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Abstract. In this paper we show a method to characterize logical matrices
by means of a special kind of structures, called here discriminant structures
for this purpose. Its definition is based on the discrimination of each truth-
value of a given (finite) matrix M = (A, D), w.r.t. its belonging to D. From
this starting point, we define a whole class SM of discriminant structures.
This class is characterized by a set of Boolean equations, as it is shown here.
In addition, several technical results are presented, and it is emphasized the
relation of the Discriminant Structures Semantics (D.S.S) with other related
semantics such as Dyadic or Twist-Structure.
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Resumen. En este art́ıculo mostramos un método para caracterizar matrices
lógicas por medio de una clase especial de estructuras, llamadas aqúı estruc-
turas discriminantes. Su definición es basada en la discriminación de cada
valor de verdad de una matriz (finita) M = (A, D) dada, con respecto a su
pertenencia a D. Con este punto de partida, definimos toda una clase SM

de estructuras discriminantes. Esta clase es caracterizada por un conjunto de
ecuaciones Booleanas, según aqúı se indica. Además, son demostrados diver-
sos resultados técnicos y se enfatiza la relación de la Semántica de Estruc-
turas Discriminantes (D.S.S) con otras semánticas relacionadas tales como las
Semánticas Diádicas o las Semánticas de Estructuras Twist.

Palabras y frases clave. Lógica Matricial; lógicas n-valuadas; Estructuras Dis-
criminantes.
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1. Preliminaries

An interesting point of view against semantics based on many truth-values was
established by R. Suszko in [13]. According to his opinion, it would be more
faithful, under a semantic perspective, to consider just two truth-values and
to obtain some new kind of interpretation from the involved formulas to this
“new” values (by the way, in this case the interpretations suggested do not need
to be homomorphisms). Thus, the truth-values of a given matrix are merely
reference values (which should not be confused with truth-ones).

Following this idea, several researchers have intended to “pass from” many-
valued matrices to other structures that have as basis just two truth-values.
A frequent underlying idea that guides some studies about these topics is the
following: the truth-values of a matrix M = (A, D) can be often separated (or
discriminated), according to its belonging to D, the set of distinguished truth-
values of M . Moreover, this motivation was already applied in the literature
(see [12], [1] or [2], for instance).

Based on the previous motivations, in this work we present a kind of rep-
resentation of many-valued matrices, in such a way that every involved truth-
value can be “codified” by tuples of 0′s or 1′s. So, for every matrix M = (A, D)
admitting this codification, the support of its underlying algebra A can be un-
derstood as a subset of 2t, for a suitable t. In addition, this characterization of
M induces a whole class SM of structures (which will be called “discriminant
structures”, here). Every member of SM can be considered as a C-matrix, in-
deed. But the key point along this work is that every discriminant structure
of SM is defined by means of certain Boolean equations, which are determined
by the original representation of M . Moreover, the class SM defines in a nat-
ural way the consequence relation |=SM

(which, in an informal way, will be
frequently mentioned as the “Discriminant Structure Semantics”, or D.S.S.,
associated to M). Moreover, for every formula α, |=SM

α iff |=M α, as we shall
demonstrate later.

Summarizing, the representation of a given matrix M = (A, D) showed here
induces a new kind of semantics that can be considered a sort of “middle point”
between the matrix semantics and the algebraic one (in the sense that |=SM

consists of a class of matrices characterized by equations) that, in addition,
is weakly adequate w.r.t. |=M . Along this paper we will show these results
and another ones, that motivate and provide a reasonable initial analyisis of
the scope of D.S.S. With this in mind, the organization of this paper is as
follows: in the sequel we will fix the definitions and notation to be used along
this article. Section 2 will explain, in informal terms for the moment, the way
that D.S.S. behaves, by means of some clarifying examples. All this discussion
will be extended (in a more technical mode) in Section 3. Indeed, it is in
this section where D.S.S. will be presented in a formal way, together with
the proof of the main technical results. In Section 4 the following interesting
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DISCRIMINANT STRUCTURES 187

fact will be established: not every finite matrix admits Discriminant Structure
Semantics. This will suggest some lines of research that we shall discuss later.
Finally, in the last section we will compare our proposed semantics to other
ones, related with the approach of D.S.S. in some sense, as Dyadic Semantics
(already indicated) and Twist-Structure Semantics. We will conclude this paper
with some comments about possible future work.

With respect to the basic notation and definitions that will be used in this
paper, take into account that we are studying different ways of definition of
a same consequence relation. So, we choose to use the traditional formalism
of Abstract Logic, applied mainly to the particular case of consequence rela-
tions defined by matrices. For that, we are based mainly on the point of view
developed in [3], with some little notational changes, when necessary.

Definition 1.1. We denote by ω = {0, 1, 2...} the set of natural numbers; a
signature is a set C= {ci}i∈I together with a function ρ : C → ω. Here,
every element c ∈ C will be called a connective of C, being ρ(c) the arity of
c. Given a signature C, the sentential language determined by C is the
absolutely free algebra generated by C over a countable fixed set V (this set
will be called the set of atomic formulas of L(C)).

Every language L(C) can be understood as a particular, paradigmatic case
of a C-algebra, whose formal definition is as follows:

Definition 1.2. Given a signature C, a C-algebra is a pair A = (A,CA), such
that every connective c of arity ρ(c) has associated an operation cA ∈ CA, with
the same arity of c. The set A will be called the support of A1. Note that
a C-algebra is, actually, any algebra similar to L(C):= (L(C), C) (in this last
case CL(C) is being identified with C, indeed).

Along this paper we will work with several signatures. However, a special
signature (the Boolean one) deserves special attention:

Definition 1.3. The Boolean signature is the set C = {∨,∧,−, 1, 0}, with
obvious arities. Every C-algebra B = (B,CB) will be called a Boolean al-
gebra if and only if it is, in addition, a bounded, distributive, complemented
lattice. In this context, it can be defined the “secondary operation”→ as usual:
a1 → a2:= −a1 ∨ a2. As a particular case of a Boolean algebra, it will be very
used in this paper the canonical two-element algebra 2 = (2, C2), with 2 =
{0, 1}. By the way, every function f : 2r → 2, with r ∈ ω, will be called simply
a 2-Boolean function.

Recall here this reformulation of the Conjunctive Normal Form Theorem,
which will be used later:

1If the context is clear enough, we will indicate cA simply as c (and the set CA will be
denoted simply as C).
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188 Vı́CTOR FERNÁNDEZ & CARINA MURCIANO

Proposition 1.4. Every 2-Boolean function f : 2n → 2 can be identified with
a function f ′ : 2n → 2 (the conjunctive normal form of f , indeed) in such a
way that f ′ is defined using the functions of C2.

At this point, note that any signature C plays (at least) two roles: on
one hand, it determines sentential languages; on the other hand it defines C-
algebras. Of course, these notions are strongly related. For instance, C-algebras
are the basis of sentential logics that are defined by means of logical matrices.
We recall both definitions in the sequel.

Definition 1.5. An abstract (sentential) logic is a pair L = (C,`), where C
is a signature and ` ⊆ ℘(L(C))×L(C) is a consequence relation for L(C).
That is, it satisfies, for every Γ∪ {α} ⊆ L(C), extensiveness, monotonicity
and transitivity (we omit these well-known definitions).

Definition 1.6. Given a signature C, a C-matrix is a pair M = (A, D),
where A = (A,CA) is a C-algebra and D ⊆ A. The elements of D are called
the designated values of M . In the context of C-matrices, any t-ary operation
cA ∈ CA will be called an A-truth-function. Besides that, the support of
M is just the support A of A.

Every C-matrix defines a consequence relation for L(C), as usual:

Definition 1.7. Let M = (A, D) be a C-matrix. A M-valuation is a homo-
morphism v : L(C)→ A. The consequence relation induced by M is |=M ,
defined in the following way: Γ |=M ϕ iff, for each valuation v, if v(Γ) ⊆ D, then
v(ϕ) ∈ D. We say that ϕ is tautology (relatively to M) iff ∅ |=M ϕ (denoting
this as |=M ϕ). The logic induced by M is the pair L = (C, |=M ). If the
domain of a C-matrix M is finite we will say that M is a n-valued matrix and,
by extension, that L = (C, |=M ) is a n-valued logic. This definition can be
generalized to classes: if K is a class of C-matrices, the consequence relation
|=K is given by: Γ |=K ϕ iff Γ |=M ϕ for every M in K.

Turning back to C-matrices, we will also use the following notions:

Definition 1.8. Given two C-matrices M1 = (A1, D1) and M2 = (A2, D2),
we say that h : A1 → A2 is a matrix homomorphism from M1 to M2

iff it is an homomorphism (in the algebraic sense) from A1 to A2 verifying
additionally that h(D1) ⊆ D2. If, in addition, h is surjective, we will say that
it is an matrix epimorphism. On the other hand, h : A1 → A2 is a matrix
isomorphism (between M1 and M2) iff it is an isomorphism (in the algebraic
sense) verifying additionally that h(D1) = D2 and h(A1\D1) = A2\D2. Notice
that, if M1 and M2 are isomorphic C-matrices, then |=M1 = |=M2 .

We conclude this section with some comments about notation: the metavari-
ables referred to formulas will be denoted by greek lowercase letters (with
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subscripts, if neccesary). In particular, we will use the letters α, α0, α1, . . . ,
only in the denotation of atomic formulas. The expression β = β(α1, . . . , αn)
means that the atomic formulas of β belong to the set {α1, . . . , αn}. If β =
β(α1, . . . , αn), the expression β(α1/γ1, . . . , αn/γn) denotes the uniform substi-
tution, in β, of the atomic formulas αi by the formulas γi (with 1 ≤ i ≤ n). If
there is no risk of confusion, this expression will be abbrevied to β(γ1, . . . , γn).
With respect to notation related to algebras: the elements of any support A
will be denoted by the letters {a0, a1, a2, . . . } (usually as reference to “specific
elements of A”), or by the letters {x0, . . . , xn, . . . y0, y1, . . . } (as an informal
notation for variables ranging on A). In addition, the symbols ~x and ~a de-
note tuples (for instance, ~a:=(a1, . . . , at) ∈ At). In this context, the symbol
πi denotes the ith projection of any tuple. Besides that, the symbol ∼= will
denote isomorphism (between algebras or between matrices, depending on the
context). Any other definition or notation (or, even, notational abuse or con-
vention) to be used in this paper will be indicated when needed.

2. Discriminant Structure Semantics: some motivating examples

We begin our definition of Discriminant Structure Semantics with several ex-
amples that will help us to understand some motivations behind the formal
definition of D.S.S. By the way, some of these examples will be used with other
purposes later. In all these examples the signature to be used will be the same:
C? = {⊃,¬}, with obvious arities.

First of all, we give the definition of a Discriminant Structure Semantics for
the logic I1P0 (better known simply as the “weakly - intuitionistic logic I1 ”),
defined in [11].

Definition 2.1. The logic I1P0 = (C?, |=[1,0]) is defined by means of the
C?-matrix M[1,0] = (A[1,0], D[1,0]), being D[1,0]={T0}, and being A[1,0] the C?-
algebra whose support is A[1,0]:={F0, F1, T0}, and whose truth-functions ¬ and
⊃ are indicated in the tables below:

⊃ F0 F1 T0

F0 T0 T0 T0

F1 T0 T0 T0

T0 F0 F0 T0

¬
F0 T0

F1 F0

T0 F0

For a better understanding of M[1,0], the truth-values F0 and T0 are classical
truth and falsehood, respectively; on the other hand, F1 is an “intermediate
value of falsehood”.

We will characterize the tautologies of I1P0 using discriminant structures,
whose definition will be given in the sequel. This characterization (with some
little changes) was shown in [8]. For our purposes we are based on Boolean
algebras of the form B = (B,CB) (recall Definition 1.3):
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190 Vı́CTOR FERNÁNDEZ & CARINA MURCIANO

Definition 2.2. The discriminant structure (of type [1, 0]) associated
to a given Boolean algebra B (the d.s. of type [1, 0] associated to B, for
brevity) is the C?-matrix R[1,0](B) = (A

′

[1,0](B), D
′

[1,0](B)), being A
′

[1,0](B)
the C? algebra such that:

(1) Its support is A
′

[1,0](B) = {(x0, x1) ∈ B ×B : x0 ∧B x1 = 0B}.

(2) (x0, x1) ⊃ (y0, y1) := (x0 →B y0,−B(x0 →B y0)).

(3) ¬(x0, x1) := (x1,−B x1).

In addition, the set of designated values ofR[1,0](B) isD
′

[1,0](B) = {(1B, 0B)}.
Of course, ∧B, −B and →B are the operations, with obvious behavior,

defined in the context of every Boolean algebra B.

The class of all the discriminant structures of type [1, 0] will be denoted by
S[1,0]. This class will be called the Discriminant Structure Semantics for
I1P0 (The D.S.S. for I1P0, for short). Considering this definition, we define
|=S[1,0] ⊆ ℘(L(C?))×L(C?) as being the matrix consequence relation indicated
in Definition 1.7 (for classes of matrices). So, Γ |=S[1,0] α iff, for every d. s.

R[1,0](B) it is valid that, for every R[1,0](B)-valuation w : L(C?) → A
′

[1,0](B),

w(Γ) ⊆ {(1B, 0B)} implies w(α) = (1B, 0B).

About the previous definition it can be easily proved that:

Proposition 2.3. The operations ⊃ and ¬ are well defined. That is, every set
A

′

[1,0](B) is closed by applications of ⊃ and ¬.

Definition 2.4. The canonical d. s. of type [1, 0] is the d. s. R[1,0](2). From
Definition 2.2 we have that, in this structure, the functions ⊃ and ¬ behave as
depicted in the following tables.

⊃ (1, 0) (0, 0) (0, 1)

(1, 0) (1, 0) (0, 1) (0, 1)

(0, 0) (1, 0) (1, 0) (1, 0)

(0, 1) (1, 0) (1, 0) (1, 0)

¬
(1, 0) (0, 1)

(0, 0) (0, 1)

(0, 1) (1, 0)

It should be clear that R[1,0](2) ∼= M[1,0], cf. Definition 1.8. Besides that, it
is easy to prove the following:

Proposition 2.5. The discriminant structures of S[1,0] verify:

(a) If B1 and B2 are isomorphic Boolean algebras, then R[1,0](B1) and R[1,0](B2)
are isomorphic matrices.

(b) Every R[1,0](B)-valuation w : L(C?)−→A′

[1,0](B) determines a pair of (non-

homomorphic) functions (w0, w1) (being wi:=πi ◦ w) such that, for every ϕ ∈
L(C?), w(ϕ) = (1B, 0B) iff w0(ϕ) = 1B.
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In the sequel, we will prove (in a sketched way; see the complete proofs in
[8]) that |=[1,0] ϕ iff |=S[1,0] ϕ, for every ϕ ∈ L(C?). For that, we will make use
of some traditional results about prime filters of Boolean algebras:

Proposition 2.6. Let B be any Boolean algebra. Then:

(a) For every x 6= 1B, there exists a prime filter ∇ such that x /∈ ∇.

(b) For every prime filter ∇ of B, the binary relation ≡∇ defined by: x ≡∇ y iff
{x→B y, y →B x} ⊆ ∇ is a congruence, and the quotient B/∇ (whose support
is B/∇ = {∇,∆}) is isomorphic to the Boolean algebra 2, being ∆:=B − ∇
the prime ideal associated to ∇.

From Propositions 2.5(a) and 2.6(b) we have:

Corollary 2.7. For every Boolean algebra B and every prime filter ∇ ⊆ B,
R[1,0](B/∇) ∼= R[1,0](2), where the operations in the algebra A

′

[1,0](B/∇) are

given as in Definition 2.4 (replacing 1 by ∇ and 0 by ∆).

Proposition 2.8 (Trichotomy). Let B be any Boolean algebra and let ∇ be
any prime filter of B. Then, for every pair (x0, x1) ∈ A′

[1,0](B), one and only
one of the following conditions is valid:

• x0 ∈ ∇ and x1 ∈ ∆.

• x0 ∈ ∆ and x1 ∈ ∆.

• x0 ∈ ∆ and x1 ∈ ∇.

Proof. It follows from basic properties of prime filters and Definition 2.2. �X

Proposition 2.9. Every prime filter ∇ of a Boolean algebra B induces a matrix
epimorphism E∇ : R[1,0](B) → R[1,0](B/∇) such that E∇(x0, x1) = (∇,∆) iff
x0 ∈ ∇.

Proof. For every (x0, x1) ∈ R[1,0](B), we define E∇(x0, x1):= (e∇(x0), e∇(x1)),
being e∇(xi):= x∇, the equivalence class of xi in B/∇. By Proposition 2.8, E∇
is a well-defined surjective function. Besides, x0 ∈ ∇ iff x0∇ = ∇ iff E∇(x0, x1)
= (∇,∆) (again, by Proposition 2.8). This also implies that E∇ preserves the
designated values. Finally, it is not difficult to prove that E∇ is homomorphism.
That is:

(A): E∇(¬(x0, x1)) = ¬(E∇(x0, x1)).

(B): E∇((x0, x1) ⊃ (y0, y1)) = E∇(x0, x1) ⊃ E∇(y0, y1).

So, from (A) and (B), the proof is completed. �X

Theorem 2.10. For every ϕ ∈ L(C?), |=S[1,0]ϕ iff |=[1,0] ϕ.
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Proof. On one hand, sinceM[1,0]
∼= R[1,0](2), we get that |=S[1,0]ϕ implies |=[1,0]

ϕ. Conversely, suppose that there exists a Boolean algebra B and a R[1,0](B)-

valuation w : L(C?)→ A
′

[1,0](B) such that w(ϕ) 6= (1B, 0B). Then, w0(ϕ) 6= 1B
(see Proposition 2.5(b)). So, there is a prime filter ∇ ⊆ B with w0(ϕ) /∈ ∇, by
Proposition 2.6(a). From this and Proposition 2.9, there exists an epimorphism
E∇ : A

′

[1,0](B)→ A
′

[1,0](B/∇), with E∇(w(ϕ)) 6= (∇,∆) (because w0(ϕ) /∈ ∇).

So, the R[1,0](B/∇)-valuation E∇ ◦ w : L(C?)−→A′

[1,0](B/∇) verifies (E∇ ◦
w)(ϕ) 6= (∇,∆), the designated value of R[1,0](B/∇). Thus, 6|=[1,0] ϕ, since

R[1,0](B/∇) ∼= R[1,0](2) ∼= M[1,0]. This concludes the proof. �X

A generalization of I1P0, and simultaneously of the paraconsistent logic
I0P1 (which is traditionally known as P1, see [10]) is the logic I2P1, presented
in [4].

Definition 2.11. The logic I2P1 = (C?, |=[2,1]) is defined by means of the C?-
matrix M[2,1] = (A[2,1], D[2,1]), with D[2,1]={T0, T1} and such that the support
of A[2,1] is A[2,1]:= {F0, F1, F2, T0, T1}. In addition, the truth-functions ¬ and
⊃ here behave as follows:

⊃ F0 F1 F2 T0 T1

F0 T0 T0 T0 T0 T0

F1 T0 T0 T0 T0 T0

F2 T0 T0 T0 T0 T0

T1 F0 F0 F0 T0 T0

T0 F0 F0 F0 T0 T0

¬
F0 T0

F1 F0

F2 F1

T1 T0

T0 F0

It can be obtained a Discriminant Structure Semantics for I2P1 following a
procedure similar to the one applied for I1P0.

Definition 2.12. For every Boolean algebra B, the d.s. (of type [2, 1]) asso-
ciated to B is the C?-matrix R[2,1](B) = (A

′

[2,1](B), D
′

[2,1](B)), where:

(1) The support of A
′

[2,1](B) is A
′

[2,1](B):=

{(x0, x1, x2) ∈ B3 : (−x0∧B−x1)∨B(−x1∧Bx2)∨B(x1∧B−B x2) = 1B}.

(2) (x0, x1, x2) ⊃ (y0, y1, y2) := (x0 →B y0,−B(x0 →B y0), x0 →B y0).

(3) ¬(x0, x1, x2) := (x1, x2,−B x2).

(4) D
′

[2,1](B):={(1B; 0B; 1B); (1B; 1B; 0B)}.
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We define, as in Definition 2.2, the class S[2,1] of all the discriminant struc-
tures of type (2, 1), which will be called the D.S.S. for I2P1. This class defines
|=S[2,1] , in a similar way to Definition 2.2. Moreover, it is possible to prove as
in Theorem 2.10:

Theorem 2.13. For every ϕ ∈ L(C?), |=S[2,1] ϕ iff |=[2,1] ϕ.

The proof of the theorem above is based, again, on the definition of a canon-
ical discriminant structure R[2,1](2) ∼= M[2,1] (recall Definition 2.4), whose sup-

port set is A
′

[2,1](2) = {(0, 1, 0); (0, 0, 1); (0, 0, 0); (1, 0, 1); (1, 1, 0)}. The isomor-
phism f between both matrices is defined by:

f(F0) = (0, 1, 0)

f(F1) = (0, 0, 1)

f(F2) = (0, 0, 0)

f(T0) = (1, 0, 1)

f(T1) = (1, 1, 0).

Remark 2.14. At this point it is reasonable to know which are the hidden
reasons that motivate, in Definitions 2.2 and 2.12, this kind of structures. As
a first approximation, let us pay attention to the operation ¬ in the matrix
M[1,0] (see Definition 2.2): if we consider that D[1,0] = {T0} we can see that,
when applied to every truth-value of M[1,0], ¬ verifies:

T0 ∈ D[1,0]; ¬T0 /∈ D[1,0].

This fact can be informally “codified” (interpreting “1” as “belonging to D[1,0]”,
and “0” otherwise), as T0 → 1, ¬T0 → 0. So, the value T0 is associated to the
pair (1, 0). With the same approach, we can associate F0 with the pair (0, 1),
and F1 with the pair (0, 0) (since ¬F1 = F0 /∈ D[1,0]). This interpretation allows

to define the support set A
′

[0,1](2), which will suggest the definition of every

support of the form A
′

[0,1](B), as we will see in the next section.

In the case of Definition 2.12, the truth-funcion ¬ cannot discriminate the
truth-values F1 and F2 (since nor ¬F1 nor ¬F2 belongs to D[2,1]). Anyway, if
¬ is applied in an iterated way, we obtain the following results:

F0 /∈ D[2,1]; ¬F0 = T0 ∈ D[2,1]; ¬¬F0 = F0 /∈ D[2,1]

F1 /∈ D[2,1]; ¬F1 = F0 /∈ D[2,1]; ¬¬F1 = T0 ∈ D[2,1]

F2 /∈ D[2,1]; ¬F2 = F1 /∈ D[2,1]; ¬¬F2 = F0 /∈ D[2,1]

T0 ∈ D[2,1]; ¬T0 = F0 /∈ D[2,1]; ¬¬T0 = T0 ∈ D[2,1]

T1 ∈ D[2,1]; ¬T1 = T0 ∈ D[2,1]; ¬¬T1 = F0 /∈ D[2,1].

In other words, the iteration of the application of ¬ suggests the definition of
the isomorphism showed right after Theorem 2.13, determining also in this case
the support of the canonical structure R[2,1](2).
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The previous examples show that, to obtain the “canonical discriminant
structure”, which is a special matrix, isomorphic to M[1,0] (resp. M[2,1]), we
will use the truth-function ¬, eventually iterated, that discriminate the truth
values of the matrix analized. However, this procedure cannot be applied in the
case of logics without negation, or even without any 1-ary truth-function. So,
it is necessary to adapt the previous idea to these logics and, in a more general
way, to every logic characterized by finite matrices. This will be developed in
the next section.

3. D.S.S: Abstract Definition and Some Results

Based on the construction for the D.S.S. for M[1,0] and for M[2,1], let us try
to explain in an informal way the process that will allow us to find a D.S.S of
a form SM for a given C-matrix logic M = (A, D). For that, according with
the ideas of the previous section, we would consider as a starting point the
map χ

D
: A−→2, the characteristic function referred to D (w.r.t. the universe

A). Besides that, to deal with iterations of functions, we will abbreviate the
composition of truth-functions f ◦ · · · ◦ f (k times) by fk. Of course, if k = 0,
then fk = id. With these conventions, the basis of a D.S.S. SM is the existence
of a discriminant pair for M , which is an adequate generalization of the truth-
function ¬ of the previous examples, as we shall see.

Definition 3.1. Given a C-matrix M = (A, D), a discriminant pair for M
is a pair (β,~a), where β = β(α0, α1, . . . , αm) ∈ L(C), ~a = (a1, . . . , am) ∈ Am
and the A-truth-function f(β,~a) : A → A, defined by f(β,~a)(x):=βA(x,~a)2, is
discriminant (by iterations). That is, there exists k ∈ ω such that the function
[χ

D
]k : A→ 2k+1 is injective where, for every x ∈ A.

[χ
D

]k(x) := [χ
D

(x), χ
D

(f(β,~a)(x)), χ
D

(f2
(β,~a)(x)), . . . , χ

D
(fk(β,~a)(x))].

Remark 3.2. It should be clear that, if β = β(α0), then we consider that ~a
is not effectively used. This is the case of the discriminant pairs for M[1,0] and
M[2,1]: for both logics we consider β = β(α0):= ¬(α0). So, f(β,~a)(x) = ¬x, as
it was suggested in Remark 2.14, actually. Indeed, note that the function f
showed there is precisely f(β,~a) and verifies, for both logics, the “discrimination
conditions” required in Definition 3.1. The only difference between the cases of
M[1,0] and M[2,1] is the number of iterations that is needed. Later in this section
we will see an example of a discriminant pair (β,~a) such that ~a is applied in
an effective way.

It is worth to anticipate here the following result: if a C-matrix M = (A, D)
admits a discriminant pair (β,~a), then it allows to obtain, in an implicit way:

2The expression βA(x,~a) should be interpreted, in the context of A, as the m+ 1 truth-
function βA(x, x1 . . . , xm) (associated to the formula β ∈ L(C)), in which the values for the
variables x1, . . . , xm are always replaced by ~a = (a1, . . . , am).
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• The form of the support set A
′

M (2) of a certain “canonical discriminant
structure”, which is a particular C-matrix that will be denoted by RM (2).

• In addition, (β,~a) determines the behavior of the truth-functions in the
C-algebra A

′

M(2) (which is the underlying algebra referred to RM (2)).

• Finally, (β,~a) suggests the definition of all the discriminant structures
(relative to M) that will conform a certain class SM (and a consequence
relation |=SM ), which is understood as the D.S.S. associated to M . More-
over, |=M ϕ iff |=SM ϕ, for every ϕ ∈ L(C).

To begin our proof of the results indicated above, it is necessary to deal in
a formal way with the languages referred to algebras (and, in particular, to
Boolean algebras, since they are the basis of the discriminant structures, as we
have seen). So, recall the notion of the (first order) Boolean equational language:

Definition 3.3. The (First Order) Boolean Equational language is the
first-order language with only a binary predicate symbol “=”, having as set
of function symbols the own set C = {∨,∧,−, 1, 0} (recall Definition 1.3). In
this language, the variable symbols will be indicated by x0, x1, . . . . In addition,
the set of logical symbols (that not should be identified with any symbol of
C) is {Z,Y,⇒, ¬̄}. This language will be indicated as FOBL. Every atomic
formula of this language will be called a Boolean equation (by the way, the
set of all the Boolean equations will be denoted by EqC ). Finally, an expression
eq1 Z eq2 Z · · · Z eqn ⇒ eq0, being eq0, . . . , eqn Boolean equations, is called a
Boolean quasi-equation.

Remark 3.4. The previous definitions are motivated by the fact that, by well-
known results of Universal Algebra, every Boolean equation (quasi-equation)
is valid in every Boolean algebra B if and only if it is valid in 2. This fact will
be widely used in the next proofs, as we shall see. Besides that, it is shown
in Definition 3.3 another use of the signatures: C is applied in the context of
FOBL to the definition of the function symbols of this language (and this is
the reason that motivates the differentiation of C w.r.t the logical symbols).
In addition, note the following notational abuse in the definition of FOBL: we
are using the same notation for the informal reference to Boolean algebras, as
it has been done until now, and for the Boolean Equational Language. So, the
“informal” notation x1, x2, . . . referred to variable elements of Boolean algebras
will be used too, in an formal way, to denote symbols of variables of FOBL.
This convention is applied also to the interpretation of the symbol “=”. On the
other hand (and considering the previous convention), recall that every term
τ=τ(x1, . . . , xn) of FOBL determines in every Boolean algebra B an n-ary
function τB : Bn → B in the usual way.

With respect to the relations between terms of FOBL and Boolean func-
tions, we remark this fact arisen from Definition 1.3 and Proposition 1.4:
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Definition 3.5. For every Boolean algebra B, the function f : Bn → B is C-
definable iff f can be expressed by an (iterathed) application of the functions
of CB .

Proposition 3.6. For every Boolean algebra B and every C-definable function
f : Br → B, there exists a term τf of FOBL such that τBf = f . Moreover, by

Proposition 1.4, every 2-Boolean function f : 2r → 2 determines a C-definable
function f ′ (the c.n.f of f) 3 and, therefore, a term τf ′=τf ′(x1, . . . , xn) of
FOBL such that τ2f ′ = f .

Proposition 3.7. Let r ∈ ω, and let S ⊆ 2r. Then S can be characterized (rela-
tively to 2r) by a Boolean equation eqS. That is, S = {~x ∈ 2r : ~x satisfies eqS }.

Proof. Just consider the characteristic function χS : 2r−→2: since χS is a 2-
Boolean function, it can be identified with f

′

S , the c.n.f. of χS , which determines
the term τf ′

S
of FOBL in such a way that τ2

f
′
S

= χS , by Proposition 3.6. The

equation that characterizes S is, actually, eqS : τf ′
S
(x1, . . . , xr) = 1. �X

Proposition 3.8. Let M = (A, D) be a C-matrix which admits a discriminant
pair (β,~a), by means of k-iterations, and let [χ

D
]k : A−→2k+1 be the function

obtained by (β,~a) (see Definition 3.1). Then there is a C-matrix M ′, whose
support is [χ

D
]k(A), such that M ′ ∼= M .

Proof. Define M ′ := (A′, D′), where the support of A′ is A′:=[χ
D

]k(A) and

D′:= [χ
D

]k(D). Since [χ
D

]k is injective, [χ
D

]k(A) is equipotent with A and

[χ
D

]k(D) is equipotent with D. Now, for every n-ary connective c ∈ C, define

cA′ : (A′)n−→A′, by: c′(x1, . . . , xn):= [χ
D

]k(cA([χ
D

]k
−1

(x1), . . . , [χ
D

]k
−1

(xn)).

This definition makes sense by the definition of A′, and since [χ
D

]k is injective.

From this, it easily follows that A′ ∼= A, and thus M ′ ∼= M . �X

Remark 3.9. Note here the following fact about A′: for every n-ary c ∈ C, the
truth-function cA′ : (A′)n −→ A′ can be “explained” componentwise. In other
words, for every 0 ≤ i ≤ k, there exists a truth-function f ci : 2n(k+1)−→2 de-
fined as f ci (~x1, . . . , ~xn):= πi(cA′(~x1, . . . , ~xn)) (where ~x1, . . . , ~xn ∈ 2k+1). In ad-
dition, every truth-function f ci can be identified with its c.n.f. f ci

′ : 2n(k+1)−→2.
This implies two facts: every function f ci determines a term τfc

i
′ of FOBL such

that τ2fc
i
′ = f ci ), because Proposition 3.6. On the other hand, the operations on

A′ can be defined now in this alternative way: for every n-ary c ∈ C, for every
set {~x1, . . . , ~xn} ⊆ A′, cA′(~x1, . . . , ~xn):= (f c0

′(~x1, . . . , ~xn), . . . , f ck
′(~x1, . . . , ~xn))

3The existence of a conjunctive normal form is not essential itself. The relevant point is
that f ′ is C-definable. We could also use disjunctive normal forms, for instance. Actually,
the d.s. for I1P0 and for I2P1 are based on formulas that are simplifications of the c.n.f.
suggested here.
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where f ci
′ : (A′)n(k+1)−→A′ are the respective c.n.f. of f ci , for every 0 ≤ i ≤ k.

This fact suggests the following definition:

Definition 3.10. Let M = (A, D) be a C-matrix admitting a discriminant
pair, and let eqA and eqD the equations that characterize [χ

D
]k(A) (resp.

[χ
D

]k(D)), cf. Proposition 3.7. For every Boolean algebra B, the discriminant

M-structure associated to B is the C-matrix RM (B) =(AM

′
(B), D

′

M (B)),

with D
′

M (B):={~x ∈ Bk+1 : ~x satisfies eqD}, and being A
′

M(B) the C-algebra

whose support is A
′

M (B) := {~x ∈ Bk+1 : ~x satisfies eqA} 4. In addition, for any

n-ary c ∈ C, the A
′

M(B)-truth-function cA′
M(B) : (A

′

M (B))n → A
′

M (B) is de-

fined as: cA′
M(B)(~x1, . . . , ~xn):= (f

′

0A
′
M(B)(~x1, . . . , ~xn), . . . , f

′

kA
′
M(B)(~x1, . . . , ~xn))

(for every {~x1, . . . , ~xn} ⊆ A
′

M (B)) where, for every 0 ≤ i ≤ k, f
′

iA
′
M(B) is an

abreviation of τB
fc′
i

(taking into account Remarks 3.9 and 3.4). In particular, the

discriminant structure RM (2) = (A
′

M(2), D
′

M (2)) will be called the canonical
discriminant M-structure. The class of all discriminant M -structures will
be denoted by SM , and it will be called the D.S.S. associated to M .

The following result establishes that the previous definition makes sense:

Proposition 3.11. For every C-matrix M and every Boolean algebra B, the
set A

′

M (B) is closed by the truth-functions cA′
M(B). That is, A

′

M(B) is well

defined as an algebra.

Proof. First of all note that our claim is valid for the particular case of the
Boolean algebra 2: indeed, its proof is given in an implicit way in Proposition
3.8. This fact can be interpreted in the following way, cf. Definition 3.10: for
every n-ary connective c, the algebra 2 satisfies simultaneously the set of
quasi-equations {qeci(~x1, . . . , ~xn)}1≤0≤k given by (for every 0 ≤ i ≤ k):

qeci(~x1, . . . , ~xn) := eqA(~x1) Z · · · Z eqA(~xn)⇒ eqA(τfc
i
′(~x1, . . . , ~xn)).

(where τfc
i
′ is given cf. Remark 3.9). Thus, every Boolean algebra B satisfies,

for every n-ary c ∈ C, the set of quasi-equations {qeci}, too. That is, A
′

M (B)
is closed by applications of cA′

M(B), for every c ∈ C. �X

Another (abstract) result, useful for the proof of the fundamental theorem
of this section, is similar to the one given in Proposition 2.5:

Proposition 3.12. The discriminant structures of SM verify:

(a) If B1
∼= B2, then RM (B1) ∼= RM (B2).

4If ~x satisfies eqD, then ~x satisfies eqA, too. Hence, D
′
M (B) ⊆ A

′
M (B).
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(b) Every RM (B)-valuation w : L(C)−→A′

M (B) defines (w0, . . . , wk), a k+1-

tuple of non-homomorphic functions wi : L(C)→ A
′

M (B), with wi:=πi◦w
(for every 0 ≤ i ≤ k).

Remark 3.13. Note that RM (2) is the C-matrix M ′ of Proposition 3.8, in-
deed. From this, Proposition 2.6 and Proposition 3.12 (a) we get that, for every
Boolean algebra B and every prime filter ∇ ⊆ B, B/∇ is a Boolean algebra
(which is isomorphic to 2) and so RM (B/∇) ∼= M ′.

As it is expected, the class SM determines a consequence relation on L(C):

Definition 3.14. The class SM defines the consequence relation |=SM
by

means of the “local consequence relations” |=RM (B), cf. Definition 1.7. That
is: if RM (B) is in SM , then Γ |=RM (B) ϕ iff, for every RM (B)-valuation w :

L(C)−→A′

M (B) such that w(γ) satisfies eqD for every γ ∈ Γ, it is valid that
w(ϕ) satisfies eqD. And |=SM

:=
⋂
|=RM (B) (with RM (B) ranging on SM ).

In the sequel we will prove the fundamental result of our paper, as we
have mentioned right after Remark 3.2. That is, |=M ϕ iff |=SM ϕ, for every
ϕ ∈ L(C). For that, we will need some technical results. First of all, realize
that every set of the form D

′

M (B) can be characterized in a simpler way:

Proposition 3.15. Let RM (B)=(A
′

M(B), D
′

M (B)) a discriminant structure

in SM . For every ~x = (x0, . . . , xk) ∈ A′

M (B), ~x ∈ D′

M (B) iff x0 = 1B.

Proof. First of all let us prove our claim for RM (2): let ~x=(x0, . . . , xk) ∈
A

′

M (2) = [χ
D

]k(A), by Remark 3.13. Suppose that ~x = (x0, . . . , xk) ∈ D′

M (2)

= [χ
D

]k(D). So, there is an unique b0 ∈ D such that [χ
D

]k(b0) = (x0, . . . , xk).
Then, [χ

D
(b0), χ

D
(f(β,~a)(b0)), χ

D
(f2

(β,~a)(b0)), . . . , χ
D

(fk(β,~a)(b0))] = (x0, . . . , xk).

Now, since χ
D

(b0) = 1 we have x0 = 1. On the other hand, if ~x = (x0, . . . , xn) /∈
D

′

M (2) = [χ
D

]k(D), then there is b1 ∈ A \D with [χ
D

]k(b1) = (x0, . . . , xk) and
therefore x0 = 0 (by a similar reasoning), as it was desired.

Note that this fact can be reformulated in this way: 2 verifies the quasi-
equations (∗) eqA(~x)ZeqD(~x)⇒ (x0 = 1) and (∗∗) eqA(~x)Z(x0 = 1)⇒ eqD(~x).

Thus, every Boolean algebra B verifies (∗) and (∗∗), too. In addition, the
equations eqA and eqD characterize the sets A

′

M (B) and D
′

M (B), resp., cf.
Definition 3.10. From this, our claim can be proved for every d.s. RM (B). �X

In the proof of the fundamental result of our paper we will use Proposition
2.6 again and, in particular, the canonical homomorphism e∇ : B → B/∇.
By the way, an essential result relating in a general way homomorphisms of
Boolean Algebras to prime filters is based on Definition 3.5. That result can be
proved by induction on the complexity of the terms of FOBL:
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Proposition 3.16. Let Bi = (Bi, CB) (i = 1, 2) be Boolean Algebras. For
every C-definable function f1 : Bn1 → B1, for every Boolean homomorphism
h : B1 → B2, if we define f2:=τB2

f1
: Bn2 → B2, cf. Remark 3.4, it holds

that h(f1(x1, . . . , xn)) = f2(h(x1), . . . , h(xn)) . As a particular case, for ev-
ery C-definable function f : Bn → B, f(x1, . . . , xn)∇ = e∇(f(x1, . . . , xn))

= fB/∇(e∇(x1), . . . , e∇(xn)) = fB/∇(x1∇, . . . , xn∇) (being fB/∇:=τ
B/∇
f , as it

was previously indicated).

Proposition 3.17. Let M = (A, D) be a finite C-matrix. Then, for every
Boolean algebra B = (B,CB), for every prime filter ∇ ⊆ B, the map E∇ :
A

′

M (B)−→A′

M (B/∇), defined by: E∇(~x):= (e∇(x0), . . . , e∇(xk)), for every ~x

= (x0, . . . , xk) ∈ A′

M (B), is a matrix epimorphism from RM (B) to RM (B/∇).

Proof. Obviously, E∇ a surjective function. Let us prove now that E∇ is
a C-homomorphism: Let c ∈ C be a n-ary connective. We will prove that
E∇(cA′

M(B)( ~x1, . . . , ~xn)) = cA′
M(B/∇)(E∇( ~x1), . . . , E∇( ~xn)). For that, recall that

cA′
M(B)(~x1, . . . , ~xn):= (f

′

0A
′
M(B)(~x1, . . . , ~xn), . . . , f

′

kA
′
M(B)(~x1, . . . , ~xn)), from Def-

inition 3.10. In addition, note that every function f
′

iA
′
M(B) (with 0 ≤ i ≤

k) is C-definable. From this and Proposition 3.16, for every 0 ≤ i ≤ k,
e∇(f

′

iA
′
M(B)(~x1, . . . , ~xn)) = e∇(f

′

iA
′
M(B)(x

0
1, . . . , x

k
1 , . . . , x

0
n, . . . , x

k
n)) =

f
′

iA
′
M(B/∇)(e∇(x0

1), . . . , e∇(xk1), . . . , e∇(x0
n), . . . , e∇(xkn)). Thus we have:

E∇(cA′
M(B)( ~x1, . . . , ~xn)) =

E∇(f
′

0A
′
M(B)(~x1, . . . , ~xn), . . . , f

′

kA
′
M(B)(~x1, . . . , ~xn)) =

(e∇(f
′

0A
′
M(B)(~x1, . . . , ~xn))), . . . , e∇(f

′

kA
′
M(B)(~x1, . . . , ~xn))) =

(f
′

0A
′
M(B/∇)(e∇(x0

1), . . . , e∇(xk1), . . . , e∇(x0
n), . . . , e∇(xkn)), . . . ,

f
′

kA
′
M(B/∇)(e∇(x0

1), . . . , e∇(xk1), . . . , e∇(x0
n), . . . , e∇(xkn))) =

cA′
M(B/∇)(E∇( ~x1), . . . , E∇( ~xn)), as it was desired, taking into account the def-

inition of cA′
M(B/∇) (see Definition 3.10 again) and the definition of E∇. Fi-

nally, suppose that ~x = (x0, . . . , xk) ∈ D′

M (B). From Proposition 3.15, x0 =

1B ∈ ∇, and then e∇(x0) = ∇. Hence, E∇(~x) = (∇, . . . , e∇(xk)) ∈ D′

M (B/∇),
by Proposition 3.15, again. This concludes the proof. �X

Theorem 3.18. If a finite C-matrix M = (A, D) admits a discriminant pair
(β,~a) (and a D.S.S. SM therefore), then |=M ϕ iff |=SM

ϕ, for every ϕ ∈ L(C).

Proof. Suppose that there are β(α0, α1, . . . , αm) ∈ L(C), ~a = (a1, . . . , am) ∈
Am and k ∈ ω such that the function [χ

D
]k : A−→2k+1 is injective, determin-

ing thus the D.S.S. SM and the consequence relation |=SM , cf. it was developed
in Definition 3.14. We will prove that |=M ϕ iff |=SM

ϕ. First of all, taking
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into account Proposition 3.8 and Remark 3.13, it is obvious that |=SM
ϕ im-

plies |=M ϕ. For the converse, suppose that it exists a Boolean algebra B
and a RM (B)-valuation w : L(C)−→A′

M (B) such that w(ϕ) /∈ D
′

M (B). So,
w0(ϕ):=π0(w(ϕ)) 6= 1B, by Proposition 3.15. Thus, there is a prime filter
∇ of B, with w0(ϕ) /∈ ∇. From this and Proposition 3.17, the matrix epi-
morphism E∇ : A

′

M (B)−→A′

M (B/∇) verifies that E∇(w(ϕ)) /∈ D
′

M (B/∇)

(because the first component of the elements of D
′

M (B/∇) is always ∇, and

w0(ϕ)∇ 6= ∇). So, E∇ ◦ w : L(C)−→A′

M (B/∇) is a RM (B/∇)-valuation such

that (E∇ ◦ w)(ϕ) /∈ D′

M (B/∇). Hence, 6|=RM (B/∇) ϕ, and so 6|=M ϕ, because

RM (B/∇) ∼= RM (2) = M ′ ∼= M . �X

Remark 3.19. Note that Theorem 3.18 establishes a weak adequacity between
the relations |=M and |=SM

. It is part of a future work the proof of a strong
adequacity (that is, that Γ |=M α iff Γ |=SM

α). Indeed, it is an open problem
to give strong adequacity in a general case, or even to provide conditions that
warrant the strong adequacity between a certain specific matrix M and its
corresponding D.S.S. We will return to this topic at the end of the paper.

To illustrate the technical results proved here we will give another kind
of example of D.S.S., that will allow us to understand the generalization here
proposed by means of the definition of a discriminant pair (β,~a):

Example 3.20. Let L? be the logic defined on the basis of the well-known
 Lukasiewicz three-valued matrix  L3 (being its underlying signature C? again),
but considering the intermediate truth-value as the only designated one. For-
mally speaking, L? = (C?, |=M?), where |=M? is defined by the C?-matrix M?

= (A?, D?), with A? = {0?, 1
2

?
, 1?} and D? = { 1

2

?}5. In A?, the truth-functions
⊃ and ¬ are defined as:

⊃ 0? 1
2

?
1?

0? 1? 1? 1?

1
2

? 1
2

?
1? 1?

1? 0? 1
2

?
1?

¬
0? 1?

1
2

? 1
2

?

1? 0?

Of course, even when the truth-values and the operations are the same as in
the matrix that defines  L3, the change in the set of designated values produces
different tautologies in both logics. In fact, L? has not tautologies at all.

Proposition 3.21. For every ϕ ∈ L(C?), 6|=M? ϕ.

Proof. Note that {0?, 1?} can be viewed as (the support of) a subalgebra of
A?. Now, for every ϕ = ϕ(α1, . . . , αn) ∈ L(C?) consider the M? valuation

5We will denote the truth-values of A? in a “starred way” with the aim of distinguishing
them of the 2-truth-values 0 and 1 ∈ 2, which are always used in the definition of any D.S.S.
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w : L(C?)−→A? such that w(αi) = 0?, for every 1 ≤ i ≤ n. Then w(ϕ) 6= 1
2

?
,

and thus 6|=M? ϕ. �X

It is worth to remark here that the last result entails the fact that L? is not
algebraizable. We will discuss some connections between algebraizability and
Discriminant Structures at the end of the paper. On the other hand, turning
back to L?, in order to obtain a D.S.S. for this logic, we have the following
straightforward result:

Proposition 3.22. The pair (β?,~a?), with β?(α0, α1):=α1 ⊃ α0, ~a?=a1:= 1
2

?
,

is a discriminant pair (with one iteration) for M?. In this context, the function
[χ

D
]k verifies; [χ

D
]k(0?) = (0, 1), [χ

D
]k( 1

2

?
) = (1, 0) and [χ

D
]k(1?) = (0, 0).

Since [χ
D

]k(A?) = {(0, 1); (1, 0); (0, 0)}, we have that this set can be char-
acterized by the equation eqA? : x0∧x1 = 0 6. Moreover, it is possible to obtain

a matrix M?
′
'M?, whose truth-functions behave as it is depicted below.

⊃ (0, 1) (1, 0) (0, 0)

(0, 1) (0, 0) (0, 0) (0, 0)

(1, 0) (1, 0) (0, 0) (0, 0)

(0, 0) (0, 1) (1, 0) (0, 0)

¬
(0, 1) (0, 0)

(1, 0) (1, 0)

(0, 0) (0, 1)

These truth-functions will induce the truth-functions ⊃ and ¬ in every d.s.
RM?(B), as it is suggested in Remark 3.9 and formalized in Definition 3.10.
The formal definitions of these structures are as follows:

Definition 3.23. For every Boolean algebra B = (B,CB), the Discriminant
Structure (of type L?) associated to B is the following C?-matrix:

RM?(B) =
(
A

′

M?(B), D
′

M?(B)
)

, with D
′

M?(B) = {(1, 0)}, and:

(1) The support of A
′

M?(B) is A
′

M?(B) ={(x0, x1) ∈ B2 : x0 ∧B x1 = 0}

(2) (x0, x1) ⊃AM? (B) (y0, y1) : =
(
−B x1 ∧B [(x0 ↔B −By0) ∧B (x0 ↔B

y1)],−B(x0 ∨B x1 ∨B y0) ∧B y1

)
(3) ¬AM? (B)(x0, x1) :=

(
x0,−B(x0 ∨B x1)

)
.

The class of all the discriminant structures for L? is denoted by S?. In addi-
tion, the consequence relation |=S? follows the same patterns as in Definitions
2.2 and 2.12. And, as in these cases, it is possible to obtain the following results,
whose detailed proofs appear in [5]:

6This characterization is equivalent, but simpler, to the characterization proposed in Def-
inition 3.10 by means of Proposition 3.7, as we have commented previously.
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Proposition 3.24. Every set A
′

M?(B) is closed by applications of ⊃AM? (B)

and ¬AM? (B).

Moreover, applying the “abstract versions” of the results presented above
(from Definition 3.10 to Theorem 3.18) it is possible to demonstrate.

Theorem 3.25. For every ϕ ∈ L(C?), |=M?
ϕ iff |=S?ϕ.

4. On the existence of Discriminant Structures

Considering the definition and general results concerning D.S.S., until now we
have seen that the semantics of the form SM are, in fact, a sort of “convenient
representations” of certain matrix semantics M . Moreover, Theorem 3.18 es-
tablishes that this kind of semantics can be obtained when a discriminant pair
is found. However we will see now, by means of the following example, that it
is not always possible to obtain such a pair, for a given matrix M .

Example 4.1. Consider Urquhart logic Urq, characterized by the C∗-matrix
MUrq = (A, D), where C∗ = {∗} (with ∗ binary), A = {I, II, III, IV, V }, D
= {I}), and the truth-function ∗ is indicated below:

∗ I II III IV V

I V V I I V

II V V II I V

III V V V V V

IV V V V V V

V V V V V V

This logic was defined by A. Urquhart in [14], to show an example of a matrix
logic that cannot be axiomatized by a finite set of structural rules. It is possible
to prove that MUrq does not admit a discriminant pair.

Proposition 4.2. For every formula β /∈ V, for every tuple ~a of elements of
A, the truth-function f(β,~a) : A→ A (see Definition 3.1) verifies that there are
two elements a0, a1 /∈ D, a0 6= a1, such that f(β,~a)(a0) = f(β,~a)(a1) = V .

Proof. We will prove our claim by induction on n, the number of ocurrences of
∗ in β (where n ≥ 1, because β /∈ V). When n = 1, we have these possibilities:
If f(β,~a) = x ∗ x (in which case ~a is irrelevant), then f(β,~a)(a) = V , for every
a ∈ A. If not, then we have two cases: f(β,~a) = a ∗ x or f(β,~a) = x ∗ a 7, being
~a = a ∈ A. The five truth-functions that can be obtained for the first case are
f(β,I) = I ∗x,..., f(β,V ) = V ∗x. For these functions, consider a0 = II, and a1 =
V . For the second case, the resulting truth-functions are g(β,I) = x∗I,..., g(β,V )

= x ∗ V . Here a0 = IV , a1 = V . Hence, our claim is valid for all the possible

7Note that ∗ is not conmutative.
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cases. Suppose now that the result is valid for every t ≤ n. Consider now β =
β(α0, α1, . . . , αm) and ~a = (a1, . . . , am) ∈ Am, where β has n ocurrences of ∗.
Then β = β1 ∗β2. If β1, β2 ∈ V we would return to n = 1. So, suppose (without
loss of generality), that β1 /∈ V. By Induction Hypothesis, there are a0 6= a1

such that f(β1,~a)(a0) = f(β1,~a)(a1) = V . Since V ∗ x = x ∗ V = V for every
x ∈ A, we have that f(β,~a)(a0) = f(β1,~a)(a0) ∗ f(β2,~a)(a0) = V ∗ f(β1,~a)(a0) = V .
In a similar way, f(β,~a)(a1) = V . Now, If β1 ∈ V, then β2 /∈ V. For this case,

adapt the previous reasoning. �X

Corollary 4.3. The matrix MUrq does not admit discriminant pairs.

Proof. Note that Proposition 4.2 implies that there are not pairs (β,~a) that
can discriminate all the values of A by means of one iteration. But noting that
V is an absorbent element in MUrq we have that, for every pair (β,~a), for every

k ∈ ω, there are a0, a1 ∈ A, a0 6= a1, such that [χ
D

]k(a0) = [χ
D

]k(a1) =

(0, 0, . . . , 0) (k + 1 times), and so they cannot be discriminated. �X

This last result shows that, despite the simplicity of the process to obtain
a D.S.S., the basis of it (that is, the existence of a discriminant pair) is not
trivial.

An additional problem here is referred to the uniqueness of a discriminant
pair. It is easy to see here that, if a matrix M admits a discriminant pair (β,~a),
such a pair not needs to be unique. For instance, consider again the matrix M?

of Example 3.20: an alternative discriminant pair (different to the pair showed
in Proposition 3.22) is (β?

′,~a?
′), with β?

′(α0, α1):=α0 ⊃ α1, and ~a′?=a1:= 1
2

?
.

For this pair, we associate 0? with (0, 0), 1
2

?
with (1, 0), and 1? with (0, 1). We

will return to this point at the end of the paper.

5. Relations with Dyadic and Twist-Structure semantics

As it was previously commented, Discriminant Structures Semantics are mo-
tivated by a simple idea, usual in the field of many-valued logics, which can
be stated as follows: the truth-values of a matrix M = (A, D) can be often
discriminated, according to their belonging to D. As it was mentioned, this ap-
proach was already applied, with several purposes. For example, the separation
(i.e. discrimination) of truth-values can determine whether certain formulas
are synonymous or not (see [12], for example). Also, several definitions of two-
valued (non truth-functional) semantics make use of this notion. One example
of such construction is Dyadic Semantics (see [1]), which possess certain simi-
larities with D. S. S., according to our point of view. So, we will discuss briefly
here the relationship between both semantics. For that, the notation of [1] was
modified, for a better comparison to the present paper.

Roughly speaking, a dyadic semantics for a given logic L = (C, |=M ) induced
by a finite C-matrix M = (A, D) is built on a basis of:
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• A set of formulas {φi}1≤i≤k, where (for every i), φi =φi(α) ∈ L(C) (with
α ∈ V).

• A function h : A−→2 such that, for every φi, for every a ∈ A, h(φi(a)) =
1 iff φi(a) ∈ D.

In addition, the truth-functions associated to the set {φi}0≤i≤k (together with
h) separates, actually, the values of A, by means of (k + 1)-tuples of elements
of 2, and therefore the family {φi}0≤i≤k can be understood as a generalization
of the formula β in our discriminant pair. The scope of Dyadic Semantics is,
considering this aspect, stronger of the D.D.S, wherein just only formula β
(eventually iterated) is allowed.

However it should be noted, from the explanation above, that the sepa-
ration method based on Dyadic Semantics depends on the existence of one-
variable formulas of L(C) (which determine truth-functions as usual). On the
other hand, in the case of D.S.S., the discriminant pair (β,~a) induces the (one
variable-depending) truth-functions f(β,~a), which do not need to be “associ-
ated” to any particular formula in L(C). This suggests that, meanwhile Dyadic
Semantics is focused more strictly on the involved languages, D.S.S analyze
mainly the used algebras Note, anyway, that if the algebra A of a given C-
matrix M = (A, D) is functionally complete, then every A-truth-function has
an associated formula that describes it (by means of the connectives of C), and
so it would be possible to “jump” from the matrices to the formal languages
themselves.

Besides that, an “hybrid method” of separation of truth-values can be done.
Consider simply that every truth-value of a matrix M = (A, D) is tested by
a set f(βi, ~ai) of discriminant (non-iterated) pairs. An informal example of this
idea can be developed for the logic Urq, previously defined.

Proposition 5.1. The truth-values of the logic Urq of Example 4.1 can be
discriminated by a set {fi}0≤i≤4 (with fi = f(βi, ~ai) : A−→A) of truth-functions.

Proof. The following schema shows the formulas which discriminate every
truth-value of Urq, and the indentification of each truth-value by means of the
function h4 : A−→25, defined by h4(x) =(χD(fi(x)))0≤i≤k, for every x ∈ A:

f0 = x f1 = x ∗ I f2 = x ∗ II f3 = I ∗ x f4 = II ∗ x h4

I I I V V (1, 1, 1, 0, 0)

II V I V V (0, 0, 1, 0, 0)

III V V I V (0, 0, 0, 1, 0)

IV V V I I (0, 0, 0, 1, 1)

V V V V V (0, 0, 0, 0, 0)

So, all the truth-values of Urq can be discriminated by the set f(βi, ~ai). �X
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It must be indicated that the method that “explains” the behavior of the
operation ∗, when applied to the founded t-uples, was not developed here.
Moreover, it is not clear here (as in Dyadic Semantics in general terms) in
which way an algebraic treatment can be done. Indeed, Dyadic Semantics is not
focused (until this moment) on algebraic considerations that allow to extend
a certain “canonical dyadic semantics” to a whole class K, as in the case of
D.S.S. Of course, all these topics deserve a deeper treatment in the future.

We conclude this paper mentioning certain connections with a non-standard
semantics that is a kind of “hidden motivation” for the definition of the Discrim-
inant Structures, which is Twist-Structure Semantics. Actually, the preliminar
version of this paper ([5]) remarks, in an strong way, the relations between
these semantics. To show some of them we proceed as above, giving in a very
informal way some key-concepts on which Twist-Structure Semantics is based.

First of all, usually a Twist-Structure Semantics for a given logic L = (C, |=)
(which does not need to be defined by any C-matrix), is a class K of C-algebras
such that, for every H in K, it holds:

• H is a subalgebra of the product T×T∗, where T is a certain ordered
C-algebra, and T∗ is the dual algebra of T. Indeed, the “torsion” of the
second axis in T×T∗ is the fact that suggests the name twist-structure,
for every H.

So, in this informal definition, H plays the same role that the algebras
A

′

M (B) in D.S.S. In addition, the “basis algebra T” acts as the basic
Boolean Algebra B that determines every d.s. RM (B).

• As in the case of D.S.S., The operations on every H are given taking into
account the behavior of the “original CA-operations”.

• Once the class K is defined, it determines a certain consequence relation
|=K. Now, to prove adequacity (that is, |=K ϕ iff |= ϕ) is usual to prove
“representation results”, mainly when already exists a previously given
class A which determines |= . That is, that every algebra A of A can be
represented by a Twist-Structure H of K, and vice versa. Moreover, this
results allows to prove strong adequacity, actually 8.

It is usually accepted that the constructions known as Twist-Structure Se-
mantics appeared in the works (done in an independent way) of M. Fidel and D.
Vakarelov, to provide an alternative semantics for Nelson Intuitionistic Logic
with Strong Negation (see [6] and [15]). Nowadays, the constructions developed
in these papers were adapted to a great number of logics (see [7], [8] or [9], for
example). Thus, Twist-Structure Semantics are an object of numerous, deep
and fruitful investigations.

8It should be remarked, anyway, that not in all the cases adequacity proofs are based on
representation results.
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Note here that an essential point in Twist-Structure Semantics is missed
in D.S.S.: the torsion of the second axis. What is the reason of that torsion?
Mainly, twist-structures, even being considered as C-matrices, usually were an-
alyzed w.r.t its lattice-theoretic behavior. Under this perspective, the designated
elements of every structure of the form H ⊆ T×T∗ are usually interpreted as
the greatest elements (according to the order relation ≤H, which is inherited
from the “twisted order” obtained in T×T∗). For that, to obtain adequacy, it
is usually necessary to consider the second axis with an inverted order, mainly
because the algebras T and T∗ are not of the same kind. This is the case when
T is a (Generalized) Heyting Algebra, for example. Actually, this torsion is of-
ten motivated with the necessity of an explanation of the behavior of a certain
“negation connective”, ¬ or ∼ (anyway, not every Twist-Structure Semantics
is defined to explain negations: see [9], as an example applied to a logic without
negations). Now, in the case of D.S.S., the required torsion has no sense: note
that D.S.S. is dealing only with Boolean algebras, and every Boolean algebra
B is isomorphic to its dual B∗.

In addition, usually twist-structures are only considered as subsets of prod-
ucts of two algebras. On the other hand, D.S.S. is defined allowing that every
discriminant structure can be embedded in an arbitrary finite product (accord-
ing the number k of iterations).

On the other hand, we remark the coincidences between these two kind
of semantics: in both cases certain classes of algebras are defined. Moreover,
their underlying consequence relations are obtained by means of satisfaction
of equations, as we have seen. Turning back to D.S.S., note that they are not
depending neither on considerations of order relations, nor on the existence of
negations. Since the treatment of these last semantics is more “algorithmic”,
they could be used in a general way (in the context of Matrix Logics), regardless
its intuition. However, twist-structures can be viewed as more intuitive than
D.S.S., mainly when they deal with certain “well-motivated” logics, where their
connectives can be interpreted in a more natural sense.

6. Concluding Remarks

In this paper, we have showed a way to characterize C-matrices M = (A, D)
by means of a process that codifies the truth-values of the support A according
the characteristic function χ

D
. Moreover, we have demonstrated that this de-

codification, originally obtained for the Boolean algebra 2, can be generalized,
by means of the definition of adequated equations, to every Boolean algebra B,
in such a way that a new semantics (namely, D.S.S.) can be defined on the ba-
sis of a class SM of C-matrices. So, Discriminant Structure Semantics recovers
certain algebraic character of that C-matrices that can be characterized in this
way. Under our point of view, this implicit algebraic characteristics of D.S.S.
are important, mainly because D.S.S. can be related to some problems con-
cerning Abstract Algebraizability. Actually, a certain matrix logic that is not
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algebraizable 9, but that can be characterized by means of D.S.S., is presented
in [5]. Indeed, this logic is L? of Example 3.20. So, we consider that the study of
the algebraic aspects of Discriminant Structures would be an interesting topic
for future researches.

Besides that, an essential fact is showed in this paper, in Example 4.1: not
every finite C-matrix can be associated to an adequate D.S.S., by means of a
discriminant pair (β,~a). So, a very interesting open problem that we propose
here is the following: Which conditions (sufficent and/or neccesary) are needed
for a C-matrix M = (A, D) to admit a discriminant pair (β,~a)? Indeed, this
kind of question is very usual in the context of Abstract Logic. For instance,
in [16] (see also [3]) is given the definition of Referential Matrix Semantics
(R.M.S). This notion, that provides a suitable matrix treatment for certain
modal logics (mainly for the “based on possible world semantics” ones), is one
interesting example of the scope of the general Theory of Matrices. So, it is
natural to suppose that the field of action of R.M.S. is connected with the
motivation and applications of D.D.S. By the way, one of the main results of
[16] establishes that a given logic admits R.M.S iff it is Self-Extensional 10.
We expect to obtain such kind of results, adapted to the case of D.S.S., in
future works. Moreover, one of the topics of research that deserves attention
is to relate D.S.S with self-extensionality (and, therefore, with R.M.S), and
with other notions intrinsic to Abstract (Algebraic) Logic, as was previously
commented.

Also, the problem of uniqueness (suggested at the end of Section 4) deserves
a deep analysis: by the way, it is worth to note that, even when can exist two
different discriminant pairs for a given matrix M , the matrices that both pairs
determine are isomorphic. Anyway, this problem can be studied from different
points of view: for instance, the relation between the D.S.S determined by each
pair is an interesting matter of study. The connection between uniqueness of
discriminant pairs and reduced matrices deserves a future research, too.

Finally, we remark the obvious relations of D.S.S. with Dyadic Semantics
and with Twist-Structures again: these natural connections deserve a deeper
study. For all the exposed, we think that this initial study of Discriminant
Structure Semantics can be expanded to several interesting research lines.
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one report of the referees. In addition, the bibliography relative to Referential
Matrix Semantics indicated below (also suggested in the reports of this work),
seems to be a very interesting field for future investigations.
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