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RESUMEN. En este trabajo mostramos inclusiones espectrales de semigrupos
integrados para el espectro de Saphar, el espectro esencial de Saphar y el
espectro cuasi-Fredholm.
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1. Introduction and Preliminaries

Throughout this paper, X denotes a complex Banach space, B(X) the Banach
algebra of all bounded linear operators on X. Let A be a closed linear op-
erator on X with domain D(A). We denote by A*, R(A), N(A), R*(A) =
My>o R(A™) and o(A), respectively the adjoint, the range, the null space, the
hyper-range and the spectrum of A.
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Recall that a closed operator A is said to be a Kato operator or semi-
regular if R(A) is closed and N(A) C R*>°(A). Denote by px(A4) = {A € C:
A — I is Kato} the Kato resolvent and o (A) = C\px (A) the Kato spectrum
of A. Tt is well known that px (A) is an open subset of C, see [6, Theorem 2.10].

For subspaces M, N of X we write M C¢ N (M is essentially contained in
N) if there exists a finite-dimensional subspace F' C X such that M C N + F.

A closed operator S is called a generalized inverse (pseudo inverse) of A if
R(A) C D(S5), R(S) € D(A), ASA = A on D(A) and SAS = S on D(S), see
[5, Definition 1.1].

A closed operator A is called a Saphar operator if A has a generalized inverse
and N(A) C R>*(A).
If we assume in the definition above that N(A) C® R*(A), A is said to be

an essentially Saphar operator. The Saphar and essentially Saphar spectra are
defined by

osap(A) ={A € C: A — Al is not Saphar} and

05ap(A) ={A € C: A — Al is not essentially Saphar}

respectively. Integrated semigroups were first defined by Arendt [1]. He showed
that certain natural classes of operators, such as adjoint semigroups of Cj
semigroups on non-reflexive Banach spaces, give rise to integrated semigroups
which are not integrals of Cy semigroups.

A family of bounded linear operators (S(t));>0, on a Banach space X is
called an integrated semigroup (once integrated semigroup) iff

(1) S(0) =0;
(2) S(¢) is strongly continuous in t > 0;

(3) S(r)S(t) = [y (S(T+1t) — S(r))dr = S(t)S(r).

In the general setting, a strongly continuous family (S(¢));>0 C B(X) is called
an n-times integrated semigroup if (1) and (2) are satisfied and for all s,¢ > 0

SIS0 = g, ! 5 (/Or(r S t) — (- T)"—ls(T)dT> .

The differentation spaces C™, n > 0, are defined by C° = X and
Ch={reX:S()reC"(R";X)}.
Using this notion, (3) can equivalently be formulated by, for all z € X,
S(t)x € C* and S'(r)S(t)x = S(r + t)x — S(r)x, Vr,t>0.
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Theset N = {x € X : S(t)x = 0,Vt > 0} is called the degeneration space of the
integrated semigroup (S(t))¢>0. Moreover (S(t)):>0 is called non-degenerate if
N = {0} and degenerate otherwise.

The generator A : D(A) € X — X of a non-degenerate integrated semi-
group (S(t))i>o is defined as follows: z € D(A) and Az = y iff x € C! and
S'(tyxr —x = S(t)y for all t > 0. Also, we have: C2 C D(A) C C! and
Ax = 8”(0)x for all x € C?. Moreover AC? C C! [9, Lemma 3.2].

Note that A is a closed linear operator [9, Lemma 3.3], S(t) : C! —
C? C D(A) and AS(t)z = S"(0)S(t)x = S'(t)x — x for all z € C'. Further
AS(t)x = S(t)Ax for all x € D(A), see [9, Lemma 3.4]. fot S(r)dr maps X into
D(A) and Afot S(r)xdr = S(t)x — txr. A non-degenerate integrated semigroup
is uniquely determined by its generator. Let u : [0,7) — X be continuous such
that fot u(s)ds € D(A) and A(fot u(s)ds) = u(t), for all 0 <t < T. Then u =0
n [0,7). Arendt [1] showed that if A generates S; as an n-times integrated
semigroup, then the Abstract Cauchy Problem «/(t) = Au(t),u(0) = z has a
classical solution for all z € D(A™*1).

In order to understand the behavior of the solutions in terms of the data
concerning A, one seeks information about the spectrum of S(¢) in terms of
the spectrum of A. Unfortunately the spectral mapping theorem e*?+(4) =
0.(S(t)) \ {0} often fails, sometimes in dramatic ways, when S(t) is a strongly
continuous semigroup. However, the inclusion

e C o,(5(1)) \ {0}

always holds, where 0. € {0,04ap,0%,,} and S(t) is a strongly continuous
semigroup, see [8, Theorems 2.1 and 3.2] and [3, Page 276].

The spectral inclusions for various reduced spectra of an n-times uniformly
exponentially bounded integrated semigroup were studied by Day [2], when
n > 0. Precisely, he showed the following spectral mapping theorem

(t—s)"
IN())
where o, € {0p,0qp} the point spectrum and the approximate point spectrum,
a > 0 and T is the Euler integral, see [2, Theorem 3.9]. By combining these

results from Day [2, Theorem 3.9] we can conclude that the spectral mapping
theorem also holds for the entire spectrum o(S(t)), i.e.,

o (S(t)) U {0} = {/Ot s ds; ) € a*(S(t))} U {0},

a(S(t)u{o} = {/Ot s (tF_((j))a

Then, in the case of a once uniformly exponentially bounded integrated semi-
group, we have

ds; A € U(S(t))} U {0}.

/ "0 M5 U {0} = (1)) U {0).
0
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According to Lemma 2.1, the inclusion fg e**ds C o(S(t)) holds when
(S(t))e>0 is an integrated semigroup.

In this work, we will continue in this direction, we will establish the re-
lationship between the spectra of the integrated semigroup and its generator,
more precisely, we show that

t
/ W) 45 C 0. (S(1))
0

where o, runs through the Saphar, essential Saphar and quasi-Fredholm spec-
tra.

2. Spectral Inclusions For Saphar Spectrum

We start with some lemmas which will be needed in the sequel.

Lemma 2.1. Let A be the generator of a non-degenerate integrated semigroup
(S(t))et>0, Da(t)z = fot ert=3)S(s)zds. Then, for all X € C, t >0, and n € N,

(1) (fy e**ds — S(t))z = (A — A)Dy(t)z,Vz € X
(2) (foe**ds — S(t))x = DA(t)(A — A)z, Yo € D(A);
(8) N((A— A)") € N(fy e**ds — S(t))";

(4) R([y e**ds — S(t)" € R(A = A)".

Proof. (1) for all r, ¢t € [0,400[ and z € X we have,

S(r)Dy(t)z = S(r) / A=) S(s)xds

0
_ /O L A9 518 (s)eds
_ /0 t /0 A [S(r + 5) — S(r)|wdrds
_ /0 ' /0 " A8 (r 1 5) — S(r)rdsdr.
Then, for all z € X, Dy(t)x € C*. Furthermore,
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t
= e/\(tfs)%[S(s)S(r)]xds —S(r) / e*ads + Dy (t)z
0 0

=S(r)S({t)z + AS(r)Dx(t)x — S(r)/o eMads + Dy(t)z

— S(r) (S(t) +ADA() — /0 t e’\Sds) 2+ Dy(D)z.

Therefore Dy (t)xz € D(A) and ADy(t)x = S(t)x + ADy(t)x — fot eMads.
Thus,

t A s — x=(\— x
(/0 eMds — S(t)) (A=A)D\(t)z.

(2) Let x € D(A), then

Hence

( /0 " Mds - S(1))r = Dy()(A — Al

The assertions (3) and (4) are consequences of the statements (1) and (2). ™

Lemma 2.2. Let (S(t))i>0 be a non-degenerate integrated semigroup on X
with generator A. For A € C and t > 0, let Ly(t)x = fg e~ **Dy(s)xzds. Then

(1) Lx(t) is a bounded linear operator on X,
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(2) Vx € X, Ly(t)x € D(A) and (A — A)Lx(t) + GA(t)Dx(t) = ¢a(t)] with
GA(t) = e I and ¢x(t fo Jo e M dodr,

(3) The operators Ly(t), G,\( ), Da(t) and (A — A) are pairwise commuting.

Proof. (1) Obvious.

(2) For all > 0 and = € X, we have

S(r)La(t)z = /0 S Dy ()

_ /Ot /O N /OT[S(HU) — S(u)|zdudodr
_ /Ot /OT /Ore_)“’[S(u—i—a) — S(u)wdudodr
_ /0 ' /O t /O " e MUS(u + o) — S(u)wdodrdu.

Therefore, Ly(t)z € C! and

%S(T)L)\(t)x = / /Te_)‘U[S(r +0) = S(r)|zdodr
/ / S(r + 0)— S(0)|zdodr+ L (t)z—dr(£)S(r)a
/ / )S(r)xzdodr + Ly(t)x — ox(£)S(r)x

S(r)le MD,\( t)x + ALx(t)x — da(t)x] + La(t)x.

Therefore, ALy (t)x = e MDy(t)z + AL (t)x — ¢ (t)x.
So, we have (A — A)Lx(t) + GA(t)Dx(t) = ¢x(t)I with Gy (t) = e M.

(3) For all t > 0, L)(t) and Dy(t) are commuting. Indeed, for all ¢,s > 0 we
have,

¢
D)\(t)D,\(s)x:/ = S(u) Dy (s)zdu
0
t s
:/ eMt*u)S(u)/ AV S () zdudu
0 0
t s
:/ / AW A=) () S (v)zdudu
o Jo

s t

:/ ek(sfv)S(v)/ A S () zdudv
0 0

= D (s)Dx(t)z.
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Therefore,
t
La()Da(t)z = / =YD, () Da (H)zdu
0
t
:/ e~ M Dy (t) Dy (u)zdu
0
t
:D,\(t)/ e M Dy (u)zdu
0

= D)\(t)L)\(t){E

For all z € D(A), we have

Ia()(A — Az = /Ot =Dy (5)(A — A)wds

— /Ot e </O eMdr — S(s)> xds

= T — tef)‘SS s)xds
i [ ()
= (ﬁ)\(t)l‘ — G)\(t)D,\(t).’L‘
=(A—A)Ly(t)z.
It is easy to see that (A — A)GA(t)x = GA(t)(A — A)z, for all z € D(A).
Also, by lemma 2.1 (A — A)D(t)x = Dx(t)(A — A)z, for all x € D(A).
v

Lemma 2.3. Let (S(t))i>0 be a non-degenerate integrated semigroup on X
with generator A. For alln € N*, A € C and t > 0, there exist two operators
F,(t), H,(t) € B(X) such that,

(1) Vo € X, F,(t)x € D(A™) and (A — A)"F,(t) + H,(t)D}(t) = I,

(2) (A—A)", F,(t), Hn(t) and DY(t) are pairwise commauting.
Proof. By lemma 2.2, there exist two operators Ly (t) and Gx(t) such that
(A—=A)Lx(t) + GA(t)Dx(t) = I. For all n > 1 and = € X, we have L}(t)x €

D(A™). In fact, the proof is by induction. For n = 1, from lemma 2.2 Ly (t)z €
D(A). suppose that LY~ (t)z € D(A" 1), so LY (t)x € D(A"™!) and

(A= ALY (D = [(A = A) L))" La()z
= La(t)[(A = A)LA(1)]" "'z € D(A),
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hence, L} (t)x € D(A™). Furthermore,
(A= A)"LX(#) = [(A = A) L))"
= [I = GA(t) DA ()"
=1—L1,(t)DA(2),

n

with Ly (t) = Y (-1 (Z) Gk (t)DE1(1).
k=1
Therefore (A — A)"LY(t) + L1, (t)Dx(t) = I. Similarly, we have
LY, 0)DX(t) = [I = (A= A" LX@®)])"
n g - n n - n
=I—(A—A™) (-1)* 1<k>(A—A) (k=1) Lnk (1),
k=1

We define F,(t) = Y (-1)"" (Z) (A — A)"ED LRk (4) and H,(t) = LY, (¢).

k=1
Then (A—A)"F,(t)+ H,(t)D}(t) = I. Moreover the operators (A—A)", F,(t),
H,(t) and D} (t) are pairwise commuting. vf
Lemma 2.4. Let (S(t))i>0 be a non-degenerate integrated semigroup with gen-
erator A. Then for all t > 0 we have,

fot e’ds — S(t) has a generalized inverse => X\ — A has a generalized inverse.

Proof. Suppose that fg e ds— S(t) has a generalized inverse. Since fot eMds—
S(t) is a bounded linear operator, by [7, Proposition 1, Chapter I.13] there exists
R € B(X) such that,

</Ot eMds — S(t)) R (/Ot eMds — S(t)> = /Ot Ads — S(1).

According to Lemma 2.2, we have (A — A)Lx(t) + GA(t)Dx(t) = ¢a(t)I, then
AL (A = A) = (A= A)FX(t)(A — A) + DA(H)GA(H) (A — A)
= A= A)F(H) (A= A) + (A= A)DA(H)GA(?)

— (A= AR\ () (A — A) + (A — A)DA() R — A)Dx(£)Cr (1)
A=A F@)(A—A) + (A= A)Dr(t)RDA()GA(t) (A — A)
(A= A)[Fx(t) + DA(t) RDA(E)GA()](A — A).
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Let Hy = ﬁ(t) [LA(t) + DA(t)RDx(t)GA(t)]. Then H) is a bounded linear op-
erator, R(Hy) C D(A) and (A—A)Hx(A—A) =A—A. Let K = Hx\(A—A)H,.
It follows from Lemma 2.1 and Lemma 2.2 that K is a bounded linear operator

and R(K)) C D(A). Moreover, we have

(A= KA\~ A) = (A = A)HA(A — A)Hx(A — 4)
= (A — A)H\(\ — A)

=A-A
and
Kx(A—A)K)=H\x(A—A)H)\(A\— A)H\
= H)x(A\—A)H,
= K.
Hence A — A has a generalized inverse. o]

Theorem 2.5. Let (S(t))i>0 be a non-degenerate integrated semigroup with
generator A. Then for all t > 0,

Jy s ds C 05,,(S(1))  and [} 375 (Wds C 0, (S(1)).

Proof. Assume that fg e**ds — S(t) is a Saphar operator, then fot erds—S(t)
has a generalized inverse and N (fot eMds — S(t)) C R> (fot eMds — S(t)). By

Lemma 2.4, A — A has a generalized inverse, and we have:

NA—-A)CN (/Ot eMds — S(t)) C R® (/Ot eMds — S(t)) C R®(A—A).

Therefore A — A is a Saphar operator.
Let M a finite dimensional subspace of X. We have,

NOA—A)CN (fot s — S(t)) C R (fot s — S(t)) + M C R0\ —
A)+ M. Hence fg e*ds—S(t) is essentially Saphar implies that A— A is so. ™
3. Spectral Inclusion For Quasi-Fredholm Spectrum

We recall from [4] some definitions:

Definition 3.1. Let T be a closed linear operator on X and let
AT)={neN:VYm>n,R(T")NN(T) = R(T™)NN(T)}.

The degree of stable iteration dis(T) of T is defined as dis(T) = inf A(T) with

dis(T) = 0 if A(T) = @.
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Definition 3.2. Let T be a closed linear operator on X. T is called a quasi-
Fredholm operator of degree d if there exists an integer d € N such that

(1) dis(T) = d;
(2) R(T™) is closed in X for all n > dj
(3) R(T)+ N(T™) is closed in X for all n > d.
The quasi-Fredholm spectrum is defined by
ogr(T) ={A € C: T — Al is not a quasi-Fredholm}.

Proposition 3.3. Let (S(t))t>0 be a non-degenerate integrated semigroup with
generator A. Then

dis(A—A) < dis(/t eMds — S(t)).
0

Proof. If dis(fot e*ds — S(t)) = +oo. In this case, the result is obvious.
If dis( [y e**ds — S(t)) = d € N\{0}. Then for all n > d,

R (/Ot Nds — S(t))n N (/Ot eMds — S(ﬂ) =
R (/Ot eMds — S(t))d N (/Ot eMds — S(t)> .

We show that for all n > d,
RA—A)"NNA—-A) =R\—A)INNO\-A).

Let y € R(A — A)¥N N(X — A), then there exists x € D(A?) such that y =
(A= A)dx. Then, according to lemma 2.3, there exist two operators Fy(t) and
G4(t) such that

(/\ — A)dFd(t) + Dg(t)Gd(t) =1.

Therefore,

y= (A= A)Fa(t)y + DI ()Ga(t)y

= A=A ()N = Ay + (/Ot eMds — S(t)> Ga(t)x

d

— </Ot eMds — S(t)) Ga(t)x.
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yER (flt Mods — S(t))d NN (ft Msds — S(t )) CR (flt Mods — S(t))n c
R(A — A)™. Consequently y € R(A—A)"NNA— A).
If d =0, for all n > d, we have
fg ASds S(t))”ﬁN(f(;5 eMds—S(t)) = N(f(;5 e ds—S(t)). Consequently

ft eMds—S(t)) C R(fg e*ds— S(t))". By Lemma 2.1, we have N(A— A) C
N([7 erods — 5( ) € R([ye*ds — S(t))™ C R(A — A)". Hence N(A — A) N
RA—A)"=NO\-A)NRA\—A) and so dis(A — A) = 0. vf

Proposition 3.4. Let (S(t))t>0 be a non-degenerate integrated semigroup on
X with generator A.

If R(fot e*sds — S(t))" is closed for allm > d, then R(A — A)" is closed for
alln > d.

Proof. Let y, = (A — A)"xz, be a sequence which conveges to y. We show
that y € R(A — A)™. According to lemma 2.3 there exist two bounded linear
operators F,(t) and G, (t) such that

(A= A)"F,(t) + DX()Gn(t) = I. (1)

It follows that D (t)y, =Dy (t)(A—A)"z, = (fy e *ds—S(t)) "z, € R[] e}ds—
S(t))™. Since D”(t)yp converges to D”( )y and R( fo eMds — S(t))" is closed,
then DY (t)y € R(fo e*ds — S(t))™, so there exists z € X such that D} (t)y =
(Jo er*ds — S(t))"z. By (1) we have (A — A)"F,(t)y, + Gn(t) DY)y = yp-
Going to the limit, we obtain

n

y=A—-A)"F,(t)y+ (/0 eMds — S(t)> Gn(t)z
=A—A)"[F,(t)y + DY(#)Gr(t)z] € RN — A)™.

Hence, R(A — A)™ is closed for all n > d. o

Proposition 3.5. Let (S(t))i>0 be a non-degenerate integrated semigroup on
X with generator A and d € N\{0}. IfR(f(;5 eMds—S(t)) —FN(f(;5 eMds—S(t))?
is closed in X, then R(A — A) + N(X — A)? is closed.

Proof. Suppose that R([) e*ds — S(t)) + N( [ e**ds — S(t))? is closed in X.
Let y, = (A — A)z,, + 2z, be a sequence which converges to y, with z,, € X
and z, € N(A — A)% As D{(t)y, = DI(t)(\ — A)zy, + DL(t) 2, € R(fot N —
S(t)) + N( [y e *ds — S(t))%, then Di(t)y € R(fy e**ds —S(t)) + N ([ e*ds —
S(t))?. There exist z € X and z € N(fot e**ds — S(t))? such that D{(t)y =
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(Jo sds — S(t))z + z. So D3ty = DL (t)(fy e**ds — S(t))x + DE(t)z where
Dé(t)z € N(A — A)¢, which implies that

y = (A= A)Fy(t)y + DY (H)Galt)y
= (v = A F0 -+ Gl D) ([ s = 5()) 2+ Gut D32
= (A= A) (A=A Fyt)y + Ga(t)D5(t)) + Ga(t) D (t)=.

Therefore, y € R(A — A) + N(\A — A)%. Consequently R(A — A) + N(A — A)? is
closed vf

Corollary 3.6. Let (S(t))i>0 be a non-degenerate integrated semigroup on X
with generator A. If R(fot e’ds— S(t)) is closed in X, then R(\— A) is closed.

Theorem 3.7. Let (S(t))i>0 be a non-degenerate integrated semigroup on X
with generator A. Then for all t > 0,

t
/ e7r (N s C g p(S(8)).
0

Proof. This is a direct result of the three last propositions. o

Remark 3.8. For all t > 0, we have
t
/ T A s C ope (S(1)).
0

Indeed, if fot eds — S(t) is Kato, then R(fot erds — S(t)) is closed and
dis(fot e*ds — S(t)) = 0. According to proposition 3.3 and corollary 3.6, we
have that R(A — A) is closed and dis(A — A) = 0. Therefore A — A is Kato.
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