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México

Abstract. In this paper we prove the local existence of a nonnegative mild
solution for a nonautonomous semilinear heat equation with Dirichlet condi-
tion, and give sufficient conditions for the globality and for the blow up in
finite time of the mild solution. Our approach for the global existence goes
back to the Weissler’s technique and for the finite time blow up we uses the in-
trinsic ultracontractivity property of the semigroup generated by the diffusion
operator.
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Resumen. En este art́ıculo demostramos la existencia local de una solución
“mild”no negativa para una ecuación de calor semilineal no autónoma con
condición de Dirichlet, y damos condiciones suficientes para la globalidad y
la explosión en tiempo finito de la solución “mild”. Nuestro enfoque para
la existencia global se remonta a la técnica de Weissler y para la explosión
en tiempo finito utilizamos la ultracontractividad intŕınseca del semigrupo
generado por el operador de difusión.

Palabras y frases clave. Ecuaciones de reacción-difusión, explosión en tiempo
finito, procesos de Lévy, problema de Dirichlet, semigrupo ultracontractivo,
proceso matado.
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1. Introduction

Consider a semilinear heat equations of the type

∂u(t, x)

∂t
= k(t)Au(t, x) + h(t)η(u), (t, x) ∈ (0, T ]×D, (1)

u(0, x) = f(x), x ∈ D,
u(t, x) = 0, (t, x) ∈ (0, T ]×Dc,

where D ⊂ Rd is an open set, k, h : [0,∞) → [0,∞) are continuous and not
identically zero functions, f is a continuous function on D, A is the infinitesimal
generator of a symmetric Lévy process and the nonlinearity η(u) is assumed to
satisfy η(0) = 0 and η(u) > 0 for u > 0. Reaction-diffusion equations of this
prototype model a great number of molecular biology, physic and engineering
problems (see [2], [29], [31]). The most common interpretation is to consider u
as the temperature of a substance in a recipient D ⊂ Rd subjet to a chemical
reaction; in this case η represents a heat source due to an exothermic reaction.

In contrast to linear equations, the solutions of nonlinear parabolic equa-
tions can develop singularities in finite time, no matter how smooth the initial
data are. It is well known that solutions of many differential equations of the
type (1) with or without Dirichlet conditions, can become unbounded in finite
time (phenomenon known as blow up in finite time). Rigorously, a solution u
of the semilinear heat equation (1) blows up in finite time if there exists a time
Te < ∞ such that u is bounded for all T < Te and limt→Te ‖u(·, t)‖∞ = ∞;
Te is called blow up time. If u exists for all T > 0 and ‖u(·, t)‖∞ < ∞ for all
t ≥ 0, u is called a global solution.

After de pioneering works of Kaplan [17] and Fujita [11, 12], many authors
have studied global existence and blow up in finite time of positive solutions
for semilinear heat equations (1) (with and without Dirichlet conditions) when
k ≡ 1 and A = ∆, the Laplacian operator, for several types of nonlinearities η.
The articles [1, 7, 8, 9, 10, 13, 23, 24, 25, 35, 36] are only a few examples. The
articles [5, 28] address these topics for non-local diffusions. The cases where
A = −(−∆)

α
2 is the fractional power of the Laplacian, 0 < α < 2, have

been used in models of anomalous growth of certain fractal interfaces [16]. The
articles [3, 15, 18, 20, 27, 32, 33, 34] are only a few examples for the study of
global existence and blow up in finite time of positive solutions.

In this paper we consider the semilinear heat equation (1) for η(u) = uβ

with β > 1. This equation is a scalar version of the system studied in [21], but
here, unlike [21], we have considered a time dependent coefficient, h(t), for the
reaction term uβ .
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2. Some preliminaries and assumptions

In the semilinear heat equation

∂u(t, x)

∂t
= k(t)Au(t, x) + h(t)uβ(t, x), t > 0, x ∈ D, (2)

u(0, x) = f(x), x ∈ D,
u(t, x) = 0, t > 0, x ∈ Dc,

D ⊂ Rd, d ≥ 1, is a bounded nonempty open set,A is the infinitesimal generator
of a symmetric Lévy process {Zt}t≥0, β > 1 is a constant, the initial value f
is a nonnegative function in the space C0(D) of continuous functions on D
vanishing on Dc and the time dependent coefficients k, h : [0,∞)→ [0,∞) are
continuous and not identically zero.

Recall [30] that the Lévy process Z ≡ {Zt}t≥0 is called symmetric when
Zt and −Zt have the same distribution for all t ≥ 0. The probability law
of Z is uniquely determined by the probability measure µ(B) := P [Z ∈ B],
B ∈ B

(
Rd
)
, where B

(
Rd
)

is the Borel σ-field on Rd. This probability mea-
sure is infinitely divisible and therefore, by the Lévy-Khintchine formula, its
characteristic function µ̂ admits the representation

µ̂(z) = exp

[
−1

2
〈z,Az〉+i〈γ, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1{x:|x|≤1}(x)

)
ν(dx)

]
,

z ∈ Rd, i =
√
−1 where A = (ajk) is a symmetric nonnegative-definite matrix,

γ = (γ1, . . . , γd) ∈ Rd and ν is a measure on Rd such that ν ({0}) = 0 and∫
Rd
(
|x|2 ∧ 1

)
ν(dx) < ∞, which is termed Lévy measure. The operator A is

the infinitesimal generator of the strongly continuous semigroup of contractions
{St}t≥0 defined by Stf(x) = E [f (x+ Zt)], f ∈ C0

(
Rd
)
, and is given by

Af(x) =
1

2

d∑
j,k=1

ajk
∂2f(x)

∂xj∂xk
+

d∑
j=1

γj
∂f(x)

∂xj

+

∫
Rd

f(x+ y)− f(x)−
d∑
j=1

yj
∂f(x)

∂xj
1{y:|y|≤1}(y)

 ν(dy)

for any twice continuously differentiable f ∈ C0

(
Rd
)
. Special instances of A

include the Laplacian ∆ and its fractional powers ∆α = −(−∆)
α
2 with 0 <

α ≤ 2.

As we already said in the introduction, Dirichlet boundary value problems
of the type (2) in the Gaussian case (ν ≡ 0), have been studied by many
authors. In this paper we consider the purely non-Gaussian symmetric case
in which A = 0 and ν is a nontrivial Lévy measure, hence Z is a pure-jump
process which leaves D only when it hits Dc. This gives rise to the condition
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u(t, x) = 0, t > 0, x ∈ Dc in (2), which is the form that the Dirichlet boundary
condition takes in our setting; see [4].

Throughout this paper we assume that Z possesses a family of transition
densities pt(x, y) ≡ pt(x − y) which are continuous for every t > 0, and that
for any δ > 0 there exists a constant c = c(δ) such that pt(x) ≤ c for all t > 0
and all |x| ≥ δ. In [19], Lemma 2.5 and [4], Lemma 1.1, sufficient conditions
are given for continuity on Rd\{0} and for boundedness on Rd, respectively, for
every t > 0 of the transition densities of isotropic unimodal pure-jump Lévy
processes. Letting

K(t, s) =

∫ t

s

k(r)dr, 0 ≤ s ≤ t,

it is known (see [20], p. 3 and 4) that the time-inhomogeneous Markov process

W ≡ {Wt}t≥0, where Wt
D
= ZK(t,0) (here

D
= means equality in distribution) has

the transition probability

Ps,t(x,B) = P
[
ZK(t,s) ∈ B − x

]
= SK(t,s)1B(x),

where {St}t≥0 denotes the semigroup with generator A and 1B is the indicator

function of B. Moreover, the function (t, x) 7→ SK(t,s)f(x), (t, x) ∈ [s,∞)×Rd,
is the unique solution of

∂w(t, x)

∂t
= k(t)Aw(t, x), t > s, x ∈ Rd,

w(s, x) = f(x), f ∈ C0

(
Rd
)
.

For this reason we call {Wt}t≥0 the time-inhomogeneous Markov process cor-
responding to the family of generators {k(t)A}t≥0. Letting

ps,t(x, y) = pK(t,s)(x, y), 0 ≤ s ≤ t, x, y ∈ Rd,

we see that ps,t(x, y) is a transition density function for the process {Wt}t≥0.
We define

τD = inf {t > 0 : Wt /∈ D} and τ̂D = inf {t > 0 : Zt /∈ D} .

Using that Wt
D
= ZK(t,0) we get

τ̂D = K (τD, 0) . (3)

Let us consider the ZD process killed on leaving D, which is given by

ZDt =

{
Zt on {t < τ̂D} ,
∂ on {t ≥ τ̂D} ,
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where ∂ is a cemetery state. The state space of
{
ZDt
}
t≥0

is the set D∂ = D∪{∂}
and its transition probability is

PDt (x,Γ) = Px [Zt ∈ Γ; t < τ̂D] , t > 0, x ∈ D, Γ ∈ B(D),

where B(D) denotes the Borel σ-field on D. Here and in the sequel Px and
Ex denote, respectively, the distribution and expectation with respect to the
process {x+ Zt}t≥0 starting in x ∈ Rd, but we use the same symbol {Zt}t≥0

for the resulting process.

Let
{
SDt
}
t≥0

be the semigroup associated to the process
{
ZDt
}
t≥0

, and let

pDt (x, y) be the transition density function of
{
SDt
}
t≥0

, i.e.

SDt f(x) = Ex [f (Zt) : t < τ̂D]

=

∫
D

f(y)pDt (x, y)dy, t > 0, x ∈ D, f ∈ B+
(
Rd
)
,

where B+
(
Rd
)

is the space of nonnegative bounded measurable functions on
Rd. It is known [14] that pDt (x, y) = pDt (y, x) and pDt (x, y) ≤ pt(x, y) for all
t > 0 and x, y ∈ D, and that

{
SDt
}
t≥0

is a strongly continuous semigroup of

contractions on the space of square-integrable functions L2(D). Any operator
SDt is self-adjoint due to the a.e. symmetry of pDt (x, y). Moreover, since D is
bounded, the continuity of pt(·) for all t > 0 implies (see [14], p. 93) that pDt (·) is
bounded for every t > 0. Therefore SDt is a Hilbert-Schmidt operator, hence it is
also compact, and there exists an orthonormal basis of eigenfunctions {ϕn}∞n=0

with corresponding eigenvalues
{
e−λnt

}∞
n=0

satisfying 0 < λ0 < λ1 ≤ λ2 ≤ · · · ,
and limn→∞ λn = ∞. All eigenfunctions ϕn are continuous and real-valued
(see [14]). Let Vr(x) =

{
y ∈ Rd : |y − x| < r

}
be the open ball of radious r > 0

centered at x ∈ Rd. If, in addition to the above assumptions:

(H1) D is a connected open set, or

(H2) D is a bounded open set and for every x ∈ Rd and r > 0, ν (Vr(x)) > 0,
then the transition density pDt (·, ·), t > 0 is strictly positive on D×D and the
eigenfunction ϕ0(x) > 0 for every x ∈ D (see [14], Proposition 2.2).

Let
{
WD
t

}
t≥0

be the additive process {Wt}t≥0 killed on exiting D, namelly

WD
t =

{
Wt on {t < τD} ,
∂ on {t ≥ τD} ,

where ∂ is a cemetery point. The state space of
{
WD
t

}
t≥0

is the set D∂ =

D ∪ {∂}, and from (3) it follows that its transition function is given by

PDs,t(x,Γ) = Px
[
ZK(t,s) ∈ Γ;K(t, s) < τ̂D

]
, 0 ≤ s < t, x ∈ D, Γ ∈ B(D).
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Hence the transition density function of
{
WD
t

}
t≥0

is given by pDs,t(x, y) =

pDK(t,s)(x, y) and thus, for every f ∈ L2(D),

UDt,sf(x) ≡
∫
D

f(y)pDs,t(x, y)dy = SDK(t,s)f(x), 0 ≤ s < t, x ∈ D. (4)

It is easy to see from Proposition 1 in [21] that pDs,t(x, y) is a density of PDs,t(x,Γ),
which is strictly positive, symmetric and continuous on D ×D.

Using (4) and the fact that
{
SDt
}
t≥0

is a strongly continuous semigroup of

contractions on L2(D), we obtain that
{
UDt.s

}
t≥s≥0

is an evolution family of

contractions on L2(D). In [14], Theorem 3.1 it is proved that either condition
(H2) or

(H3) D is an open bounded connected Lipschitz set, and for every x ∈ S,
γ ∈

(
0, π2

]
and r > 0,

ν (Γγ(x) ∩ Vr(0)) > 0,

where S denotes the unit sphere in Rd and Γγ(x) =
{
y ∈ Rd : 〈x, y〉 > |y| cos γ

}
,

imply that
{
SDt
}
t≥0

is an intrinsically ultracontractive semigroup, i.e. for all

t > 0 there exists a positive constant c = c(t,D) such that for all f ∈ L2(D),∣∣SDt f(x)
∣∣ < cϕ0(x)‖f‖L2(D), x ∈ D; (5)

see [6], Theorem 3.2.

3. Local existence of a mild solution in L∞

A solution of the integral equation

u(t, x) = UDt,sf(x) +

∫ t

0

h(s)UDt,su
β(s, x)ds, (6)

is called a mild solution of (2). It is known ([26], pp. 129-130) that any classical
solution of (2) is a solution of the integral equation (6).

We are going to assume that the initial value f is a nonnegative function in
L∞(D), where L∞(D) is the space of real-valued essentially bounded functions
defined on D.

For any constant τ > 0 let

Eτ := {u : [0, τ ]→ L∞(D), |||u||| <∞} ,

where |||u||| := sup0≤t≤τ ‖u(t, ·)‖∞.

The couple (Eτ , ||| · |||) is a Banach space and

C+
R := {u ∈ Eτ : |||u||| ≤ R, u ≥ 0}

is a closed subset of Eτ .
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Theorem 3.1. Let f ∈ L∞(D) be nonnegative. There exists a constant τ =
τ(f) > 0 such that the integral equation (6) possesses a unique solution in
L∞ ([0, τ ]×D) ∩ C+

R .

Proof. Let us define the operator Ψ on C+
R by

Ψu(t, x) = UDt,0f(x) +

∫ t

0

h(s)UDt,su
β(s, x)ds.

We are going to show that Ψ is a contraction on C+
R for suitably chosen R > 0

and τ > 0. In fact, if u, v ∈ C+
R , then

|||Ψu−Ψv||| ≤ sup
0≤t≤τ

∫ t

0

h(s)‖uβ(s, ·)− vβ(s, ·)‖∞ds. (7)

Applying the elementary inequality
∣∣aβ − bβ∣∣ ≤ β(a ∨ b)β−1|a − b|, a, b > 0,

β ≥ 1 in (7), we get

|||Ψu−Ψv||| ≤ βRβ−1

∫ τ

0

h(s)‖u(s, ·)− v(s, ·)‖∞ds. (8)

Noticing that

|||Ψu||| ≤ ‖f‖∞ +

∫ τ

0

h(s)Rβds

and taking R > 0 big enough and τ > 0 sufficiently small we get from (8)
that Ψ is a contraction mapping on C+

R . Hence the Banach fixed-point theorem

implies that (6) has a unique solution in L∞ ([0, τ ]×D) ∩ C+
R . �X

Since the evolution system
{
UDt,s

}
t≥s≥0

preserves positivity (due to (4)) we

have that
u0(t, x) := UDt,0f(x) ≥ 0, t ≥ 0, x ∈ D. (9)

Define
un(t, x) := Ψun−1(t, x), t ≥ 0, x ∈ D, n = 1, 2, . . . , (10)

where Ψ is given by

Ψv(t, x) := UDt,0f(x) +

∫ t

0

h(s)UDt,sv
β(s, x)ds (11)

for any nonnegative v ∈ L∞(D). Using again that
{
UDt,s

}
t≥s≥0

preserves posi-

tivity it follows by induction that un−1(t, x) ≤ un(t, x), n = 1, 2, . . .. Hence the
limit

u(t, x) := lim
n→∞

un(t, x) (12)

exists for all t ≥ 0 and x ∈ D. From the monotone convergence theorem we
conclude that u(t, x) satisfies (6). This shows that the solution of the integral
equation (6) is given by the increasing limit (12).
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4. Global existence for a nonnegative initial value in L∞(D)

Here we suppose again that the initial value f is a nonnegative function in
L∞(D). Our proof of the global existence is an adaptation, to our case, of the
proof given in [36].

Theorem 4.1. Let φ(t) = ‖ sup0≤s≤t U
D
s,0f‖∞, t > 0. If

(β − 1)

∫ ∞
0

h(t)φβ−1(t)dt < 1,

then the solution of the integral equation (6) is global.

Proof. First, we note that φ is a nondecreasing function on [0,∞) and that
for any t ≥ 0 and x ∈ D,

0 ≤ UDt,0f(x) ≤ φ(t) ≤ ‖f‖∞ <∞. (13)

Now, let us define

B(t) :=

[
1− (β − 1)

∫ t

0

h(s)φβ−1(s)ds

]− 1
β−1

.

Then B(0) = 1 and

B′(t) = − 1

β − 1

[
1− (β − 1)

∫ t

0

h(s)φβ−1(s)ds

]− 1
β−1−1 [

−(β − 1)h(t)φβ−1(t)
]

= h(t)Bβ(t)φβ−1(t),

which gives

B(t) = 1 +

∫ t

0

h(s)Bβ(s)φβ−1(s)ds. (14)

Since the evolution system
{
UDt,s

}
t≥s≥0

is positivity-preserving and φ is non-

decreasing, it is follows from (13) that for any function v : [0,∞)×D → [0,∞)
such that for each t ≥ 0, v(t, ·) ∈ L∞(D) and v(t, x) ≤ B(t)φ(t) for all x ∈ D,
we have

0 ≤ Ψv(t, x) ≤ φ(t) +

∫ t

0

h(s) (B(s)φ(s))
β
ds

≤ φ(t) +

∫ t

0

h(s)Bβ(s)φ(s)φβ−1(s)ds

≤ φ(t) + φ(t)

∫ t

0

h(s)Bβ(s)φβ−1(s)ds

= B(t)φ(t) for all x ∈ D,
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where we have used (14) in the last equality. Therefore,

0 ≤ Ψv(t, x) ≤ B(t)φ(t), t ≥ 0, x ∈ D. (15)

Finally, defining the sequence un(t, x), n = 0, 1, 2, . . . as in (9) and (10) it is
follows that un−1(t, x) ≤ un(t, x), n = 1, 2, . . .. From (15) we conclude that

u(t, x) := lim
n→∞

un(t, x) ≤ B(t)φ(t) <∞

for all t ≥ 0, x ∈ D. Hence u is a global mild solution of (2). �X

5. Blow up in finite time for a nonnegative initial value in C0(D)

Recall that ϕ0 is the eigenfunction corresponding to the first eigenvalue λ0 of
the infinitesimal generator of the semigroup

{
SDt
}
t≥0

. Arguing as in the case of

Brownian motion in a bounded domain (see [22]), it can be shown that ϕ2
0(x)dx

is the unique invariant measure of the semigroup {Qt}t≥0 given by

Qtg(x) =
eλ0t

ϕ0(x)
SDt (gϕ0) (x), x ∈ D, g ∈ Cb(D), t ≥ 0.

Thus, defining

E[g] :=

∫
D

g(x)ϕ2
0(x)dx, g ∈ Cb(D),

and

Tt,sg(x) =
eλ0K(t,s)

ϕ0(x)
SDK(t,s) (gϕ0) (x), x ∈ D, g ∈ Cb(D), t ≥ s ≥ 0,

we have that for any t ≥ s ≥ 0 and g ∈ Cb(D),

E [Qtg] = E[g] and Tt,sg = QK(t,s)g. (16)

Lemma 5.1. For any t ≥ s ≥ 0 and g ∈ Cb(D),

E[Tt,sg] = E[g].

Proof. This is a direct consequence of (16). �X

Proposition 5.2. Let f = gϕ0, where g ∈ Cb(D) is nonnegative and not
identically zero. If

∫
D

f(x)ϕ0(x)dx >

[
1

(β − 1)
∫∞

0
h(s)e−λ0(β−1)K(s,0)ds

] 1
β−1

‖ϕ0‖1, (17)

then the mild solution of (2) blows up in finite time.
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Proof. Notice that ∫
D

f(x)ϕ0(x)dx = E[g] > 0.

We define

w(t, x) =
eλ0K(t,0)u(t, x)

ϕ0(x)
and z(t, x) = e−λ0K(t,0)ϕ0(x), x ∈ D, t ≥ 0,

where u is the mild solution of (2), i.e., u solves the integral equation (6).
Multiplying both sides of (6) by ϕ−1

0 (x)eλ0K(t,0) we get

w(t, x) = Tt,0g(x) +

∫ t

0

h(s)
eλ0K(t,0)

ϕ0(x)
UDt,su

β(s, x)ds

= Tt,0g(x) +

∫ t

0

h(s)
eλ0K(t,0)

ϕ0(x)
UDt,s

(
uβ(s, x)

ϕβ−1
0 (x)

ϕβ−1
0 (x)

)
ds

= Tt,0g(x) +

∫ t

0

h(s)eλ0K(s,0) e
λ0K(t,s)

ϕ0(x)
UDt,s

(
uβ(s, x)

ϕβ−1
0 (x)

ϕβ−1
0 (x)

)
ds

= Tt,0g(x) +

∫ t

0

h(s)eλ0K(s,0)Tt,s

(
uβ(s, x)

ϕβ−1
0 (x)

ϕβ−1
0 (x)

)
ds

= Tt,0g(x) +

∫ t

0

h(s)Tt,s

(
eλ0K(s,0)βuβ(s, x)

ϕβ0 (x)
e−λ0K(s,0)(β−1)ϕβ−1

0 (x)

)
ds

= Tt,0g(x) +

∫ t

0

h(s)Tt,sw
β(s, x)zβ−1(s, x)ds.

The last equality yields

E [w(t, ·)] = E [Tt,0g] +

∫ t

0

h(s)E
[
Tt,s

(
wβ(s, ·)zβ−1(s, ·)

)]
ds

and, due to Lemma 5.1,

E [w(t, ·)] = E[g] +

∫ t

0

h(s)E
[
wβ(s, ·)zβ−1(s, ·)

]
ds.

It follows that for any ε > 0,

E [w(t+ ε, ·)]− E [w(t, ·)] =

∫ t+ε

t

h(s)E
[
wβ(s, ·)zβ−1(s, ·)

]
ds, (18)

with
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E
[
wβ(s, ·)zβ−1(s, ·)

]
= e−λ0K(s,0)(β−1)

∫
D

[w(s, x)ϕ0(x)]
β
ϕ0(x)dx (19)

≥ e−λ0K(s,0)(β−1)‖ϕ0‖1
(∫

D

w(s, x)
ϕ2

0(x)

‖ϕ0‖1
dx

)β
=

(
e−λ0K(s,0)

‖ϕ0‖1

)β−1

E [w(s, ·)]β ,

where we have used Jensen’s inequality with respect to the probability measure
ϕ0(x)dx
‖ϕ0‖1 .

Let y(t) := E [w(t, ·)]. Plugging (19) into (18), and afterward multiplying
the resulting inequality by ε−1 with ε→ 0, we obtain that

y′(t) ≥
(
‖ϕ0‖−1

1 e−λ0K(t,0)
)β−1

h(t)yβ(t),

y(0) =

∫
D

f(x)ϕ0(x)dx.

Let

c(t) = ‖ϕ0‖1−βe−λ0(β−1)K(t,0)h(t) and N =

∫
D

f(x)ϕ0(x)dx > 0,

and consider the ordinary differential equation

p′(t) = c(t)pβ(t), p(0) = N.

Notice that

p−β(t)p′(t) = c(t).

Thus, integrating both sides of the above equality from 0 to t yields

1

1− β
[
p1−β(t)−N1−β] =

∫ t

0

c(s)ds.

Therefore

p(t) =

[
1

N1−β − (β − 1)
∫ t

0
c(s)ds

] 1
β−1

. (20)

Since the function
∫ t

0
c(s)ds is continuous and increases to

∫∞
0
c(s)ds, we have

that p blows up for some 0 < Te <∞ if

N1−β − (β − 1)

∫ ∞
0

c(s)ds < 0,

Revista Colombiana de Matemáticas
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which hols if and only if (17) is satisfied. Thus, by comparison, we have that

lim
t↑Te
‖w(t, ·)‖∞ ≥ lim

t↑Te
E [w(t, ·)] ≥ lim

t↑Te
p(t) =∞.

�X

Lemma 5.3. Let f ∈ C0(D) be a nonnegative and not identically zero function.
There exists g ∈ Cb(D) nonnegative and not identically zero such that gϕ0 ≤ f
on D.

Proof. Since by assumption f is not identically zero, there exists x ∈ D such
that f(x) > 0. Using the continuity of f we get r > 0 such that f(x) > 0 on
Vr(x) ⊂ D. By Urysohn’s lemma there exists a continuous function q : Rd →
[0, 1] such that q = 1 on the closed ball V r

3
(x), and q = 0 on

(
V 2r

3
(x)
)c

. Hence

the support of q is contained in Vr(x). Putting ζ = 1
2 (f ∧q) we get a continuous

function which is not identically zero, and whose support C̃ is compact, has
positive Lebesgue measure and is contained in D. Moreover, 0 ≤ ζ < f on C̃.

Let {tn} be any given sequence of positive numbers with tn ↓ 0. It follows
from the strong continuity of

{
UDt,s

}
t≥s≥0

, that

UDtn,0ζ → ζ in L2(D),

and therefore
UDtn,0ζ → ζ in L2(C̃).

Using Egoroff’s theorem, there exists a subsequence {tnk} of {tn}, and a set

C ⊂ C̃ of positive Lebesgue measure such that

UDtnk ,0
ζ → ζ uniformly in C.

Hence, there exists t0 > 0 such that

UDt0,0ζ(x) < f(x) for all x ∈ C.

Let us define ξ = 1CU
D
t0,0ζ. The intrinsic ultracontractivity (5) implies that

ρ :=
UDt0,0ζ

ϕ0
=
SDK(t0,0)ζ

ϕ0
∈ Cb(D).

Then, we can write ξ = 1Cρϕ0, and thus, any nonnegative continuous function
g with support contained in C, such that g ≤ 1Cρ satisfies the assertion of the
lemma. �X

Theorem 5.4. Let f ∈ C0(D) be a nonnegative and not identically zero func-

tion, and let g as in Lemma 5.3. If condition (17) holds for f̃ = gϕ0, then the
mild solution of (2) blows up in finite time.
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Proof. Using that 0 ≤ f̃ ≤ f , we get

u(t, x) = UDt,0f(x) +

∫ t

0

h(s)UDt,su
β(s, x)ds

≥ UDt,0f̃(x) +

∫ t

0

h(s)UDt,su
β(s, x)ds.

Let v be the mild solution of (2) with initial value f̃ , which is given by

v(t, x) = UDt,0f̃(x) +

∫ t

0

h(s)UDt,sv
β(s, x)ds.

We define the operator Ψ̃ by

Ψ̃v(t, x) = UDt,0f̃(x) +

∫ t

0

h(s)UDt,sv
β(s, x)ds.

Then
Ψ̃u(t, x) ≤ Ψu(t, x),

where Ψ is defined in (11). Now, we define the sequences {vn}∞n=0 and {un}∞n=0

by

vn(t, x) =

{
UDt,0f̃(x), n = 0,

Ψ̃vn−1(t, x), n ∈ N,

and

un(t, x) =

{
UDt,0f(x), n = 0,

Ψun−1(t, x), n ∈ N.

If vn−1(t, x) ≤ un−1(t, x), then

vn(t, x) = Ψ̃vn−1(t, x) ≤ Ψ̃un−1(t, x) ≤ Ψun−1(t, x) = un(t, x).

The contraction mapping property in a Banach space implies that the sequence
{vn}∞n=0 converges in the norm ||| · ||| to the unique fixed point v of Ψ̃, namely

vn → v and Ψ̃vn → v

in the norm ||| · ||| as n→∞. Similarly, the sequence {un}∞n=0 converges to the
unique fixed point u of Ψ, that is

un → u and Ψun → u

in the norm ||| · ||| as n→∞. Then, we have demonstrated that v ≤ u. Since f̃
satisfies the conditions of Proposition 5.2, we conclude that the mild solution
of (2) blows up in finite time. �X
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Remark 5.5. Note that the above theorem is consistent with the correspond-
ing result obtained in [22], which establishes that for the caseA = ∆, k = h ≡ 1,
β > 1 and a nonnegative initial condition f ∈ C0(D), where D is a bounded
regular domain, the positive mild solution blows up in finite time if∫

D

f(x)ϕ(x)dx > λ
1

β−1

0 ‖ϕ0‖1.
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[20] J. A. López-Mimbela and A. Pérez, Finite time blow up and stability of a
semilinear equation with a time dependent lévy generator, Stoch. Models
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elos Estocásticos, Sociedad Matemática Mexicana 14 (1998), 283–290.

[23] V. Marino, F. Pacella, and B. Sciunzi, Blow up of solutions of semilinear
heat equations in general domains, Commun. Contemp. Math. 17 (2015),
no. 2.

[24] L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems
with time dependent coefficients under dirichlet boundary conditions, Proc.
Amer. Math. Soc. 141 (2013), 2309–2318.

Revista Colombiana de Matemáticas
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[25] L. E. Payne and P. W. Schaefer, Lower bound for blow-up time in parabolic
problems under dirichlet conditions, J. Math. Anal. Appl. 328 (2007),
1196–1205.

[26] A. Pazy, Semigroups of linear operators and applications to partial differ-
ential equations, Springer-Verlag, 1983.
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