).

Proof. Write each ϕi as a disjunction of conjunctions of literals, say

ϕi(x; yi) =

mi∨
`=1

θi,`(x; yj).

Then there are `1, . . . , `n such that

θ1,`1(x; a1,0) ∧ . . . ∧ θn,`n(x; an,0)

is consistent. Replace each formula ϕi by θi,`i . The ki-inconsistency of each row
is clearly preserved, and the mutual indiscernibility of the parameters ensures
that we also have the consistency condition we require. �X

Now we need to consider in more detail the literals which constitute each
formula ϕi(x; yi).

Note that we may safely assume that each literal in every formula ϕi(x; yi)
actually mentions the variable x. Furthermore, we may use the fact that L2-
terms are linear functions of their variables to put every literal in every formula
ϕi(x; yi) into one of the following four types (we allow the parameter α to name
the subgroup {0}):

Type (I): kx ≡m,α t(yi) for some k,m ∈ N \ {0}, α ∈ Sp with p a prime, and
Loag-term t(yi).

Type (II): ¬(kx ≡m,α t(yi) for some k,m, α, p, and t(yi) as above.

Type (III): Literals of the form kx � t(yi) where � ∈ {<,>,≤,≥,=}, or of
the type kx ∈ Gα + t(yi), where t is a term and α ∈ Sp for some prime p.

Type (IV): Literals of the form kx 6= t(yi) or kx /∈ Gα + t(yi), with k, t, and
α as above.
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Since we allow α to name {0}, the division into the four types is exhaustive
as the literals of Type (I) and (II) encompass the simple congruence relations
x ≡m t(yi) and ¬(x ≡m t(yi)).

Assumption 4.2. For each i ∈ {1, . . . , n}, the formula ϕi(x; yi) is a minimal
conjunction of literals, in the sense that if we were to remove any one of these
literals from the conjunction, then the resulting row of formulas

{ϕ′i(x; ai,j) : j ∈ Q}

would be consistent.

Proposition 4.2. Under Assumption 4, each formula ϕi(x, yi) is either (a) a
single formula kx ≡m,α t(y) of Type (I), or else (b) a conjunction of literals
of Type (III).

Proof. Call a literal ψ(x; aij) occurring in ϕi(x; aij) fixed if it defines the same
subset of G even as j varies, and call it variable otherwise.

As a first reduction, suppose that ϕi(x; aij) contains a variable literal of
Type (I). Note that literals of Type (I) define cosets of subgroups of G, so by
Assumption 4 this Type (I) literal must be the only conjunct in ϕi(x; aij), and
we are done. Thus we may assume that any literal in ϕi(x; aij) of Type (I) is
fixed, and our goal will be to show that in fact every literal is of Type (III).

Write

ϕi(x; yi) = ψ1(x; yi) ∧ ψ2(x; yi) ∧ ψ3(x; yi),

where:

• ψ1 is the conjunction of all fixed literals of Type (I), (II) or (IV),

• ψ2 is the conjunction of all variable literals of Type (II) or (IV), and

• ψ3 is the conjunction of all Type (III) literals.

Note that the sets defined by the ψ3(x, ai,j) are convex.

We allow the possibility that there are no literals of one of these types,
in which case the corresponding ψi(x; aij) is equivalent to x = x. We will
assume, towards a contradiction, that not all literals of ϕi(x; aij) are contained
in ψ3(x; aij). Thus by minimality, {ψ3(x; aij) : j ∈ Q} is consistent.

Claim. For any j ∈ Q, there is a finite F ⊆ Q \ {j} such that the formula

ψ1(x; aij) ∧ ψ3(x; aij) ∧
∧
j′∈F

ψ2(x; aij′)

is inconsistent.
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Proof. Recall that row i is ki-inconsistent.

Case 1: The convex sets defined by the ψ3(x; aij) are nested: that is, there
are distinct α, β ∈ ω such that ψ3(G; aiα) ⊆ ψ3(G; aiβ).

In this case, if j ∈ Q, by indiscernibility we can pick distinct α(1), . . . , α(ki)
∈ Q such that

ψ3(G; aiα(1)) ⊇ . . . ⊇ ψ3(G; aiα(ki)) ⊇ ψ3(G; aij)

and, by ki-inconsistency of the ith row of the inp-pattern,

ψ1(x; aij) ∧ ψ3(x; aij) ∧
ki∧
`=1

ψ2(x; aiα(`))

is inconsistent (recall that ψ1 is fixed).

Case 2: The convex sets defined by the ψ3(x; aij) are not nested as j varies.

In this case, fix j < j′ and pick an element c1 ∈ ψ3(G; aij) \ ψ3(G; aij′).
By convexity of ψ3(G; aij′), either c1 < ψ3(G; aij′) (meaning that c1 is less
than every element of ψ3(G; aij′)) or else ψ3(G; aij′) < c1. Without loss of
generality, assume that we are in the former case; then for any c ∈ ψ(G; aij),
either c < ψ3(G; aij′) or c ∈ ψ3(G; aij′), since otherwise c > ψ3(G; aij′) and the
convexity of ψ3(G; aij) would imply that ψ3(G; aij′) ⊆ ψ3(G; aij), contradicting
the fact that we are in Case 2.

By the preceding observation and indiscernibility, whenever j < j′ < j′′,

ψ3(G; aij) ∩ ψ3(G; aij′′) ⊆ ψ3(G; aij′) ∩ ψ3(G; aij′′), (1)

since for any c ∈ ψ3(G; aij) ∩ ψ3(G; aij′′) either c ∈ ψ3(G; aij′) or else c <
ψ3(G; aij′), but c < ψ3(G; aij′) would imply that c < ψ3(G; aij′′) (since there
is an element c′ ∈ ψ3(G; aij′) such that c′ < ψ3(G; aij′′)), which gives a contra-
diction.

Furthermore, if j < j′ < j′′, then by the consistency of {ψ3(x; ai,j) : j ∈
Q}, indiscernibility, and the convexity of the sets each of these formulas define,

ψ3(G; aij′) ⊆ ψ3(G; aij) ∪ ψ3(G; aij′′). (2)

Given any j ∈ Q, choose elements j(1) < . . . < j(ki) < j < j(ki + 1) < . . . <
j(2ki). Then

ψ3(G; aij) ⊆

(
ki⋂
`=1

ψ3(G; aij(`)) ∪
2ki⋂

`=ki+1

ψ3(G; aij(`))

)
, (3)

since, for any c ∈ ψ3(G; aij), by (2), either c ∈ ψ3(G; aij(1)) ∩ ψ3(G; aij) or
else c ∈ ψ3(G; aij)∩ψ3(G; aij(2ki)) and, in the former case, applying (1) yields
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that c ∈
⋂ki
`=1 ψ3(G; aij(`)), while in the latter case, applying (1) gives us that

c ∈
⋂2ki
`=ki+1 ψ3(G; aij(`)).

By the ki-inconsistency of row i, both

ψ1(x; aij) ∧
ki∧
`=1

ψ3(x; aij(`)) ∧
ki∧
`=1

ψ2(x; aij(`))

and

ψ1(x; aij) ∧
2ki∧

`=ki+1

ψ3(x; aij(`)) ∧
2ki∧

`=ki+1

ψ2(x; aij(`))

are inconsistent. So by formula (3) above,

ψ1(x; aij) ∧ ψ3(x; aij) ∧
2ki∧
`=1

ψ2(x; aij(`))

is inconsistent, as desired. �X

Note that the Claim just proved implies that there must be at least one
literal occurring in the conjunction ψ2(x; y) (as we achieve inconsistency by
only varying the parameters in ψ2).

Now suppose that ¬θ(x; y) is any literal of Type (II) or (IV) occurring in
ψ2(x; y), where θ(x; y) is an atomic formula. We will establish the following
claim, which will contradict our minimality assumption on ϕi(x; yi) and finish
the proof of Proposition 4.2:

Claim. If ψ̂2(x; y) is the smaller conjunction obtained by removing ¬θ(x; y)
from ψ2(x; y), then

{ψ1(x; aij) ∧ ψ̂2(x; aij) ∧ ψ3(x; aij) : j ∈ Q}

is inconsistent.

Proof. Fix any j ∈ Q. By the previous Claim, there is a finite F ⊆ Q \ {j}
such that

ψ1(x; aij) ∧ ψ3(x; aij) ∧
∧
j′∈F

ψ2(x; aij′)

is inconsistent. Now by the fact that the literals in ψ2(x; aij) are variables of
Type (II) or (IV) and thus define cosets, it follows that if j′ 6= j, then θ(x; aij)
implies ¬θ(x; aij′), and hence

ψ1(x; aij) ∧ ψ3(x; aij) ∧ θ(x; aij) ∧
∧
j′∈F

ψ̂2(x; aij′)
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is also inconsistent. This means that the formula

ϕi(x; aij) = ψ1(x; aij) ∧ ψ2(x; aij) ∧ ψ3(x; aij)

is implied by

ψ1(x; aij) ∧ ψ3(x; aij) ∧ ψ̂2(x; aij) ∧
∧
j′∈F

ψ̂2(x; aij′). (4)

Now pick any family of pairwise disjoint subsets F1, . . . , Fki of Q \ {1, . . . , ki}
such that |F`| = |F | for every ` and let F ′ = F1 ∪ . . . ∪ Fki ∪ {1, . . . , ki} and
consider ∧

j∈F ′
ψ1(x; aij) ∧ ψ̂2(x; aij) ∧ ψ3(x; aij). (5)

If we let

ξj(x) = ψ1(x; aij) ∧ ψ3(x; aij) ∧ ψ̂2(x; aij) ∧
∧
j′∈Fj

ψ̂2(x; aij′)

for j ∈ {1, . . . , ki}, then the formula (5) implies the formula ξ1(x) ∧ . . . ∧ ξki .
By previous remarks and indiscernibility, this in turn implies

ki∧
j=1

ϕi(x; aij)

which is inconsistent. Thus we have a finite inconsistent conjunction of formulas

of the form ψ1(x; aij) ∧ ψ̂2(x; aij) ∧ ψ3(x; aij) as desired. �X

Thus the previous claim shows that if a literal of the form ¬θ(x, y) of ei-
ther Type (II) or (IV) occurs in ψ2(x, yi) it can be deleted from ψ2(x, yi) and
inconsistency is preserved. This violates the minimality of ϕi(x, yi) and hence
no such literal occurs.

This finishes the proof of Proposition 4.2. �X

Lemma 4.3. There is at most one i ∈ {1, . . . , n} such that row i consists of a
conjunction of literals of Type (III).

Proof. Since literals of Type (III) define convex sets, this follows by the same
argument as was used in Theorem 4.1 of [4]; for clarity, we reproduce the
argument here.

Suppose that the formula ϕi(x; yi) in Row i is a conjunction of literals of
Type (III). Each instance of a literal of Type (III) defines a convex set, so each
formula ϕi(x; aij) defines a convex set. The intersection of a family F of convex
sets in a linearly ordered structure is nonempty if and only if the intersection
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of any two sets from F is nonempty, so by indiscernibility and ki-inconsistency,
the set {ϕi(x; aij)} is 2-inconsistent.

Now assume, towards a contradiction, that both the formulas ϕi1(x; yi1)
in Row i1 and the formulas ϕi2(x; yi2) in Row i2 are conjunctions of literals
of Type (III). By the preceding paragraph, both rows are 2-inconsistent, and
therefore define bounded, pairwise disjoint convex subsets of G. Suppose that
j1, j2 ∈ Q are chosen such that ϕi1(G; ai1,j1) < ϕi1(G; ai1,j2), meaning that
each element of the first set precedes every element of the second in the linear
ordering, and likewise j′1, j

′
2 ∈ Q are such that ϕi2(G; ai2,j′1) < ϕi2(G; ai2,j′2).

Now ϕi1(G; ai1,j2)∩ϕi2(G; ai2,j′1) contains some element b (by the definition of
an inp-pattern), and therefore our assumptions imply that

ϕi1(G; ai1,j1) < b < ϕi2(G; ai2,j′2).

But this contradicts the requirement that ϕi1(G; ai1,j1)∩ϕi2(G; ai2,j′2) be nonem-
pty since it is the intersection of sets from two different rows of the inp-pattern.

�X

Next, we further simplify the literals of Type (I) which appear as rows in
our inp-pattern.

Lemma 4.4. Without loss of generality, each formula ϕi(x; y) of Type (I)
which appears in the inp-pattern is of the form

x ≡p`,α t(y)

for some singular prime p, ` ∈ N, and some Loag-term t(y).

Proof. Suppose the formula in the i-th row is kx ≡m,α t(yi).

Claim. Without loss of generality, m = p` for some singular prime p.

Proof. Note that if m = m1m2 with m1,m2 relatively prime, then

kx ≡m,α t(aij)⇔ (kx ≡m1,α t(aij) ∧ kx ≡m2,α t(aij)) .

(This statement is simply a version of the Chinese remainder theorem; see
Lemma 2.7 of [3].) Thus kx ≡m,α t(aij) is equivalent to a conjunction of con-
gruences of the form kx ≡p`,α for prime powers p`. For the ith row to be
inconsistent, there must be some such prime power p` such that {kx ≡p`,α
t(aij) : j ∈ Q} is inconsistent; then it is clear that p must be a singular prime,
and that we may replace the ith row with these formulas. �X

Claim. Without loss of generality, p does not divide k.
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Proof. Suppose that p|k. Since each formula in the inp-pattern is consistent,
t(aij) ∈ pG + Gα for every j ∈ Q. Also, we may extend the tuples aij in
the indiscernible sequence if necessary so that they include elements a′ij ∈ aij
such that t(aij) ∈ pa′ij + Gα. (To preserve the indiscernibility first add the
new elements a′ij if necessary then to obtain a new array and then argue once
again as in [1, Proposition 6] to obtain on indiscernible array with the same
properties.)

Note that p` cannot divide k since otherwise the formula kx ≡p`,α t(aij)
would be either always true or always false (independently of the value of j) and
this could not form the row of an inp-pattern. We assert that for any x ∈ G,

kx ≡p`,α t(aij)⇔ (k/p)x ≡p`−1,α a
′
ij

and the Claim follows by applying this repeatedly until no factors of p in
k remain. To see why the assertion is true, suppose on the one hand that
kx ≡p`,α t(aij); then kx ≡p`,α pa′ij , and so

p
(
(k/p)x− a′ij

)
∈ Gα + p`G.

So we can write

p
(
(k/p)x− a′ij

)
= g + p`h

with g ∈ Gα and h ∈ G. Then g is p-divisible, and furthermore g = pg0 for
some g0 ∈ Gα by Fact 2; thus

p
(
(k/p)x− a′ij

)
= p(g0 + p`−1h)

⇒ (k/p)x− a′ij = g0 + p`−1h,

and so (k/p)x ≡p`−1,α a
′
ij as desired. Conversely, if

(k/p)x− a′ij = g + p`−1h

for g ∈ Gα and h ∈ G, then multiplying by p gives

kx− t(aij) +Gα = p`h+Gα,

and so kx ≡p`,α t(aij). �X

Notice that the preceding claim and its proof only relied on the syntactic
form of the formula not on the properties of a specific instance of the formula.

Finally, we have reduced to the case of a formula kx ≡p`,α t(aij) where
gcd(p`, k) = 1. Pick integers r, s such that rp` + sk = 1. We claim that for any
x ∈ G,

kx ≡p`,α t(aij)⇔ x ≡p`,α s · t(aij),
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completing the proof of Lemma 4.4. On the one hand, if kx ≡p`,α t(aij) and

kx− t(aij) = g + p`h

with g ∈ Gα and h ∈ G, then

skx− s · t(aij) = sg + p`sh

⇒ (1− rp`)x− s · t(aij) = sg + p`sh

⇒ x− s · t(aij) = sg + p`(sh+ rx),

so x ≡p`,α s · t(aij). On the other hand, if x ≡p`,α s · t(aij) and

x− s · t(aij) = g + p`h

with g ∈ Gα and h ∈ G, then

kx− ks · t(aij) = kg + p`kh

⇒ kx− (1− rp`)t(aij) = kg + p`kh

⇒ kx− t(aij) = kg + p`(kh− rt(aij)),

so kx ≡p`,α t(aij). �X

Lemma 4.5. Suppose that two different rows of the inp-pattern, Row i and
Row i′, consist of Type (I) formulas

x ≡p`,α t(yi)

and
x ≡p`′ ,α′ t

′(yi′)

respectively, with the same singular prime p.

Then if Gα ⊆ Gα′ , there is some β ∈ Sp such that α ≤ β < α′.

Proof. Recall that the convex subgroups of G are linearly ordered by inclusion.
First note that ` < `′, since if `′ ≤ `, we would have

(Gα + p`G) ⊆ (Gα′ + p`
′
G)

and it wold be impossible to form two rows of an inp-pattern with the relations
≡p`,α and ≡p`′ ,α.

Now pick c ∈ G such that

c ≡p`,α t(ai,0) ∧ c ≡p`′ ,α′ t
′(ai′,0),

and pick d ∈ G such that

d ≡p`,α t(ai,1) ∧ d ≡p`′ ,α′ t
′(ai′,0).
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Then

c− d ∈ (Gα′ + p`
′
G) \ (Gα + p`G) ⊆ (Gα′ + p`G) \ (Gα + p`G),

and thus
Gα ⊆ Hp`(c− d) ( Gα′ .

To finish the proof of Lemma 4.5, we just have to observe that Hp`(c−d) is
a subgroup named by a sort in Sp. This follows from Lemma 2.2(1) of [3], but
we recall the proof here for the sake of completeness. Let s ∈ N be maximal
such that c− d ∈ Hp`(c− d) + psG. By definition, s < `. Write c− d = b+ psb′

for some b ∈ Hp`(c − d) and b′ ∈ G, and we claim that Hp`(c − d) = Hp(b
′).

On the one hand, b′ is not an element of Hp`(c− d) + pG since, otherwise, we
would have c− d ∈ Hp`(c− d) + ps+1G, contradicting the maximality of s. On
the other hand, if H is any convex subgroup strictly larger than Hp`(c − d),
then

b+ psb′ = c− d ∈ H + p`G ⊆ H + ps+1G,

so, psb′ ∈ H + ps+1G, and therefore b′ ∈ H + pG, as desired. �X

Proof of Theorem 1.2: Suppose that the set Psing of singular primes is finite
and that Sp is finite for each p ∈ Psing, and that we have an inp-pattern of
depth n in a single variable x satisfying all of the assumptions above.

Then at most one row consists of a conjunction of Type (III) formulas, and
all other rows consist of single Type (I) formulas of the form x ≡p`,α t(aij) for
some p ∈ Psing. By Lemma 4.5, for each singular prime p, there are at most
|Sp| rows in our inp-pattern. Therefore the total depth of the inp-pattern is at
most

1 +
∑

p∈Psing

|Sp|

and, in particular, the dp-rank of G is finite. �

5. Example

5.1. Optimality of the upper bound in Theorem 1.2

For any prime p, let

Z(p) = {a
b

: a, b ∈ Z, b 6= 0, gcd(b, p) = 1}.

Fix some countably infinite subset B ⊆ R such that 1 ∈ B and the elements of
B are linearly independent over Q, and let Gp be the ordered subgroup of R
consisting of all finite sums a1b1 + . . . + akbk such that ai ∈ Z(p) and bi ∈ B.
The essential properties of Gp are that it is an Archimedean ordered abelian
group, [Gp : pGp] =∞, and for any prime q 6= p, qGp = Gp.
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For j ∈ ω\{0}, we let Gjp stand for the direct sum of j copies of Gp, ordered

lexicographically. One can readily check that Gjp has p as its unique singular

prime. One may also check that the dp-rank of Gjp (in Loag) is j + 1, although
this is not necessary for the ensuing proposition and in fact follows from its
proof.

Proposition 5.1. For any finite sequence of elements k0, . . . , km−1 ∈ ω \ {0},
let p0, . . . , pm−1 denote the first m prime numbers and let

G = Q⊕
m−1⊕
i=0

Gkipi ,

ordered lexicographically (so that the first coordinate in Q takes precedence).
Then the singular primes for G are p0, . . . , pm−1, for each such pi the cardi-
nality of Spi is ki, and the dp-rank of G is 1 +

∑m−1
i=0 ki.

Proof. The fact that p0, . . . , pm−1 are the singular primes for G is immediate.
On the one hand, for any i < m, if we let

Hi =
⊕
j>i

Gkjpj ,

then the sort Spi consists of names for the convex subgroups

0, Gpi ⊕Hi, G
2
pi ⊕Hi, . . . , G

ki−1
pi ⊕Hi

(as can be checked by the definition of the groups Hpi(a) as a simple exercise);
thus |Spi | = ki, and since p0, . . . , pm−1 are all the singular primes of G, the

fact that the dp-rank of G is less than or equal to 1 +
∑m−1
i=0 ki follows from

Theorem 1.2.

On the other hand, to get the opposite rank inequality, we just need to
exhibit an inp-pattern of depth 1 +

∑m−1
i=0 ki in G. To accomplish this, for any

i ∈ {0, . . . ,m − 1} and any j ∈ {0, . . . , ki − 1}, pick elements {ci,j,k : k ∈
ω} ⊆ pjiGpi which represent distinct cosets of pj+1

i Gpi and let ei,j,k ∈ G be the
element whose coordinate in the jth copy of Gpi (counting from the right) is
ci,j,k and all of whose other coordinates are equal to 0.

Finally, we can construct an inp-pattern as follows: for each i ∈ {0, . . . ,m−
1} and each j ∈ {1, . . . , ki}, construct a row of formulas

ϕi,j(x; ei,j,k) := x ≡pj+1
i αi,j

ei,j,k

where αi,j is an element in the sort Spi representing the convex subgroup
Gj−1
pi ⊕ Hi, unless j = 1 in which case we let αi,j be a name for the trivial

subgroup {0}. The final row in the inp-pattern will consist of pairwise disjoint
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intervals ak < x < bk (for k ∈ ω) constructed by first picking elements a0
0 <

b00 < a0
1 < b01 < . . . in Q and then letting ak, bk be elements whose Q-coordinate

is a0
k (or b0k, respectively) and all of whose other coordinates are equal to zero.

It is immediate that each row of the pattern described above is 2-inconsistent,
and all that is left is to explain why, given any k ∈ ω and any choice of function
η : A → ω, where A is the set of all pairs (i, j) with i ∈ {0, . . . ,m − 1} and
j ∈ {1, . . . , ki}, there is an element d ∈ (ak, bk) which satisfies

d ≡pj+1
i ,αi,j

ei,j,η(i,j)

for all pairs (i, j) ∈ A. For this, we may pick ck ∈ Q such that ak < ck < bk,
let dk ∈ G be such that its Q-coordinate is ck and all of its other coordinates
are 0, and let

d = dk +
∑

i<m,j<ki

ei,j,η(i,j).

We leave it as an exercise to the reader to verify that this element d satisfies
all the required formulas. �X
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