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and powers of two
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Abstract. Let (Pn)n>0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1
and the recurrence formula Pn+3 = Pn+1 + Pn for all n > 0. In this note we
study and completely solve the Diophantine equation

Pn − 2m = Pn1 − 2m1

in non-negative integers (n,m, n1,m1).
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Resumen. Sea (Pn)n>0 la sucesión de Padovan dada mediante P0 = 0, P1 =
P2 = 1 y la fórmula de recurrencia Pn+3 = Pn+1 + Pn para todo n > 0. En
esta nota estudiamos y resolvemos completamente la ecuación diofántica

Pn − 2m = Pn1 − 2m1

en enteros no negativos (n,m, n1,m1).

Palabras y frases clave. Sucesión de Padovan, Problema de Pillai, Formas linea-
les en logaritmos, método de reducción.

1. Introduction

Let a, b be two fixed positive integers and consider the Diophantine equation

an − bm = an1 − bm1 (1)
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in positive integers (n,m, n1,m1) with (n,m) 6= (n1,m1). In particular, look
for the integers which can be written as the difference of a power of a and
a power of b in at least two distinct ways. In [11], Herschfeld proved that in
the case (a, b) = (2, 3) equation (1) has finitely many solutions. In [13], Pillai
extended Herschfeld’s result to the case a, b > 2 being coprime integers. In both
cases the result is ineffective. In [14], Pillai conjectures that in the case (a, b) =
(2, 3) all solutions of equation (1) are (3, 2, 1, 1), (5, 3, 3, 1) and (8, 5, 4, 1). This
conjecture remained open for about 37 years and it was confirmed by Stroeker
and Tijdeman in [17] by using Baker’s theory on linear forms in logarithms of
algebraic numbers.

Recently, the above problem now known as the Pillai problem was posed
in the context of linear recurrence sequences. That is, let U := (Un)n>0 and
V := (Vm)m>0 be two linearly recurrence sequences of integers and look at the
diophantine equation

Un − Vm = Un1 − Vm1 (2)

in positive integers (n,m, n1,m1) with (n,m) 6= (n1,m1). In particular, find
the integers which can be written as a difference of an element of U and an
element of V in at least two distinct ways. This version was started in [8] by
Ddamulira, Luca and Rakotomalala where they take U being the Fibonacci
sequence and V being the sequence of powers of 2. Many other cases have been
studied, see for example [5, 3, 7, 10]. In [6] it is proved that, under some natural
conditions on U and V equation (2) has finitely many solutions and all of them
are effectively computable.

Now, let (Pn)n>0 be the Padovan sequence, named after the architect R.
Padovan. It is a ternary recurrence sequence given by P0 = 0, P1 = P2 = 1 and
the recurrence formula

Pn+3 = Pn+1 + Pn, for all n > 0.

This is A000931 sequence in [16]. Its first few terms are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . .

In this note, we study another particular case of equation (2) namely with
Padovan numbers and powers of 2. More precisely, we solve the equation

Pn − 2m = Pn1
− 2m1 (3)

in non-negative integers (n,m, n1,m1) with (n,m) 6= (n1,m1). Since P1 = P2 =
P3 = 1 we assume that n 6= 1, 2 and n1 6= 1, 2. That is, whenever we think
of 1 as a member of the Padovan sequence we think of it as being P3. In the
same way, n 6= 4 and n1 6= 4. Then, with these conventions, our result is the
following:
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Theorem 1.1. All non-negative integer solutions (n,m, n1,m1) of equation (3)
belong to the set

(3, 1, 0, 0), (5, 1, 3, 0), (5, 2, 0, 1), (6, 1, 5, 0), (6, 2, 0, 0),

(6, 2, 3, 1), (7, 1, 6, 0), (7, 2, 3, 0), (7, 2, 5, 1), (7, 3, 0, 2),

(8, 1, 7, 0), (8, 2, 5, 0), (8, 2, 6, 1), (8, 3, 3, 2), (9, 2, 7, 0),

(9, 2, 8, 1), (9, 3, 0, 0), (9, 3, 3, 1), (9, 3, 6, 2), (10, 2, 9, 1),

(10, 3, 5, 0), (10, 3, 6, 1), (10, 3, 8, 2), (10, 4, 3, 3), (11, 2, 10, 0),

(11, 3, 8, 0), (11, 4, 0, 2), (11, 4, 7, 3), (12, 3, 10, 0), (12, 3, 11, 2),

(12, 4, 3, 0), (12, 4, 5, 1), (12, 4, 7, 2), (12, 5, 0, 4), (13, 4, 9, 1),

(13, 4, 10, 2), (13, 5, 8, 4), (14, 3, 13, 0), (14, 4, 12, 2), (14, 5, 0, 2),

(14, 5, 7, 3), (14, 5, 11, 4), (15, 5, 9, 1), (15, 5, 10, 2), (15, 5, 13, 4),

(15, 6, 8, 5), (16, 4, 15, 2), (16, 5, 13, 2), (16, 6, 3, 4), (17, 5, 15, 2),

(17, 5, 16, 4), (17, 6, 5, 0), (17, 6, 6, 1), (17, 6, 8, 2), (17, 6, 10, 3),

(17, 7, 3, 6), (19, 5, 18, 2), (19, 7, 5, 4), (22, 9, 10, 8), (27, 10, 17, 3),

(30, 12, 24, 11)



.

The set of integers which can be written as the difference of a Padovan number
and a power of 2 in at least two distinct ways is

{−1583,−247,−63,−27,−16,−15,−14,−11,−7,−4,−3,−2,−1,

0, 1, 2, 3, 4, 5, 8, 12, 17, 20, 33, 57, 82}.

The representations of these numbers are

−1583 = P30 − 212 = P24 − 211;

−247 = P22 − 29 = P10 − 28;

−63 = P17 − 27 = P3 − 26;

−27 = P15 − 26 = P8 − 25;

−16 = P12 − 25 = P0 − 24;

−15 = P16 − 26 = P3 − 24;

−14 = P19 − 27 = P5 − 24;

−11 = P13 − 25 = P8 − 24;

−7 = P10 − 24 = P3 − 23;

−4 = P14 − 25 = P11 − 24 = P7 − 23 = P0 − 22;

−3 = P8 − 23 = P3 − 22;

−2 = P5 − 22 = P0 − 21;

−1 = P9 − 23 = P6 − 22 = P3 − 21 = P0 − 20;
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0 = P12 − 24 = P7 − 22 = P5 − 21 = P3 − 20;

1 = P17 − 26 = P10 − 23 = P8 − 22 = P6 − 21 = P5 − 20;

2 = P7 − 21 = P6 − 20;

3 = P9 − 22 = P8 − 21 = P7 − 20;

4 = P11 − 23 = P8 − 20;

5 = P15 − 25 = P13 − 24 = P10 − 22 = P9 − 21;

8 = P12 − 23 = P11 − 22 = P10 − 20;

12 = P14 − 24 = P12 − 22;

17 = P16 − 25 = P13 − 22;

20 = P14 − 23 = P13 − 20;

33 = P17 − 25 = P16 − 24 = P15 − 22;

57 = P27 − 210 = P17 − 23;

82 = P19 − 25 = P18 − 22.

2. Tools

In this section, we gather the tools we need to prove Theorem 1.1. The first
one is a lower bound for linear forms in logarithms due to Matveev. Let α be
an algebraic number of degree d, let a > 0 be the leading coefficient of its
minimal polynomial over Z and let α = α(1), . . . , α(d) denote its conjugates.
The logarithmic height of α is defined as

h(α) =
1

d

(
log a+

d∑
i=1

log max
{
|α(i)|, 1

})
.

This height satisfies the following basic properties. For α, β algebraic numbers
and m ∈ Z we have

• h(α+ β) 6 h(α) + h(β) + log(2);

• h(αβ) 6 h(α) + h(β);

• h(αm) = |m|h(α).

Now let L be a real number field of degree dL, α1, . . . , α` ∈ L and b1, . . . , b` ∈
Z \ {0}. Let B > max{|b1|, . . . , |b`|} and

Λ = αb1
1 · · ·α

b`
` − 1.
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Let A1, . . . , A` be real numbers with

Ai > max{dL h(αi), | logαi|, 0.16}, i = 1, 2, . . . , `.

The following result is due to Matveev in [12] (see also Theorem 9.4 in [4]).

Theorem 2.1. Assume that Λ 6= 0. Then

log |Λ| > −1.4 · 30`+3 · `4.5 · d2
L · (1 + log dL) · (1 + logB)A1 · · ·A`.

In this note we always use ` = 3. Further, L = Q(γ) has degree dL = 3, where
γ is defined at the beginning of Section 3. Thus, once and for all we fix the
constant

C := 1.4 · 303+3 · 34.5 · 32 · (1 + log 3) ≈ 2.70443× 1012.

Our second tool is a version of the reduction method of Baker-Davenport based
on Lemma in [1]. We shall use the one given by Bravo, Gómez and Luca in [2].
For a real number x, we write ‖x‖ for the distance from x to the nearest integer.

Lemma 2.2. Let M be a positive integer. Let τ, µ, A > 0, B > 1 be given
real numbers. Assume that p/q is a convergent of τ such that q > 6M and
ε := ‖µq‖ −M‖τq‖ > 0. Then there is no solution to the inequality

0 < |nτ −m+ µ| < A

Bw

in positive integers n,m and w satisfying

n 6M and w >
log(Aq/ε)

log(B)
.

Lemma 2.2 is a slight variation of the one given by Dujella and Pethő in [9].
Finally, the following result will be very useful. This is Lemma 7 in [15].

Lemma 2.3. If m > 1, T > (4m2)m and T > x/(log x)m. Then

x < 2mT (log T )m.

3. Proof of Theorem 1.1

To start with, we recall some properties of the Padovan sequence. For a complex
number z we write z for its complex conjugate. Let ω 6= 1 be a cubic root of 1.
Put

γ :=
3

√
9 +
√

69

18
+

3

√
9−
√

69

18
, δ := ω

3

√
9 +
√

69

18
+ ω

3

√
9−
√

69

18
.
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It is clear that γ, δ, δ are the roots of the Q-irreducible polynomial X3−X− 1.
We also have the Binet formula

Pn = c1γ
n + c2δ

n + c3δ
n
, (4)

which holds for all n > 0, where

c1 =
γ(γ + 1)

2γ + 3
, c2 =

δ(δ + 1)

2δ + 3
, c3 = c2. (5)

Formula (4) follows from the general theorem on linear recurrence sequences
since the above polynomial is the characteristic polynomial of the Padovan
sequence. We note that

γ = 1.32471 . . . , |δ| = 0.86883 . . . , c1 = 0.54511 . . . , |c2| = 0.28241 . . .

Further, the inequalities
γn−3 6 Pn 6 γn−1, (6)

hold for all n > 1. These can be proved by induction.

We start with the study of equation (3) in non-negative integers (n,m, n1,m1)
with (n,m) 6= (n1,m1) where, as we have said, n 6= 1, 2, 4 and n1 6= 1, 2, 4. We
note, if m = m1 then Pn = Pn1

which implies n = n1, a contradiction. Thus
we assume m > m1. Rewriting equation (3) as

Pn − Pn1
= 2m − 2m1 (7)

we observe the right-hand is positive. So, the left-hand side is also positive and
therefore, n > n1. Now, we compare both sides of (7) using (6). We have

γn−8 6 Pn − Pn1
= 2m − 2m1 < 2m.

Indeed, the left-hand side inequality is clear if n1 = 0. If n1 = 3, n > 5. For
n = 5 it is also clear and for n > 6 we have Pn − Pn1 > Pn − Pn−1 = Pn−5 >
γn−8. The right-hand side inequality is clear. Thus γn−8 < 2m. In a similar
way,

γn−1 > Pn > Pn − Pn1
= 2m − 2m1 > 2m−1.

Thus,

(n− 8)
log γ

log 2
6 m and (n− 1)

log γ

log 2
> m− 1. (8)

Since log γ/ log 2 = 0.40568 . . . we have that if n 6 500 then m 6 204. We ran
a Mathematica program in the range 0 6 n1 < n 6 500, 0 6 m1 < m 6 204
and, with our conventions, we obtained all the solutions listed in Theorem 1.1.

From now on we assume n > 500. Thus, from (8) we have that m > 199
and also that n > m. From Binet’s formula (4) we rewrite our equation as

|c1γn − 2m| < γn1−1 + 2 |c2| |δ|n + 2m1 < γn1+3 + 2m1 < max{γn1+6, 2m1+1}.
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Dividing through by 2m we get∣∣c1γn2−m − 1
∣∣ < max{γn1−n+14, 2m1−m+1}, (9)

where we have used γn−8 < 2m. Let Λ be the expression inside the absolute
value in the left-hand side of (9). Observe that Λ 6= 0. To see this, we consider
the Q−automorphism σ of the Galois extension K := Q(γ, δ) over Q defined
by σ(γ) := δ and σ(δ) := γ. We note σ(δ) = δ. If Λ = 0 then σ(Λ) = 0 and we
get

2m = σ(c1γ
n) = c2δ

n.

Thus,
2m = |c2||δ|n < 1,

which is absurd since m > 199. Hence, Λ 6= 0. We apply Matveev’s inequality
to Λ by taking

α1 = c1, α2 = γ, α3 = 2, b1 = 1, b2 = n, b3 = −m.

Thus B = n. Further h(α2) = log γ/3, h(α3) = log 2. For α1 we use the
properties of the height to conclude

h(c1) 6 log γ + 5 log 2.

So we take A1 = 11.3, A2 = 0.3, A3 = 2.1. From Matveev’s inequality we
obtain

log |Λ| > −C(1 + log n) · 11.3 · 0.3 · 2.1,

which compared with (9) yields

min{(n− n1) log γ, (m−m1) log 2} 6 1.92529× 1013(1 + log n).

Now we study each one of these two posibilities.

Case 1. min{(n− n1) log γ, (m−m1) log 2} = (n− n1) log γ.

In this case, we rewrite our equation as∣∣c1(γn−n1 − 1)γn1 − 2m
∣∣ 6 2|c2||δ|n + 2|c2||δ|n1 + 2m1 < 1 + 2m1 6 2m1+1,

since n > 500. Thus∣∣c1(γn−n1 − 1)γn12−m − 1
∣∣ < 1

2m−m1−1
. (10)

Let Λ1 be the expression inside the absolute value in the left-hand side of (10).
We note that Λ1 6= 0. For if not, we apply σ as above and we have σ(Λ1) = 0.
Thus

2m = |σ(c1) (δn − δn1)| 6 2|c2| < 1,
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which is absurd since m > 199. We apply Matveev’s inequality to Λ1 and for
this we take

α1 = c1(γn−n1 − 1), α2 = γ, α3 = 2, b1 = 1, b2 = n1, b3 = −m.

We have B = n. Further, the heights of α2 and α3 are already calculated. For
α1 we use the height properties and we get

h(α1) 6 h(c1) + (n− n1)h(γ) + log 2

6
3 log γ + 18 log 2 + (n− n1) log γ

3

6
1.92530× 1013(1 + log n)

3
,

where we have used (3). Thus we take A1 = 1.92530×1013(1+log n), A2 = 0.3,
A3 = 2.1. From Matveev’s inequality we obtain

log |Λ1| > −C(1 + log n) ·
(
1.92530× 1013(1 + log n)

)
· 0.3 · 2.1,

which compared with (10) gives us

(m−m1) log 2 < 3.28032× 1025(1 + log n)2.

Case 2. min{(n− n1) log γ, (m−m1) log 2} = (m−m1) log 2.

In this case, we rewrite our equation as∣∣c1γn − (2m−m1 − 1)2m1
∣∣ 6 γn1−1 + 2|c2||δ|n 6 2γn1 < γn1+3.

Thus, ∣∣∣∣1− (2m−m1 − 1

c1

)
γ−n2m1

∣∣∣∣ < 1

γn−n1−6
, (11)

where we have used 1 < c1γ
3. Let Λ2 be the expression inside the absolute

value in the left-hand side of (11). We note that Λ2 6= 0. Indeed, if it is not the
case then by applying σ as above we obtain σ(Λ2) = 0. Thus

1 6 (2m−m1 − 1)2m1 = 2m − 2m1 = |c2||δ|n < |c2| <
1

2
.

Now we apply Matveev’s inequality to Λ2. To do this we take

α1 =
2m−m1 − 1

c1
, α2 = γ, α3 = 2, b1 = 1, b2 = −n, b3 = m1.

Thus B = n. The heights of α2 and α3 are already calculated. From the prop-
erties of the height for α1 we obtain

h(α1) 6 (m−m1)h(2) + log 2 + h(c1)

6 (m−m1) log 2 + log γ + 6 log 2

6 1.92530× 1013(1 + log n),
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where again we use (3). Thus we take A1 = 5.7759× 1013(1 + log n), A2 = 0.3,
A3 = 2.1. Thus from Matveev’s inequality we obtain

log |Λ2| > −C(1 + log n) ·
(
5.7759× 1013(1 + log n)

)
· 0.3 · 2.1,

which compared with (11) yields

(n− n1) log γ < 9.84094× 1025(1 + log n)2.

So, from the conclusion of the two cases we have that

max{(n− n1) log γ, (m−m1) log 2} < 9.84094× 1025(1 + log n)2.

Now we get a bound on n. To do this, we rewrite our equation as∣∣c1(γn−n1 − 1)γn1 − (2m−m1 − 1)2m1
∣∣ < 4|c2||δ|n1 6 4|c2| < 2.

Thus∣∣∣∣c1(γn−n1 − 1)

2m−m1 − 1
γn12−m1 − 1

∣∣∣∣ < 2

2m − 2m1
6

4

2m
<

4

γn−8
<

1

γn−13
, (12)

where we have used γn−8 < 2m and 4 < γ5. Let Λ3 be the expression inside
the absolute value in the left-hand side of (12). If Λ3 = 0 we apply σ as above
and we obtain σ(Λ3) = 0. Then

1 6 (2m−m1 − 1)2m1 = 2m − 2m1 = |c2(δn − δn1)| 6 2|c2| 6
2

3
,

which is false. Thus Λ3 6= 0 and we apply Matveev’s inequality to it. We take

α1 =
c1(γn−n1 − 1)

2m−m1 − 1
, α2 = γ, α3 = 2, b1 = 1, b2 = n1, b3 = −m1.

Thus B = n. The height of α2 and α3 have already been calculated. For α1 we
use the properties of the height and we get

h(α1) 6 log γ + (n− n1)
log γ

3
+ (m−m1) log 2 + 7 log 2

<
3.93639× 1026(1 + log n)2

3
.

Thus we take A1 = 3.93639 × 1026(1 + log n)2, A2 = 0.3, A3 = 2.1. From
Matveev’s inequality we get

log |Λ3| > −C · (1 + log n) ·
(
3.93639× 1026(1 + log n)2

)
· 0.3 · 2.1,

which comparing with (12) we get n < 1.90805 × 1040(log n)3. Now, from
Lemma 2.3 we obtain

n < 1.21791× 1047.
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Now we will reduce this upper bound on n. To do this let Γ be defined as

Γ = n log γ −m log 2 + log c1,

and we go to equation (9). We assume min{n − n1,m − m1} > 20. Observe
that eΓ − 1 = Λ 6= 0. Therefore Γ 6= 0. If Γ > 0 we have

0 < Γ < eΓ − 1 = |Λ| < max{γn1−n+14, 2m1−m+1}.

If Γ < 0 we then have that 1− eΓ = |eΓ − 1| < 1/2. Thus e|Γ| < 2 and we get

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 2 max{γn1−n+14, 2m1−m+1}.

So, in both cases we have

0 < |Γ| < 2 max{γn1−n+14, 2m1−m+1}.

Dividing through log 2 we obtain

0 < |nτ −m+ µ| < max

{
148

γn−n1
,

6

2m−m1

}
, (13)

where

τ :=
log γ

log 2
, µ :=

log c1
log 2

.

Now we apply Lemma 2.2. To do this we take M := 1.21791 × 1047 which is
the upper bound on n. Using Mathematica we find that the denominator of
the convergent

p115

q115
=

2247452599136518246572247053320457964630307358519626

5539892570194379685318407717184223926861580420931369

of τ is such that q115 > 6M and that ε = ‖q115 µ‖−M‖q115 τ‖ = 0.419327 > 0.
Thus with A := 148, B := γ or A := 6, B := 2 from Lemma 2.2 we obtain
that, either

n− n1 6 444 or m−m1 6 175.

Now, we study each one of these two cases. First, we assume that n−n1 6 444
and m−m1 > 20. In this case we consider

Γ1 = n1 log γ −m log 2 + log
(
c1(γn−n1 − 1)

)
,

and we go to (10). We see that eΓ1 − 1 = Λ1 6= 0. Thus Γ1 6= 0 and, with a
similar argument as the previous one we obtain

0 < |Γ1| <
4

2m−m1
.
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Divinding through log 2 we get

0 < |n1τ −m+ µ| < 6

2m−m1
, (14)

where τ is the same one as above and

µ :=
log (c1(γn−n1 − 1))

log 2
.

We note that n1 > 0, since otherwise we would have n 6 444 which contradicts
n > 500. Thus we can apply Lemma 2.2. Consider

µk :=
log
(
c1(γk − 1)

)
log 2

, k = 1, 2, . . . , 444.

With the help of Mathematica we found that the same 115-th convergent of
τ well works, that is, it is such that its denominator satisfies q115 > 6M and
εk > 0.000889789 > 0 for all k = 1, 2, . . . , 444. Thus, with A := 6, B := 2 we
calculated log(q115 · 6/εk)/ log 2 for all k = 1, 2, . . . , 444 and we found that the
maximum value of them is at most 184. Therefore, m−m1 6 184.

We now study the other case. Assume m − m1 6 175 and n − n1 > 20.
Consider

Γ2 = n log γ −m1 log 2 + log

(
c1

2m−m1 − 1

)
,

and we go to (11). We see that 1− e−Γ2 = Λ2 6= 0. Thus Γ2 6= 0. As before, we
can deduce that

0 < |Γ2| <
2γ6

γn−n1
.

Dividing through log 2 we get

0 < |nτ −m1 + µ| < 16

γn−n1
, (15)

where τ is as above and

µ :=
log (c1/(2

m−m1 − 1))

log 2
.

Note that m1 > 0. For if not, then m 6 175 which contradicts m > 199. Thus
we can apply Lemma 2.2 again. Consider

µ` :=
log
(
c1/(2

` − 1)
)

log 2
` = 1, . . . , 175.

With Mathematica, we find that again the same 115-th convergent of τ above
well works, that is, q115 > 6M and ε` > 0.0016923 > 0 for all ` = 1, 2, . . . , 175.
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Thus, with A := 16, B := γ we calculated log(q115 · 16/ε`)/ log γ for all ` =
1, 2, . . . , 175 and found that the maximum of its values is 6 456. Thus n−n1 6
456.

Let us summarize what we have done. We got that either n− n1 6 444 or
m−m1 6 175. Assuming the first one, we got that m−m1 6 184 and, assuming
the second one we got n − n1 6 456. Altogether, we have that n − n1 6 456
and m−m1 6 184. So, it remains to study this case.

To do this, we consider

Γ3 = n1 log γ −m1 log 2 + log

(
c1(γn−n1 − 1)

2m−m1 − 1

)
,

and we go to (12). Note that eΓ3 − 1 = Λ3 6= 0. Thus Γ3 6= 0. As above we can
deduce

0 < |Γ3| <
2 · γ13

γn
,

since n > 500. Dividing through by log 2 we get

0 < |n1τ −m1 + µ| < 112

γn
, (16)

where τ is as above and

µ :=
log (c1(γn−n1 − 1)/(2m−m1 − 1))

log 2
.

As before, we note that n1 > 0 and m1 > 0. Thus we can apply Lemma 2.2
again. Consider

µk,` :=
log
(
c1(γk − 1)/(2` − 1)

)
log 2

, k = 1, . . . , 456, ` = 1, . . . , 184.

With the help of Mathematica we find again that the same 115-th convergent
above of τ works also well in this case, that is, q115 > 6M and εk,` > 5.27725×
10−6 > 0 for all k = 1, . . . , 456, ` = 1, . . . , 184. Thus, with A := 112, B := γ
we calculated log(q115 · 112/εk,`)/ log γ, for all k = 1, . . . , 456, ` = 1, . . . , 184
and found that the maximum value of them is 6 483. Thus n 6 483, which
contradicts our assumption on n. This finishes the proof of Theorem 1.1.
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for valuable bibliography support. He also thanks L.M. Rivera for a tutorial on
Mathematica.
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[7] M. Ddamulira, C. A. Gómez, and F. Luca, On a problem of Pillai with
k-generalized Fibonacci numbers and powers of 2, Monatsh. Math., 2018,
https://doi.org/10.1007/s00605-018-1155-1.

[8] M. Ddamulira, F. Luca, and M. Rakotomalala, On a problem of Pillai
with Fibonacci and powers of 2, Proc. Indian Acad. Sci. (Math. Sci.) 127
(2017), no. 3, 411–421.

[9] A. Dujella and A. Petho, A generalization of a theorem of Baker and
Davenport, Quart. J. Math. Oxford 49 (1998), no. 3, 291–306.

[10] S. Hernández Hernández, F. Luca, and L. M. Rivera, On Pillai’s problem
with the Fibonacci and Pell sequences, Accepted in the Bol. Soc. Mat.
Mexicana (2018).

[11] A. Herschfeld, The equation 2x−3y = d, Bull. Amer. Math. Soc. 42 (1936),
231–234.

[12] E. M. Matveev, An explicit lower bound for a homogeneous rational linear
form in the logarithms of algebraic numbers II, Izv. Math. 64 (2000), no. 6,
1217–1269.

[13] S. S. Pillai, On ax − by = c, J. Indian Math. Soc. 2 (1936), 119–122.

[14] , On the equation 2x−3y = 2X + 3Y , Bull. Calcutta Math. Soc. 37
(1945), 15–20.

Revista Colombiana de Matemáticas
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