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Abstract. We attempt to give a gentle (though ahistorical) introduction to
Koszul duality phenomena for the Hecke category, focusing on the form of
this duality studied in joint work [1, 2] of Achar, Riche, Williamson, and the
author. We illustrate some key phenomena and constructions for the simplest
nontrivial case of (finite) SL2 using Soergel bimodules, a concrete algebraic
model of the Hecke category.
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Resumen. Procuramos dar una amable, si bien ahistórica, introducción a los
fenḿenos de dualidad de Koszul en la categoŕıa de Hecke, con foco en la forma
de esta dualidad estudiada en los trabajos [1,2] en colaboración con Achar,
Riche y Williamson. Ilustramos algunos fenómenos y construcciones claves en
el ejemplo no trivial más simple, SL2 finito, usando bimódulos de Soergel, un
modelo algebraico concreto de la categoŕıa de Hecke.

Palabras y frases clave. Álgebra de Hecke, categoŕıa de Hecke, bimódulos de
Soergel, dualidad de Koszul.

1. Introduction

Monoidal Koszul duality for the Hecke category categorifies a natural ring
involution of the Hecke algebra. Such an equivalence of monoidal categories
was originally established in the language of mixed `-adic sheaves on (Kac–
Moody) flag varieties by Bezrukavnikov–Yun [11]. An important feature of
this equivalence is that it involves two rather different categories of sheaves
on Langlands dual flag varieties: one side is the more classical Hecke category
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of Borel-equivariant semisimple complexes, whereas the dual side requires the
introduction of what loc. cit. calls “free-monodromic tilting sheaves.”

In recent joint work of Achar, Riche, Williamson, and the author [1], we
proposed a new construction of the latter category that makes sense for posi-
tive characteristic coefficients. This category was used in [2] to formulate and
prove a positive characteristic monoidal Koszul duality for Kac–Moody groups.
The latter result, combined with a recent string of advances in modular geo-
metric representation theory (Achar–Rider [8], Mautner–Riche [24], Achar–
Riche [6]), yields a character formula for tilting modules of connected reductive
groups in characteristic p in terms of p-Kazhdan–Lusztig polynomials, confirm-
ing (the combinatorial consequence of) the Riche–Williamson conjecture [26],
for p greater than the Coxeter number.

This article will not discuss this or other applications of Koszul duality to
representation theory (aside from brief remarks in §4.3). For that, the reader
is referred to the introduction to [2], Achar–Riche’s survey [3], Williamson’s
surveys [30, 29], and Riche’s habilitation thesis [25].

Instead, our goal is to motivate and explain some of the constructions in
[1], assuming as little background as possible (some Lie theory and homological
algebra). Some key phenomena and constructions can already been seen for the
finite flag variety of SL2, and we illustrate them using an algebraic incarnation
of the Hecke category known as Soergel bimodules, which are certain graded
bimodules over polynomial rings. However, we will not be able to explain every
construction in loc. cit. In particular, we do not discuss the monoidal struc-
ture on free-monodromic complexes (“free-monodromic convolution”), which
remains mysterious to this author.

In keeping with this goal, we ignore various technical details, including
some that are crucial for the application to modular representation theory. In
particular, we mostly ignore the precise characteristic assumptions in [1, 2],
as well as the bigrading on the various (dgg-)algebras and Hom spaces in [1].
The reader is directed to the original papers for all precise definitions and
statements.

1.1. Contents

This article is organized as follows. In §2, we define the Hecke algebra, ex-
plain what “Hecke category” means, and define Soergel bimodules. In §3, we
introduce a ring involution of the Hecke algebra and discuss its categorification
(Koszul duality). In particular, §3.2 explains why the Hecke category cannot
be Koszul self-dual. In §4, we discuss a version of Koszul duality for the regular
module category of the Hecke category (Theorem 4.3), and explain in §4.4 a
key construction from [1, §4.4] (“left-monodromic complexes” and “left mon-
odromy action”). In §5, we state (Theorem 5.1) the monoidal Koszul duality of
[2], and give some explanation of the “free-monodromic complexes” of [1, §5].
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2. Hecke algebra and Hecke category

Throughout, (W,S) is a Coxeter system (with |S| < ∞). For s, t ∈ S, let mst

be the order (possibly ∞) of st. An important class of examples is that of
crystallographic Coxeter systems, which arise as Weyl groups of Kac–Moody
groups (for example, finite and affine Weyl groups).

2.1. Hecke algebra

We begin at the decategorified level. Let us recall the Hecke algebra, an algebra
over Laurent polynomials Z[v, v−1], following Soergel’s normalization [27].

Definition 2.1. The Hecke algebra H(W ) is the (unital associative) Z[v, v−1]-
algebra generated by symbols δs for s ∈ S, subject to the following two types
of relations:

(quadratic relation) (δs + v)(δs − v−1) = 0 for all s ∈ S, (1)

(braid relation) δsδtδs · · ·︸ ︷︷ ︸
mst terms

= δtδsδt · · ·︸ ︷︷ ︸
mst terms

for all s, t ∈ S with mst <∞. (2)

For w ∈ W , set δw := δs1 · · · δsk , where w = (s1, . . . , sk) is a reduced
expression for w. By Matsumoto’s theorem and (2), δw is independent of the
choice of w. It is a classical fact that the elements {δw}w∈W form a Z[v, v−1]-
basis of H(W ), called the standard basis.

The Hecke algebra admits a ring map to the group algebra

H(W )→ Z[W ] =
⊕
w∈W

Zew : δw 7→ ew, v 7→ 1, (3)

inducing a ring isomorphism Z ⊗Z[v,v−1] H(W )
∼→ Z[W ], where Z[v, v−1] → Z

sends v 7→ 1. For instance, (3) sends (1) to the relation e2
s = 1. One says that
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H(W ) is a deformation of Z[W ], with the natural basis of Z[W ] deforming to
the standard basis.

In their seminal work [20], Kazhdan and Lusztig used an involution (−) :
H(W ) → H(W ) (determined by δs = δ−1

s for s ∈ S and v = v−1) to define a
new Z[v, v−1]-basis {bw}w∈W of H(W ), nowadays called the Kazhdan–Lusztig
basis. These elements are determined by the conditions

bw = bw, bw ∈ δw +
⊕
x<w

vZ[v]δx,

where < is the Bruhat order on W . In our normalization,

bid = δid = 1, bs = δs + v for s ∈ S.

The Kazhdan–Lusztig basis should be understood via categorifications of H(W ),
which we describe next.

2.2. Categorification of the Hecke algebra

The Hecke category is a categorification of the Hecke algebra. Let us explain
what this means.

Let A be an additive graded monoidal category. In particular, A has finite
direct sums, and comes equipped with a tensor product ⊗ and a “grading
shift” autoequivalence (1) (compatible with the monoidal structure), whose
n-th power (n ∈ Z) will be denoted by (n).

Let [A]⊕ be the split Grothendieck group of the additive category A. That
is, [A]⊕ is the abelian group spanned by isomorphism classes [B] of objects
B ∈ A, modulo the relations [B′] + [B′′] = [B] whenever B ∼= B′ ⊕ B′′. We
make [A]⊕ into a Z[v, v−1]-algebra via [B]⊗ [B′] = [B⊗B′] and v[B] = [B(1)].

For later use, we define the graded Hom for such a category by

Hom•A(X,Y ) :=
⊕
n∈Z

HomA(X,Y (n)) (4)

for all X,Y ∈ A. We also write End•A(X) for Hom•A(X,X).

The following ad hoc definition illustrates what properties we seek from the
Hecke category.

Definition 2.2. Let A be an additive graded monoidal category. We say that
A categorifies (or is a categorification of ) H(W ) if it satisfies the following
conditions.

(1) It is Krull–Schmidt, with indecomposable objects Bw, w ∈ W , and a
bijection

{indecomp. objects in A}/ ∼= 1:1←→ W × Z
Bw(n) ←→ (w, n).
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(2) There is an isomorphism of Z[v, v−1]-algebras

H(W )
∼→ [A]⊕

determined by bs 7→ [Bs] for s ∈ S. (Note that {bs}s∈S generate H(W ).)
The inverse isomorphism ch : [A]⊕

∼→ H(W ) is called the character map.

The main consequence of condition (1) is that every object in A is isomor-
phic to a finite direct sum ⊕

(w,n)∈W×Z

Bw(n)⊕mw,n ,

where the multiplicities mw,n ∈ Z≥0 are uniquely determined. It follows that

[A]⊕ =
⊕
w∈W

Z[v, v−1] · [Bw],

so that [A]⊕ is isomorphic to H(W ) as a Z[v, v−1]-module. Condition (2) then
asks that the multiplications also correspond via a specified map.

2.3. Hecke category

For finite and affine Weyl groups, a geometric categorification of the Hecke
algebra has been known since 1980 [21], and has played an extremely important
role in geometric representation theory. Here, we discuss generalizations that
have appeared since, starting with the work of Soergel [28].

Unlike the Hecke algebra, which only depends on the Coxeter system, its
categorification depends on an additional datum. A realization of (W,S) over
a field k (for simplicity), in the sense of Elias–Williamson [15, §3.1], is a triple

h = (V, {α∨s }s∈S ⊂ V, {αs}s∈S ⊂ V ∗), (5)

where V is a finite-dimensional k-vector space and V ∗ = Homk(V,k), equipped
with simple roots αs and simple coroots α∨s indexed by s ∈ S. These elements
are required to satisfy certain conditions, most of which are familiar from basic
Lie theory. In particular, we ask that αs(α

∨
s ) = 2 for all s ∈ S, and that

the assignment s 7→ (v 7→ v − αs(v)α∨s ) defines a representation of W on V .
We assume moreover that the realization is balanced and satisfies Demazure
surjectivity ; for precise definitions, see [15] (see also [1, §2.1]).

The reader should ignore these technicalities and instead keep in mind the
important class of realizations in Example 2.3 below. We mention the general
notion of a realization only to emphasize the following two points: the Hecke
category can be defined starting from such a combinatorial datum, similar to
a root datum but not necessarily arising from a reductive or even Kac–Moody
group; and Koszul duality phenomena are expected even in this generality (see
Remark 2.6).
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Example 2.3 (Cartan realizations). Let G be a connected reductive group
over C. Choose a Borel subgroup and a maximal torus B ⊃ T . Let W be
the Weyl group and {αs}s∈S (resp. {α∨s }s∈S) the simple roots (resp. simple
coroots) determined by these choices. Then we obtain a realization of the (finite
crystallographic) Coxeter system (W,S) over any field k by setting V := k⊗ZX,
where X is the character lattice of T . (Then V ∗ is naturally identified with the
base change to k of the cocharacter lattice.)

More generally, one may define a realization (over any field k) starting from
a generalized Cartan matrix and an associated Kac–Moody root datum (giving
rise to a Kac–Moody group). Realizations arising in this way are called Cartan
realizations. They are always balanced, and they satisfy Demazure surjectivity
possibly with the further assumption that k is not of characteristic 2. For more
details, see [1, §10.1] and references therein.

Let (h,W ) be a realization over k. The Hecke category is a certain k-linear
additive graded monoidal category H(h,W ) that categorifies H(W ) in the sense
of Definition 2.2. This category has several different incarnations. In this arti-
cle, we focus on the most elementary one, the category of Soergel bimodules,
which is only “correct” for some realizations; for a discussion of better-behaved
incarnations of the Hecke category, see the discussion following Example 2.5
below. However, the more concrete setting of Soergel bimodules will suffice to
illustrate some key ideas of Koszul duality.

Let us define Soergel bimodules. Consider the symmetric algebra

R = Sym(V ∗),

graded with deg(V ∗) = 2. In other words, R consists of polynomials in a fixed
basis of V ∗, with double the usual degree. Soergel bimodules form a full sub-
category of R-gmod-R, the category of (Z-)graded R-bimodules and graded
R-bimodule homomorphisms (of degree 0). Note that R-gmod-R has the struc-
tures needed to categorify a Z[v, v−1]-algebra: it is additive, monoidal under
the tensor product ⊗R, and has a grading shift autoequivalence (1) defined on
a graded module M =

⊕
i∈ZMi by (M(1))i = Mi+1.

The action of W on V induces an action on R. For s ∈ S, consider the
graded R-bimodule

Bs := R⊗Rs R(1),

where Rs ⊂ R is the s-invariants.

Definition 2.4. The category SBim(h,W ) of Soergel bimodules is the smallest
full subcategory of R-gmod-R that contains Bs for s ∈ S and is closed under
taking finite direct sums ⊕, finite tensor products ⊗R, grading shift (1), direct

summand
⊕
⊂, and under isomorphism. In symbols,

SBim(h,W ) := 〈Bs : s ∈ S〉
⊕,⊗R,(1),

⊕
⊂,∼=
⊂ R-gmod-R.
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Example 2.5 (Soergel bimodules for SL2). Consider the Cartan realization
hSL2

k of SL2 over a field k of characteristic not equal to 2. That is, W = S2 =
{id, s}, S = {s}, and V = kα∨s and V ∗ = kαs, where αs(α

∨
s ) = 2. Then S2 acts

on V by s(α∨s ) = −α∨s . Soergel bimodules are certain graded bimodules over
R = k[αs], where deg(αs) = 2. Since s(αs) = −αs, we have Rs = k[α2

s].

What are the indecomposable Soergel bimodules up to grading shift and
isomorphism? To begin, we have R (the monoidal identity) and Bs. By defini-
tion, to find new indecomposable bimodules, one should consider direct sum-
mands of tensor products (over R) of the bimodules we know. Tensor product
with R produces nothing new. For Bs, using the Rs-bimodule decomposition
R = Rs ⊕ (Rs · αs), we get

Bs ⊗R Bs = R⊗Rs R⊗Rs R(2) ∼= R⊗Rs (Rs ⊕Rs(−2))⊗Rs R
∼= R⊗Rs R⊕R⊗Rs R(2) = Bs(−1)⊕Bs(1).

It follows that Bid := R and Bs are the only indecomposable Soergel bimodules
up to grading shift and isomorphism. Moreover, the isomorphism Bs ⊗R Bs ∼=
Bs(−1) ⊕ Bs(1) decategorifies to b2s = (v + v−1)bs, which is equivalent to the
quadratic relation (1). We therefore have a Z[v, v−1]-algebra isomorphism

H(S2)
∼−→ [SBim(hSL2

k , S2)]⊕

sending 1 7→ [R] and bs 7→ [Bs], and SBim(hSL2

k , S2) categorifies H(S2).

In [28], Soergel originally considered his bimodules for realizations satisfy-
ing the rather restrictive “reflection faithfulness” condition (any Coxeter sys-
tem admits such a realization over R). Under this assumption, he showed that
SBim(h,W ) categorifies H(W ).

For general realizations (e.g. for W an affine Weyl group and k = Fp), it
is expected that Soergel bimodules no longer categorify H(W ). Since Soergel’s
work, two other incarnations of the Hecke category have appeared, which almost
always categorify H(W ):1

(1) (Geometric) For Cartan realizations of crystallographic Coxeter groups
(Example 2.3), one may consider Borel-equivariant parity complexes (in
the sense of Juteau–Mautner–Williamson [19]) on the associated Kac–
Moody flag variety; see [26, Part 3]. This generalizes the original geomet-
ric Hecke category, going back to Kazhdan–Lusztig, to positive charac-
teristic coefficients.

1There is yet another candidate for the Hecke category: Braden–MacPherson (BMP)
sheaves on Bruhat moment graphs, studied by Fiebig [16, 17]. Beyond reflection faithful
realizations, where this category is equivalent to that of Soergel bimodules, it is not known
when BMP sheaves categorify H(W ).
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(2) (Diagrammatic) For realizations of an arbitrary Coxeter system, Elias–
Williamson [15] (building on earlier work by Elias–Khovanov [13] and
Elias [12]) have defined a diagrammatic Hecke category by generators
and relations.2

For more on these two incarnations of the Hecke category, see Williamson’s
ICM report [29].

Let us explain the connection of these categorifications to the Kazhdan–
Lusztig basis. In general, a categorification of H(W ) as in Definition 2.2 yields
a Z[v, v−1]-basis {ch([Bw])}w∈W of H(W ). For specific realizations in character-
istic 0, it is a deep fact (originally proved for Weyl groups by Kazhdan–Lusztig
using the Decomposition Theorem in finite field algebraic geometry, and for ar-
bitrary Coxeter systems by Elias–Williamson using a Hodge theory of Soergel
bimodules [14]) that this categorically defined basis agrees with the combina-
torially defined Kazhdan–Lusztig basis. This immediately implies remarkable
positivity properties of the latter (positivity of Kazhdan–Lusztig polynomials
and structure constants).

Consider a Cartan realization over a field of characteristic p > 0. Then the
basis defined by the Hecke category is called the p-canonical (or p-Kazhdan–
Lusztig) basis and is denoted by {pbw}w∈W (it only depends on the root datum
and p). From base change considerations, one sees that

pbw ∈
⊕
x∈W

Z≥0[v, v−1] · bx. (6)

An emerging new paradigm is that the p-canonical basis should control the char-
acteristic p representation theory of Lie-theoretic objects, just as the Kazhdan–
Lusztig basis controls their characteristic 0 representation theory.

Remark 2.6. Although a large portion of [1] is written in the language of
the Elias–Williamson diagrammatic category, geometry was used to establish
several key properties. As a result, the Koszul dualities of [2] are only proved
for Cartan realizations. However, these results are expected to hold for more
general realizations, even of non-crystallographic Coxeter systems (but perhaps
with stronger characteristic assumptions). For some results in this direction, see
[22, 23, 7].

3. A missing self-duality

3.1. A ring involution

At the decategorified level, the main player of this article is a certain ring
involution of H(W ) (different from the Kazhdan–Lusztig involution). One sees

2More precisely, what categorifies the Hecke algebra is the (graded) Karoubi envelope of
their diagrammatic category. The Elias–Williamson diagrammatic category is defined even
for k an integral domain, but its Karoubi envelope does not behave well in this generality.
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from the defining relations (1) and (2) that there is a ring involution

ι : H(W )→ H(W )

determined by
ι(δs) = δs for s ∈ S, ι(v) = −v−1.

Applying ι to the Kazhdan–Lusztig basis yields a basis {tw := ι(bw)}w∈W ,
characterized by conditions similar to those for {bw}w∈W . For example,

tid = δid = 1, ts = δs − v−1 for s ∈ S.

Remark 3.1. In Kazhdan–Lusztig’s original paper [20], bw is denoted by C ′w,
while tw is denoted by Cw.

Fix a realization h of (W,S). One can ask if ι can be lifted to H(h,W ).

Question 3.2 (Naive Hope 1). Is there a monoidal autoequivalence ofH(h,W )
that categorifies ι? More precisely, is there a monoidal equivalence

κ : H(h,W )
∼→ H(h,W ),

such that the isomorphism ch : [H(h,W )]⊕
∼→ H(W ) of Definition 2.2(2) iden-

tifies the induced ring isomorphism [κ]⊕ with ι?

As stated, this is clearly impossible. The equation ι(v) = −v−1 forces
[κ(Bid(1))] = −v−1, whereas by Definition 2.2(1) and (6), the class of every
object in H(h,W ) is a Z≥0[v, v−1]-linear combination of bw.

A standard way to handle minus signs in categorification is to pass to the
bounded homotopy category KbH(h,W ).3 In the triangulated Grothendieck
group [KbH(h,W )]∆, the cohomological shift [1] becomes multiplication by −1.
More precisely, the full embedding of H(h,W ) into KbH(h,W ) as complexes
supported in cohomological degree 0 induces a Z[v, v−1]-algebra isomorphism
[H(h,W )]⊕

∼→ [KbH(h,W )]∆ with inverse e([B•]) =
∑
i∈Z(−1)i[Bi] for any

bounded complex B•.

Question 3.3 (Naive Hope 2). Is there a monoidal triangulated autoequiv-
alence of KbH(h,W ) that categorifies ι? More precisely, is there a monoidal
triangulated equivalence

κ : KbH(h,W )
∼→ KbH(h,W )

such that the isomorphism ch ◦ e : [KbH(h,W )]∆
∼→ H(W ) identifies the in-

duced ring isomorphism [κ]∆ with ι?

This, too, turns out to be impossible, for a simple reason we now explain.

3Since H(h,W ) is only additive, not abelian, one cannot talk about its derived category.
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3.2. Why the Hecke category cannot be Koszul self-dual

As in Example 2.5, consider Soergel bimodules for the SL2 realization hSL2

k .
There are graded R-bimodule homomorphisms

• : Bs → R(1) : f ⊗ g 7→ fg, • : R(−1)→ Bs : f 7→ f ·∆s, (7)

called “dot morphisms.”4 Here, ∆s := αs

2 ⊗ 1 + 1⊗ αs

2 is the nonzero element
of minimal degree, unique up to scalar, satisfying f ·∆s = ∆s · f for all f ∈ R.

Every graded Hom (see (4)) is itself naturally a graded R-bimodule. It is
easy to check that

End•(R) = R · idR, (8)

Hom•(Bs, R(1)) = R · • , Hom•(R(−1), Bs) = R · • . (9)

We now explain why there cannot be an equivalence κ as in Question 3.3. In the
following, we suppress the isomorphism ch ◦ e : [KbSBim(hSL2

k , S2)]∆
∼→ H(S2).

Any such κ must send the indecomposable bimodule Bs to an indecomposable
bounded complex κ(Bs) in KbSBim(hSL2

k , S2) with class

ι(bs) = ts = δs − v−1 = bs − v − v−1 ∈ H(W ).

By (9), these conditions force κ(Bs) to be isomorphic to the “complex”

Ts :=

R(1)

Bs

R(−1)

•

•

(10)

in degrees −1 through 1, or Ts[2m] for some m ∈ Z. But Ts is not a complex!

• ◦ • = αs · idR 6= 0. (11)

For general (h,W ), for each s ∈ S there are ”s-colored” dot morphisms

• : Bs → Bid(1), • : Bid(−1)→ Bs

in H(h,W ). Analogous to (8), we have a natural identification

End•(Bid) = R,

4This terminology and the symbols • and • come from the analogous morphisms in the

diagrammatic Hecke category.
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so that tensor product with Bid makes every graded Hom into a graded R-
bimodule. The analogues of (8), (9), (11) (with R(n) replaced by Bid(n)) there-
fore still make sense, and in fact remain true. Then the analogue of Ts (10) is
again not in KbH(h,W ), so that κ has nowhere to send Bs to. This is the
essential obstruction to the naive hope in Question 3.3.

Let us pretend for a moment that such a κ existed. Note that KbH(h,W )
has two shifts: in addition to the cohomological shift [1] of the homotopy cate-
gory, the grading shift (1) of H(h,W ) can be applied term-by-term, giving an
endofunctor of KbH(h,W ) that we again denote by (1). Since κ is triangulated,
we have κ ◦ [1] ∼= [1] ◦ κ. However, ι(v) = −v−1 implies that κ ◦ (1) 6∼= (1) ◦ κ,
and instead suggests a natural isomorphism

κ ◦ (1) ∼= [1](−1) ◦ κ (12)

(since (−1) and [1] decategorify to v−1 and −1, respectively), or perhaps [1]
replaced by some odd integer power [m]. Let us introduce the notation

〈1〉 := [1](−1)

for the combined shift on the right hand side of (12).

Each of the remaining two sections of this article describes a modification
of the duality of Question 3.3 that does exist. Each equivalence satisfies (12)
and will be called Koszul duality.

4. Koszul duality for the regular representation

In this section, we describe a Koszul duality (Theorem 4.3) for a quotient of
the Hecke category that categorifies the regular representation of the Hecke
algebra.

4.1. A quotient of the Hecke category

The considerations in §3.2 also suggest a naive fix for the missing duality:
simply work in a quotient of the Hecke category where αs · idBid

= 0 for all
s ∈ S. This turns out to almost work.

Definition 4.1. The left quotient H(h,W ) is the category with the same ob-
jects as H(h,W ), but whose graded Homs are given by

Hom•H(h,W )
(X,Y ) := k⊗R Hom•H(h,W )(X,Y ).

Here, k is viewed as a graded R-module via the counit εR : R→ k (sending V ∗

to 0).

In other words, there is a natural quotient functor

For : H(h,W )→ H(h,W ) (13)
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that is the identity on objects, and whose induced maps on graded Homs
are surjective with kernel spanned by morphisms of the form λ · f , where
λ ∈ R is a polynomial with constant term 0. It is known that each Bw re-
mains indecomposable under For, so For induces a Z[v, v−1]-module isomor-
phism [H(h,W )]⊕

∼→ [H(h,W )]⊕. While H(h,W ) is not monoidal, it is a mod-
ule category for H(h,W ) acting on the right. In fact, it categorifies the right
regular module of H(W ) (i.e. H(W ) acting on itself by right multiplication).

Remark 4.2. In the geometric Hecke category (see the discussion after Ex-
ample 2.5), the quotient functor (13) corresponds to the forgetful functor from
Borel-equivariant to Borel-constructible parity complexes.

We similarly define the right quotient H(h,W ) via (−)⊗R k, categorifying
the left regular representation. There is an “inversion” equivalence

inv : H(h,W )
∼→ H(h,W ) (14)

intertwining the left and right R-actions, and sending inv(Bw) ∼= Bw−1 for all
w ∈W .

The non-complex Ts of (10) becomes an actual object in each quotient
category. This is an example of an indecomposable “tilting complex.” More
generally, just as KbH(h,W ) contains the full additive subcategory H(h,W )
stable under the grading shift (1), it also contains a full additive subcategory
of tilting complexes5 that is stable under the Koszul dual shift 〈1〉 = [1](−1).
There are indecomposable tilting complexes Tw, w ∈W , and a bijection

{indecomp. tilting complexes}/ ∼= 1:1←→ W × Z
Tw〈n〉 ←→ (w, n),

Koszul dual to the bijection in Definition 2.2(1), or rather its analogue for
H(h,W ).

These quotient categories are still not quite self-dual. Given a realization h
as in (5), the dual realization

h∗ := (V ∗, {αs}s∈S ⊂ V ∗, {α∨s }s∈S ⊂ V )

is obtained by exchanging V with V ∗ and simple roots with simple coroots.
Let R∨ = Sym(V ), again graded with deg V = 2. For Cartan realizations
of a reductive or Kac–Moody group, the dual realization is associated to the
Langlands dual group.

5Very briefly, the triangulated categoryKbH(h,W ) admits a “perverse” t-structure, whose
heart (“mixed perverse complexes”) is a graded highest weight category with shift 〈1〉 (see
[5, 22, 7]). For such a category, there is a notion of tilting objects and a classification theorem
for the indecomposable tilting objects.
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4.2. Statement

Our first Koszul duality relates the left and right regular module categories for
dual realizations.

Theorem 4.3 (Koszul duality for Kac–Moody groups [2]). Let (h,W ) be a
Cartan realization over a field k of characteristic not equal to 2. There is a
triangulated equivalence

κ : KbH(h,W )
∼→ KbH(h∗,W )

satisfying κ ◦ (1) ∼= 〈1〉 ◦ κ. Moreover, κ(Bw) ∼= Tw and κ(Tw) ∼= Bw, and κ
categorifies ι.

When Bw categorifies the Kazhdan–Lusztig basis bw, Theorem 4.3 implies
that Tw categorifies the dual basis tw = ι(bw). In general, {Bw} and {Tw} give
two bases of the Hecke algebra that are exchanged by ι.

In §4.4, we discuss a key ingredient towards the proof of Theorem 4.3.

Example 4.4. Since the SL2 realization hSL2

k (see Example 2.5) is self-dual,
Theorem 4.3 combined with inversion (14) gives a triangulated autoequivalence

κ′ : KbSBim(hSL2

k , S2)
∼→ KbSBim(hSL2

k , S2)

satisfying κ′ ◦ (1) ∼= 〈1〉 ◦ κ′, and sending κ′(Bs) ∼= Ts and κ′(Ts) ∼= Bs.

4.3. Why “Koszul”?

Classically, Koszul duality relates seemingly unrelated graded rings A and A!,
usually via a derived equivalence of their graded module categories A-gmod and
A!-gmod (with appropriate finiteness conditions). The most classical example
is due to Bernstein–Gelfand–Gelfand [10] and goes as follows. Let V be a finite-
dimensional k-vector space, let V ∗ = Homk(V,k) be its dual, and consider the
symmetric and exterior algebras R = Sym(V ∗) and Λ = Λ(V ), graded with
deg V ∗ = 1 and deg V = −1. Then there exists a triangulated equivalence

Db(R-gmod) ⊃ 〈k〉∆
κBGG

−−−→
∼
〈Λ〉∆ ⊂ Db(Λ-gmod)

satisfying
κBGG ◦ 〈1〉 ∼= 〈−1〉[1] ◦ κBGG, (15)

where 〈1〉 is the endofunctor that shifts the module grading down by 1 (applied
term-by-term to a complex). In particular, (15) means that one cannot forget
the gradings to obtain a functor relating their ungraded module categories
Db(R-mod) and Db(Λ-mod); it is the gradings that reveal the hidden relation
between R and Λ. The name “Koszul duality” comes from the Koszul complex
(17), which plays a key role in this derived equivalence.
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Koszul duality as a phenomenon in Lie theory goes back to Beilinson–
Ginzburg–Soergel [9]. Let g be a complex semisimple Lie algebra. Choose
a Borel and a Cartan subalgebra b ⊃ h, and consider the BGG category
O = O(g, b, h). As explained in loc. cit., one can define a “graded version”
Ogr

0 of its principal block O0, which comes with a “grading shift” autoequiva-
lence, a forgetful functor, and a natural isomorphism

〈1〉 : Ogr
0 → O

gr
0 , For : Ogr

0 → O0, For ◦ 〈1〉 ∼= For,

analogous to the forget-the-grading functor A-gmod → A-mod. The Koszul
self-duality of [9] is a triangulated autoequivalence

κBGS : DbOgr
0
∼→ DbOgr

0 ,

intertwining the shifts as in (15). Thus Koszul duality is a hidden self-duality
of O0 revealed by its graded version Ogr

0 .

In the setting of the previous paragraph, one obtains a realization hg over C
of the Weyl group W by setting V = h with the usual notion of simple roots and
coroots. A result of Achar–Riche [4] identifies KbH(hg,W ) with DbOgr

0 , and
Theorem 4.3 recovers the Beilinson–Ginzburg–Soergel result.6 By specializing
to some other realizations arising naturally in Lie theory, Theorem 4.3 and its
variants yield further derived equivalences of appropriate graded versions of
certain categories of representations.

We should comment that the classical Koszul duality deals with what are
called Koszul graded rings. In the setting of this article, the algebras involved
are in general not Koszul, and what remains are the homological patterns such
as (15). We continue to call these equivalences Koszul duality.

It seems to this author that Koszul duality in this general sense is the more
basic phenomenon in Lie theory, whereas Koszulity lies deeper, being related
to the question of exceptional primes (i.e. when modular representation theory
does not behave like characteristic 0 representation theory). For instance, the
Koszulity of Ogr

0 is essentially equivalent to the Kazhdan–Lusztig conjecture.

4.4. Monodromy action and left-monodromic complexes

In the generality stated in Theorem 4.3, Koszul duality is obtained as a con-
sequence of the monoidal Koszul duality (Theorem 5.1) discussed in §5 below.
Nevertheless, we can already explain a key ingredient towards Theorem 4.3.

Let f ∈ R be homogeneous of degree d. Since H(h,W ) is a left quotient,
right multiplication by f defines a morphism m(f)B : B → B(d) for any
B ∈ H(h,W ), and more generally

m(f)F : F → F(d)

6More precisely, Theorem 4.3 becomes κBGS composed with the Ringel self-duality of Ogr
0 .
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for any complex F ∈ KbH(h,W ). These morphisms define a natural transfor-
mation m(f) : id→ (d) of endofunctors of KbH(h,W ), and varying f ∈ R, we
obtain a graded algebra map

m : R→
⊕
d∈Z

Hom(id, (d)).

Thus R acts functorially on every object in KbH(h,W ) in a graded way com-
patible with (1). For the purpose of these paragraphs, we say that R acts on
the category with shift (KbH(h,W ), (1)).

Theorem 4.3 implies an additional action. Since R∨ = Sym(V ) similarly
acts by left multiplication on (KbH(h∗,W ), (1)), via κ it should also act on
(KbH(h,W ), 〈1〉). That is, we expect a graded algebra map

µ : R∨ →
⊕
d∈Z

Hom(id, 〈d〉). (16)

Concretely, for h ∈ R∨ homogeneous of degree d, we expect morphisms

µ(h)F : F → F〈d〉

functorial in F ∈ KbH(h,W ).

One key construction in the paper [1] is to find this hidden action (16),
called the left monodromy action. This is done by replacing KbH(h,W ) with
an equivalent triangulated category LM(h,W ) of left-monodromic complexes,
where this action becomes more visible.

We begin by describing KbH(h,W ) in a slightly different way. Given a
complex F ∈ KbH(h,W ), first consider the underlying H(h,W )-sequence F =
(F i)i∈Z, i.e. a Z-graded sequence of objects F i ∈ H(h,W ). Its graded endo-
morphism ring

End(F) :=
∏
p,q,d

HomH(h,W )(Fp,Fq(d)),

is an R-bimodule, bigraded by homological degree and the grading in H(h,W ).
The counit εR : R→ k induces a map

εR : End(F)→ k⊗R End(F).

Then an object of KbH(h,W ) may be viewed as a pair (F , δ), where F is the
underlying sequence as above, and δ is an element of End(F) of an appropriate
bidegree (that we will not specify) satisfying εR(δ ◦ δ) = 0.

Roughly speaking, KbH(h,W ) is obtained from KbH(h,W ) by applying
k ⊗R (−). The idea behind left-monodromic complexes is to replace k by its
Koszul resolution, a resolution as a graded R-module:

· · · (V ∗ ∧ V ∗)⊗R V ∗ ⊗R R k.εR
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Here and in the rest of this article, undecorated tensor products are over k. Let
Λ = Λ(V ∗), the exterior algebra of V ∗ (with an appropriate bigrading, placing
V ∗ in homological degree −1). Then the Koszul resolution can be written as

A := Λ⊗R (17)

equipped with an appropriate differential κ. Now, we define LM(h,W ) by ap-
plying A ⊗R (−) to KbH(h,W ), in the following sense. Given two H(h,W )-
sequences F and G, define

HomLM(F ,G) := Λ⊗Hom(F ,G) (= A⊗R Hom(F ,G)),

which has a differential κ defined via its action on A. We also write EndLM(F)
for HomLM(F ,F).

Definition 4.5 ([1, Definition 4.4.2]). An object of LM(h,W ), called a left-
monodromic complex, is a pair (F , δ), where F is a H(h,W )-sequence and
δ ∈ EndLM(F). We require that δ is of an appropriate bidegree, and that it
satisfies

δ ◦ δ + κ(δ) = 0. (18)

The definition of morphisms in LM(h,W ) parallels that for the homotopy cat-
egory. Given two left-monodromic complexes (F , δF ) and (G, δG), one makes
HomLM(F ,G) into a complex under the differential

dHomLM
(f) = δG ◦ f − (−1)|f |f ◦ δF + κ(f), (19)

where |f | is the cohomological (first) degree of f . Then HomLM(h,W )(F ,G) is
defined to be the bidegree (0, 0) homology of HomLM(F ,G). We adopt the
usual terminology of dg categories: a chain map is a degree (0, 0) element
f ∈ HomLM(F ,G) satisfying dHomLM

(f) = 0, and a chain map is nullhomotopic
if it is of the form dHomLM

(h) for some h ∈ HomLM(F ,G). Thus morphisms in
LM(h,W ) are chain maps modulo homotopy.

With an appropriate triangulated structure on LM(h,W ), the quasi-isomor-
phism εA : A

∼→ k induces a triangulated equivalence

For : LM(h,W )
∼→ KbH(h,W ) : (F , δ) 7→ (F , εA(δ)).

Roughly, this functor takes left-monodromic “differentials” and chain maps and
discards any component that involves a nontrivial Λ part.

There is also a natural functor

For : KbH(h,W )→ LM(h,W ) : (F , δ) 7→ (F , ηΛ(δ)),

where ηΛ : Hom(F ,G) → HomLM(F ,G) denotes the maps induced by the unit
ηΛ : k→ Λ. In particular, we have the left-monodromic complex

Tid := For(Bid), (20)
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with underlying H(h,W )-sequence (. . . , 0, Bid, 0, . . .), where Bid is in position
0, and δTid

= 0. However, LM(h,W ) contains many objects that do not come
from KbH(h,W ) in this way.

Let us illustrate these definitions with examples, using Soergel bimodules.

Example 4.6. Consider the SL2 realization hSL2

k (see Example 2.5). Then

For : LM(hSL2

k , S2)
∼→ KbSBim(hSL2

k , S2)

sends

R(1)

Bs

R(−1)

•

•

−αs⊗id 7−→

R(1)

Bs

R(−1).

•

•

(21)

On the right hand side of (21) is the complex Ts from (10). We saw that δTs ◦δTs

has one nonzero component αs · id : R(−1) ; R(1). Since this component is
killed by εR, it can be lifted to the V ∗ ⊗R term of the Koszul resolution:

αs ⊗R R k,
αs ⊗ 1 αs 0.

εR

In the left-monodromic lift of Ts, depicted on the left hand side of (21), a new
component −αs ⊗ id of “chain degree” 2, where αs now lies in the exterior
algebra Λ, records (minus) this lift.

Example 4.7. Consider the SL3 Cartan realization hSL3

k of W = S3. Let
S = {s, t}, so that V ∗ = kαs ⊕ kαt. There are now s- and t-colored dot
morphisms

• : Bs → R(1), • : R(−1)→ Bs, • : Bt → R(1), • : R(−1)→ Bt,

and we set •• := • ◦ • . Then

For : LM(hSL3

k , S3)
∼→ KbSBim(hSL3

k , S3)
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sends

F :=

R(3)

Bt(2)

Bs

R(−1)

•

••

−αt⊗•

•

−αs⊗•

(αs∧αt)⊗id 7−→

R(3)

Bt(2)

Bs

R(−1)

•

••

•

= For(F).

As in Example 4.6, the chain degree 2 components of δF correspond to (a
particular choice of) lifts of the components of δFor(F) ◦ δFor(F)

R(−1) ; Bt(2) : αs · • , Bs ; R(3) : αt · •

to the V ∗ ⊗ R term of the Koszul resolution. In addition, δF ◦ δF has a com-
ponent7

R(−1) ; R(3) : • ◦ (−αs ⊗ • ) + (−αt ⊗ • ) ◦ •

= αs ⊗ (αt · id)− αt ⊗ (αs · id),

which needs to be lifted to the (V ∗ ∧ V ∗)⊗R term:

(αs ∧ αt)⊗R (αs ⊗R)⊕ (αt ⊗R) R k

(αs ∧ αt)⊗ 1 αt ⊗ αs − αs ⊗ αt

εR

The chain degree 3 component (αs∧αt)⊗id of δF corresponds to this now unique
lift, which encodes the choice of lifts made in the chain degree 2 components.

Example 4.8. Again for the SL3 Cartan realization, there is a morphism of
left-monodromic complexes

R(3)

Bs Bt(2)

R(−1)

••

−αt⊗•
•

−•

(αs∧αt)⊗id

−αs⊗•

7The first composition in this display receives an extra minus sign from the Koszul sign
rule, once one treats the gradings more carefully.
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from the complex in the left hand column to the one in the right hand column

(both coming from complexes in KbSBim(hSL3

k , S3)), given by components •• +

(−αt⊗ • ) + (−αs⊗ • ) + ((αs∧αt)⊗ id). The three diagonal components again

use the Koszul resolution to record the failure of the “classical” component ••

to be a genuine map of complexes in KbSBim(hSL3

k , S3). The left-monodromic
complex F of Example 4.7 is the cone of this morphism.

The point of replacing KbH(h,W ) with the equivalent category LM(h,W )
is the following. Consider the derivation (−) _́ (−) : V ⊗ Λ → Λ induced by
the natural pairing between V and V ∗:

x _́ (r1 ∧ · · · ∧ rk) =

k∑
i=1

(−1)i+1(r1 ∧ · · · ∧ r̂i ∧ · · · ∧ rk)ri(x)

for x ∈ V and r1, . . . , rk ∈ V ∗. This induces a map

(−) _́ (−) : V ⊗ EndLM(F)→ EndLM(F).

Now, given (F , δ) ∈ LM(h,W ) and x ∈ V , one can show that x _́ δ defines
a morphism µ(x)F : F → F〈2〉 functorial in F . In particular, the morphisms
µ(x)F and µ(y)F commute for x, y ∈ V , and we obtain by composition the
desired monodromy action (16).

Example 4.9. For the left-monodromic complex Ts from Example 4.6, the
morphism µ(x)Ts

: Ts → Ts〈2〉 is given by the chain map

R(1) R(−1)

Bs Bs(−2)

R(−1) R(−3).

•

•

−αs⊗id
−αs(x)

(We have omitted the component labels on Ts〈2〉.)
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For the left-monodromic complex F from Example 4.7, the morphism
µ(x)F : F → F〈2〉 is given by the chain map

R(3) R(1)

Bt(2) Bt

Bs Bs(−2)

R(−1) R(−3),

•

••

−αt⊗• −αt(x)•

•

−αs⊗•

(αs∧αt)⊗idR

−αs(x)•

(∗)

where (∗) = αt ⊗ αs(x) · idR − αs ⊗ αt(x) · idR, and we have omitted the
component labels on F〈2〉.

In either case, observe that each “classical” component of the monodromy
morphism comes from pairing x with a chain degree 2 component of the left-
monodromic differential.

Since the extra components in a left-monodromic “differential” record the
failure of complexes in KbH(h,W ) to be a genuine complex in KbH(h,W ),
one can heuristically think of the left monodromy action as detecting whether
complexes in KbH(h,W ) admit a lift to KbH(h,W ). It should be emphasized
that this is merely a heuristic; while complexes that admit a lift to KbH(h,W )
certainly have trivial left monodromy, the reverse implication is false, as shown
by the following example.

Example 4.10. For the SL3 Cartan realization, consider the left-monodromic
complex

F :=

R(2)

BsBt

R(−2).

••

••

−αs⊗(αt·id)

(We have omitted the monoidal product in SBim(hSL3

k , S3) from the notation.

For example, •• = • ⊗R • : R(−1) ⊗R R(−1) → Bs ⊗R Bt.) It is easily

seen that F (and its image in KbSBim(hSL3

k , S3)) does not admit a lift to
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KbSBim(hSL3

k , S3). However, F has trivial left monodromy. Indeed, the mon-
odromy map µ(x)F : F → F〈2〉 is given by the chain map

R(2) R

BsBt BsBt(−2)

R(−2) R(−4),

••

••

−αs⊗(αt·id)
−αs(x)αt·id

which is nullhomotopic with homotopy given by a single component R(−2) ;
R : −αt ⊗ (αs(x) · id).

5. Monoidal Koszul duality

In this section, we explain a monoidal upgrade of Theorem 4.3.

5.1. Motivation and statements

Let (h,W ) be a realization. The Hecke category H(h∗,W ) acts on the right
quotient KbH(h∗,W ) on the left, and also has a natural “forgetful” functor to
KbH(h∗,W ): the quotient functor to H(h∗,W ) composed with the full embed-
ding into KbH(h∗,W ).

We seek a monoidal category that plays the Koszul dual role, filling the top
left corner of the following diagram:

? (H(h∗,W ), ?)

KbH(h,W ) KbH(h∗,W ).

κmon

∼

For For

κ
∼

Here, ? denotes the monoidal product on H(h∗,W ), and κ is the equivalence
of Theorem 4.3. More precisely, we seek a k-linear additive monoidal category
defined in terms of the realization (h,W ), but which is canonically monoidally
equivalent to the dual Hecke categoryH(h∗,W ). Moreover, this category should
admit a natural forgetful functor to KbH(h,W ), and act on the left of the same
category, making κ into an equivalence of module categories. Said another way,
just as the left multiplication action on KbH(h∗,W ) comes from the endo-
morphism ring of the monoidal identity Bid ∈ H(h∗,W ), the desired category
provides a monoidal upgrade of the left monodromy action on KbH(h,W ).

The main result of [1] is the construction of this monoidal category. We will
describe its objects (but not the monoidal structure) in §5.2. For now, let us
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state the results. Given a realization (h,W ), one first defines a k-linear category

FM(h,W )

of free-monodromic complexes, which should be viewed as the Koszul dual of
KbH(h∗,W ). Like a left-monodromic complex, a free-monodromic complex
is a H(h,W )-sequence equipped with an enhanced “differential.” There are
two grading shifts (1) and [1] on FM(h,W ) and a natural forgetful functor
to LM(h,W )

∼→ KbH(h,W ) intertwining both shifts. The desired monoidal
Koszul dual of H(h∗,W ) is a certain full additive subcategory

(TiltFM(h,W ), ?̂) ⊂ FM(h,W )

of free-monodromic tilting sheaves, equipped with free-monodromic convolution
?̂ and stable under 〈1〉 = [1](−1). In particular, TiltFM(h,W ) contains lifts T̃w
of the indecomposable tilting complexes Tw in LM(h,W )

∼→ KbH(h,W ).

In [1], the category FM(h,W ) and the operation ?̂ are defined for an arbi-
trary realization (h,W ) in terms of the Elias–Williamson diagrammatic Hecke
category. However, the proof that ?̂ is bifunctorial uses geometry, so that
one needs to restrict to Cartan realizations to define the monoidal category
(TiltFM(h,W ), ?̂). We can now state monoidal Koszul duality.

Theorem 5.1 (Monoidal Koszul duality for Kac–Moody groups [2]). Let (h,W )
be a Cartan realization over a field k of characteristic not equal to 2. There is
a monoidal equivalence

κmon : (H(h∗,W ), ?)
∼→ (TiltFM(h,W ), ?̂)

satisfying κmon ◦ (1) ∼= 〈1〉 ◦ κmon and sending κmon(Bw) ∼= T̃w for all w ∈ W .
Moreover, the diagram

(TiltFM(h,W ), ?̂) (H(h∗,W ), ?)

KbH(h,W ) KbH(h∗,W )

κmon

∼

For For

κ
∼

commutes up to natural isomorphism, and makes the equivalence κ of Theo-
rem 4.3 an equivalence of module categories compatible with κmon.

Remark 5.2. The functor κmon is defined by generators and relations. That
is, viewing H(h∗,W ) as the Elias–Williamson diagrammatic category, κmon

is defined by specifying the images of its generating objects and morphisms,
then checking that they satisfy the defining relations of H(h∗,W ). (This is the
categorical analogue of defining a homomorphism out of an algebra defined
by generators and relations.) Thus, although Theorem 5.1 may be stated in
terms of parity complexes on Kac–Moody flag varieties, the Elias–Williamson
monoidal presentation is crucial for the proof.
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5.2. Free-monodromic complexes

Since KbH(h∗,W ) has a multiplication action on both left and right, FM(h,W )
should have a monodromy action on both left and right. Unlike the left mon-
odromy action described in §4.4, the right monodromy action is forced on
FM(h,W ) in the following way.

Recall that Λ = Λ(V ∗) and R∨ = Sym(V ). Given a H(h,W )-sequence F as
in §4.4, now consider the further enhancement

EndFM(F) := Λ⊗ End(F)⊗R∨ (= A⊗R End(F)⊗R∨)

of its endomorphism algebra. As with EndLM(F), κ acts via its action on A.
Consider the canonical element

Θ =
∑

(idF?ei)⊗ ěi ∈ EndFM(F), (22)

where {ei} and {ěi} are dual bases of V ∗ ⊂ Λ and V ⊂ R∨, and ? denotes the
multiplication action on KbH(h,W ) (or on LM(h,W )

∼→ KbH(h,W )).

Definition 5.3 ([1, Definition 5.1.1]). An object of FM(h,W ), called a free-
monodromic complex, is a pair (F , δ), where F is a H(h,W )-sequence and
δ ∈ EndFM(F). We require that δ is of an appropriate bidegree, and that it
satisfies

δ ◦ δ + κ(δ) = Θ. (23)

Morphisms in FM(h,W ) can also involve both Λ and R∨, and are otherwise
defined in much the same way as in LM(h,W ) (see Definition 4.5).

The rather mysterious condition (23) will be partly explained in Lemma 5.6.

The counit εR∨ : R∨ → k induces a map εR∨ : EndFM(F) → EndLM(F)
that kills Θ and sends (23) to (18), hence induces a forgetful functor

For : FM(h,W )→ LM(h,W ) : (F , δ) 7→ (F , εR∨(δ)),

which should be viewed as the Koszul dual of the natural quotient functor
KbH(h∗,W )→ KbH(h∗,W ).

We exhibit two examples of free-monodromic complexes using Soergel bi-
modules; see [1, §5.3] for more computations involving these examples. Let

θ =
∑

ei ⊗ id⊗ ěi, θs =
∑

s(ei)⊗ id⊗ ěi,

where {ei} and {ěi} are dual bases of V ∗ and V .

Example 5.4. The following picture depicts the free-monodromic unit T̃id, a
free-monodromic complex lifting the left-monodromic complex Tid from (20):

T̃id := R. θ
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In other words, its underlying sequence of Soergel bimodules is R in position
0, and δT̃id

consists of a single nonzero component R ; R : θ. This object is
the monoidal unit for free-monodromic convolution.

Example 5.5. Consider again the SL2 realization hSL2

k (see Example 2.5). The

following picture depicts the free-monodromic tilting sheaf T̃s, which lifts the
left-monodromic complex Ts from Example 4.6:

T̃s :=

R(1)

Bs

R(−1).

θs

1⊗•⊗α∨s•

θs•

−αs⊗id⊗1

θ

We end with an easy lemma that partly explains the condition (23). Since
this lemma does not appear in [1], we state it with the precise bigradings, which
were not explained in this article.

Lemma 5.6. Let (F , δLM) be a left-monodromic complex. Choose dual bases
{ei} and {ěi} of V ∗ and V . Choose elements δi ∈ EndLM(F)1

2, and set

δ := δLM ⊗ 1 +
∑

δi ⊗ ěi ∈ EndFM(F)1
0. (24)

Then (F , δ) is a free-monodromic complex if and only if

dHomLM
(δi) = idF ? ei for all i,

δi ◦ δi = 0 for all i, δi ◦ δj + δj ◦ δi = 0 for all i 6= j,

where dHomLM
is the differential defined in (19).

Proof. This follows by comparing the following calculation with (23):

δ ◦ δ + κ(δ) = δLM ◦ δLM + κ(δLM)︸ ︷︷ ︸
=0

+
∑
i

(δLM ◦ δi + δi ◦ δLM + κ(δi))︸ ︷︷ ︸
=dHomLM

(δi)

⊗ěi +
∑
i,j

(δi ◦ δj)⊗ ěiěj .

�X

As in the discussion preceding Example 4.10, one may heuristically think that
complexes in KbH(h∗,W ) that admit a lift to KbH(h∗,W ) are those with
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trivial right monodromy. Lemma 5.6 says that the condition (23) encodes the
Koszul dual statement: heuristically, complexes in LM(h,W ) that admit a lift
to FM(h,W ) are those with trivial right multiplication. (As with monodromy,
only the forward implication is actually true in general.) Indeed, if (F , δ) is a
free-monodromic complex with δ of the special form in (24), then Lemma 5.6
states that components of δ with nontrivial R∨ part encode nullhomotopies for
right multiplication on For(F) ∈ LM(h,W ).

Remark 5.7. In the recent work of Gorsky–Hogancamp [18], an analogous
lemma describes the data of a “strict y-ification” on a bounded complex of
GLn Soergel bimodules in terms of certain anti-commuting nullhomotopies.

Example 5.8. For the free-monodromic unit T̃id from Example 5.4, each right
multiplication idTid

? ei : Tid → Tid(2) in LM(h,W ) is nullhomotopic with
homotopy hi = ei ⊗ idTid

. Indeed,

dHomLM
(hi) = δTid

◦ hi + hi ◦ δTid
+ κ(hi) = 0 + 0 + ei ? idTid

= idTid
? ei.

Example 5.9. For the free-monodromic tilting sheaf T̃s from Example 5.5,
each right multiplication idTs

?ei : Ts → Ts(2) is nullhomotopic, with homotopy
hi given by

R(1) R(3)

Bs Bs(2)

R(−1) R(1),

∑
s(ei)⊗idR

(∗)• ∑
s(ei)⊗idBs

•

−αs⊗id

∑
ei⊗idR

where (∗) =
∑
ei(α

∨
s )• . (Note that • ⊗ α∨s =

∑
ei(α

∨
s )• ⊗ ěi.) For example,

the component Bs ; Bs(2) of dHomLM
(hi) equals

(
∑

ei(α
∨
s )• ) ◦ • + κ(

∑
s(ei)⊗ idBs

)

=
∑

ei(α
∨
s )•• + s(ei) ? idBs = idBs ? ei.

Here, •• := • ◦ • , and the last equality uses the so-called polynomial forcing

relation in the Elias–Williamson diagrammatic category, which can be checked
directly for Soergel bimodules.
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