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Abstract. In this paper some properties, examples and counterexamples about
the formal derivative operator defined with respect to context-free grammars
are presented. In addition, we show a connection between the context-free
grammar G =

{
a → abr; b → br+1

}
and multifactorial numbers. Some identi-

ties involving multifactorial numbers will be obtained by grammatical meth-
ods.
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Resumen. En este art́ıculo se presentan algunas propiedades, ejemplos y con-
traejemplos del operador derivada formal con respecto a gramáticas inde-
pendientes del contexto. Adicionalmente, se obtiene una relación entre la
gramática G =

{
a → abr; b → br+1

}
y números multifactoriales. Se obtienen

algunas identidades sobre números multifactoriales mediante métodos grama-
ticales.

Palabras y frases clave. Gramáticas independiente del contexto, operador derivada
formal, números multifactoriales.

1. Introduction

Let Σ be an alphabet, whose letters are regarded as independent commutative
indeterminates. Following [4], a formal function over Σ is defined recursively as
follows:

(1) Every letter in Σ is a formal function.
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126 JUAN TRIANA & RODRIGO DE CASTRO

(2) If u, v are formal functions, then u+ v and uv are formal functions.

(3) If f(x) is an analytic function in x, and u is a formal function, then f(u)
is a formal function.

(4) Every formal function is constructed as above in a finite number of steps.

A context-free grammar G over Σ is defined as a set of substitution rules
(called productions) replacing a letter in Σ by a formal function over Σ. For
each a ∈ Σ, a grammar G contains at most one production of the form a→ w.
There is here no distinction between terminals and non-terminals, as it is usual
in the theory of formal languages.

Definition 1.1. Given a context-free grammar G over Σ, the formal derivative
operator D, with respect to G, is defined in the following way:

(1) For u, v formal functions,

D(u+ v) = D(u) +D(v) and D(uv) = D(u)v + uD(v).

(2) If f(x) is an analytic function in x and u is a formal function,

D(f(u)) =
∂f(u)

∂u
D(u).

(3) For a ∈ Σ, if a→ w is a production in G, with w a formal function, then
D(a) = w; in other cases a is called a constant and D(a) = 0.

We next define the iteration of the formal derivative operator.

Definition 1.2. For a formal function u, we define Dn+1(u) = D(Dn(u)) for
n ≥ 0, with D0(u) = u.

For instance, given the context-free grammar G = {a→ a+ b; b→ b}, then
D0(a) = a, D(a) = a+ b, D(b) = b, D(ab) = D(a)b+ aD(b) = [a+ b]b+ a[b] =
b2 + 2ab, and D2(a) = D(D(a)) so D2(a) = D(a+ b) = D(a) +D(b) = a+ 2b.

The formal derivative operator, defined with respect to context-free gram-
mars, has been used to study increasing trees [5], triangular arrays [10], permu-
tations [15] and for generating some combinatorial numbers such as Whitney
numbers [2], Ramanujan’s numbers [7], Stirling numbers [14], among others.
In the same way, some families of polynomials such as Bessel polynomials [12],
Eulerian polynomials [13], and other polynomials [6], have been studied by
grammatical methods.

In section 2 we prove some properties about the formal derivative operator
defined with respect to context-free grammars; in section 3 we obtain multifac-
torial numbers and some identities about them, by means of the context-free
grammar G =

{
a→ abr; b→ br+1

}
. In this paper emphasis is on grammatical

methods; consequently, most proofs are carried out by induction rather than
by combinatorial arguments.
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2. Some properties of the formal derivative operator defined with
respect to context-free grammars

The formal derivative operator of Definition 1.1 preserves many of the proper-
ties of the differential operator in elementary calculus. In the following propo-
sitions we state and prove some of them.

Proposition 2.1. If v is a formal function, α ∈ R and n ∈ Z, then D(αv) =
αD(v) and D(vn) = nvn−1D(v).

Proof. Let f(x) = αx. Since f(x) is an analytic function in x and v is a formal

function, by Definition 1.1 we get D(f(v)) =
∂f(v)

∂v
D(v) = αD(v).

On the other hand, since g(x) = xn is an analytic function in x and v

is a formal function, by Definition 1.1, we have D(g(v)) =
∂g(v)

∂v
D(v) =

nvn−1D(v). �X

Proposition 2.2 (Quotient’s rule). If u, v are formal functions, then D(uv−1) =
[D(u)v − uD(v)]v−2.

Proof. By Definition 1.1, D(uv−1) = D(u)v−1 +uD(v−1). By Proposition 2.1,
D(v−1) = −v−2D(v), so

D(uv−1) = D(u)v−1 − uv−2D(v) = [D(u)v − uD(v)]v−2.

�X

The following proposition shows how the formal derivative operator over a
product of n formal functions can be calculated.

Proposition 2.3 (Generalized product rule). If u1, u2, . . . , un are formal func-
tions, then

D(u1u2 . . . un) = D(u1)u2 . . . un +D(u2)u1u3 . . . un + · · ·+D(un)u1u2 . . . un−1.

Proof. We argue by induction on n. If n = 1, D(u1) = D(u1). If n = 2,
D(u1u2) = D(u1)u2+u1D(u2), by Definition 1.1. Assuming thatD(u1u2 . . . un)
= D(u1)u2 · · ·un + · · ·+D(un)u1 · · ·un−1, and considering un+1 a formal func-
tion, D(u1 · · ·un+1) is calculated as follows:

D(u1 · · ·un)un+1 + u1 · · ·unD(un+1)

= [(D(u1)u2 · · ·un) + · · ·+ (D(un)u1 · · ·un−1)]un+1 + [u1 · · ·unD(un+1)]

= [D(u1)u2 · · ·un+1] + · · ·+ [D(un)u1 · · ·un−1un+1] + [D(un+1)u1 · · ·un].

�X
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128 JUAN TRIANA & RODRIGO DE CASTRO

Example 2.4. If G = {a→ ac; b→ bc; c→ c2}, then Dn(abc) = (n+2)!
2 abcn+1

for n ≥ 0.

Since D0(abc) = abc, the formula is true for n = 0. Assuming that the
formula is true for n, Dn+1(abc) is calculated as follows:

Dn+1(abc) = D(Dn(abc))

= D

(
(n+ 2)!

2
abcn+1

)
=

(n+ 2)!

2

(
D(a)bcn+1 + aD(b)cn+1 + abD(cn+1)

)
=

(n+ 2)!

2

(
abcn+2 + abcn+2 + (n+ 1)abcnD(c)

)
=

(n+ 2)!

2
(n+ 3)abcn+2

=
(n+ 3)!

2
abcn+2.

Thus Dn(abc) = (n+2)!
2 abcn+1.

For the same grammar G it can be similarly proved that Dn(a) = n!acn,
Dn(b) = n!cnb, Dn(c) = n!cn, Dn(ab) = (n+ 1)!abcn, Dn(ac) = (n+ 1)!acn+1

and Dn(bc) = (n+ 1)!bcn+1.

Leibniz’s formula is also valid for formal functions, which is a result known
since the first paper about this topic [4]. It is the main tool used in establishing
combinatorial properties of the objects generated through grammars [5]; its
proof is not usually given and we present it here for completeness.

Proposition 2.5 (Leibniz’s formula). If u, v are formal functions, then for all
n ≥ 0,

Dn(uv) =

n∑
k=0

(
n

k

)
Dk(u)Dn−k(v).

Proof. We argue by induction on n. If u, v are formal functions D0(uv) =
uv, then the result is true for n = 0. By Definition 1.1 we get D(uv) =
D(u)v + vD(u) hence the result is true for n = 1. Assuming that Dn(uv) =
n∑

k=0

(
n
k

)
Dk(u)Dn−k(v), Dn+1(uv) is calculated as follows:
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Dn+1(uv) = D

(
n∑

k=0

(
n

k

)
Dk(u)Dn−k(v)

)

=

n∑
k=0

(
n

k

)
D
(
Dk(u)Dn−k(v)

)
=

n∑
k=0

(
n

k

)
Dk+1(u)Dn−k(v) +Dk(u)Dn−k+1(v).

Expanding the sum, Dn+1(uv) is given by(
n

0

)
uDn+1(v) +

n−1∑
k=0

((
n

k

)
Dk+1(u)Dn−k(v) +

(
n

k + 1

)
Dk+1(u)Dn−k(v)

)
+

(
n

n

)
Dn+1(u)v.

Since

(
n

0

)
=

(
n+ 1

0

)
,

(
n

n

)
=

(
n+ 1

n+ 1

)
and

(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
, cf.

[3], Dn+1(uv) can be written as(
n+ 1

0

)
uDn+1(v) +

n−1∑
k=0

(
n+ 1

k + 1

)
Dk+1(u)Dn−k(v) +

(
n+ 1

n+ 1

)
Dn+1(u)v

=

(
n+ 1

0

)
uDn+1(v) +

n∑
k=1

(
n+ 1

k

)
Dk(u)Dn+1−k(v) +

(
n+ 1

n+ 1

)
Dn+1(u)v

=

n+1∑
k=0

(
n+ 1

k

)
Dk(u)Dn+1−k(v).

Thus Dn(uv) =

n∑
k=0

(
n

k

)
Dk(u)Dn−k(v). �X

Given a context-free grammar, if D(a) 6= D(b) then Dn(a) 6= Dn(b) does
not necessarily hold for n ≥ 2. The grammar G = {a → ab ; b → ac ; c →
b2 + ac− bc} provides a counterexample:

D2(a) = D(D(a)) D2(b) = D(D(b))

= D(ab) = D(ac)

= D(a)b+ aD(b) = D(a)c+ aD(c)

= (ab)b+ a(ac) = (ab)c+ a(b2 + ac− bc)
= ab2 + a2c. = ab2 + a2c.
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130 JUAN TRIANA & RODRIGO DE CASTRO

In the example above it is clear that Dn(a) = Dn(b) for n ≥ 2. Actually, in
general this is always the case: if Dk(a) = Dk(b), for some k, then Dn(a) =
Dn(b) for all n ≥ k. That is so because n can be written as n = m+ k, and we
have Dn(a) = Dm(Dk(a)) = Dm(Dk(b)) = Dm+k(b) = Dn(b).

On the other hand, from D(a2) = D(b2) does not necessarily follow that
D(a) = D(b). For instance, given the grammar G = {a→ ab; b→ a2}, D(a2) =
2aD(a) = 2a2b and D(b2) = 2bD(b) = 2a2b; however D(a) 6= D(b). Similarly,
if D(a2) = D(ab), then D(a) = D(b) does not necessarily hold; for instance,
for the grammar G = {a → ab; b → 2ab − b2} we have D(ab) = 2a2b and
D(a2) = 2a2b; however D(a) 6= D(b). These examples provide useful insight
and allow us to state the following assertions.

Proposition 2.6. There is no context-free grammar such that D(a2) = D(b2) =
D(ab), with a 6= b and D(a), D(b) 6= 0.

Proof. If D(a2) = D(ab) we get 2aD(a) = D(a)b+ aD(b), thus obtaining

(2a− b)D(a)− aD(b) = 0. (1)

Similarly, if D(b2) = D(ab) we have 2bD(b) = D(a)b+ aD(b), so

−bD(a) + (2b− a)D(b) = 0. (2)

From (1) and (2) we obtain the following system of linear equations[
2a− b −a
−b −a+ 2b

] [
D(a)

D(b)

]
=

[
0

0

]
. (3)

For the matrixA =
(

2a−b −a
−b −a+2b

)
, det(A) = −2a2+4ab−2b2 = −2(a−b)2; if a 6=

b then det(A) 6= 0. But the system (3) is homogeneous, that is a contradiction.
Therefore has a single unique solution D(a) = D(b) = 0. �X

Proposition 2.7. There is no context-free grammar such that D(a) = D(b),
D(ac) = D(bc) and D(ab) = D(abc) with a 6= b and D(a), D(b), D(c) 6= 0.

Proof. Since D(a) = D(b), we get

D(a)−D(b) = 0. (4)

Since D(ac) = D(bc), we have D(a)c+ aD(c) = D(b)c+ bD(c), thus obtaining

cD(a)− cD(b) + (a− b)D(c) = 0. (5)

Similarly, from D(ab) = D(abc) we get D(a)b + aD(b) = D(a)bc + aD(b)c +
abD(c), so

(b− bc)D(a) + (a− ac)D(b)− abD(c) = 0. (6)
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From (4), (5) and (6) we obtain the following system of linear equations 1 −1 0

c −c a− b
b− bc a− ac −ab

D(a)

D(b)

D(c)

 =

0

0

0

 . (7)

For the matrix A =
( 1 −1 0

c −c a−b
b−bc a−ac −ab

)
, we have

det(A) = a2c− b2c− a2 + b2 = (a+ b)(a− b)(c− 1).

If a 6= b, det(A) 6= 0. But the system (7) is homogeneous, that is a contradiction.
Therefore, the system has a single unique solution D(a) = D(b) = D(c) =
0. �X

There are infinitely many context-free grammars such that D(a)b = aD(b),
for instance, G = {a → abr ; b → br+1} for each r; in section 3 we will use
this context-free grammar for generating multifactorial numbers. The following
result shows the existence of infinitely many context-free grammars with three
variables and some restrictions of the type D(a)b = aD(b).

Proposition 2.8. There are infinitely many context-free grammars such that
D(a)b = aD(b), D(a)c = aD(c) and acD(b) + abD(c) = 2bcD(a), with D(a),
D(b), D(c) not simultaneously 0.

Proof. Since acD(b) + abD(c) = 2bcD(a), we have

−2bcD(a) + acD(b) + abD(c) = 0. (8)

From D(a)b = aD(b), D(a)c = aD(c) and (8) we obtain the following system
of linear equations.  b −a 0

c 0 −a
−2bc ac ab− a

D(a)

D(b)

D(c)

 =

0

0

0

 .
Since the matrix of this system has determinant 0 and the system is homoge-
neous, we conclude that it has infinitely many solutions. �X

It is easy to check that the grammar G = {a → ac; b → bc; c → c2} in
Example 2.4 satisfies Proposition 2.8.
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3. Multifactorial numbers via context-free grammars

The multifactorial numbers n!r are given by the recurrence relation

n!r = n(n− r)!r with (1− r)!r = · · · = (−1)!r = 0!r = 1.

When r = 1 we get factorial numbers i.e., n!1 = n!; when r = 2 we get double
factorial numbers i.e., n!2 = n!!. As an interesting fact, factorial numbers can be
expressed in terms of double factorial numbers, in the form n! = n!!(n−1)!!, and
double factorial numbers can also be expressed in terms of factorial numbers:
(2n)!! = 2nn!, cf. [16]. The following result shows a connection between the
context-free grammar G = {a→ abr; b→ br+1} and multifactorial numbers.

Proposition 3.1. If G =
{
a→ abr; b→ br+1

}
, then for integers n ≥ 0 and

m, r ≥ 1 it holds

(1) Dn(am) =
(m+ (n− 1)r)!r

(m− r)!r
ambnr.

(2) Dn(bm) =
(m+ (n− 1)r)!r

(m− r)!r
bm+nr.

(3) Dn(ambm) =
(2m+ (n− 1)r)!r

(2m− r)!r
ambm+nr.

Proof. Here we prove (2); the other results can be proved similarly.

Since D0(bm) = bm, the proposition is true for n = 0. Assuming that

Dn(bm) =
[m+ (n− 1)r]!r

[m− r]!r
bm+nr, Dn+1(bm) is calculated as follows

Dn+1(bm) = D(Dn(bm))

= D

(
(m+ (n− 1)r)!r

(m− r)!r
bm+nr

)
=

(m+ (n− 1)r)!r
(m− r)!r

D(bm+nr)

=
(m+ (n− 1)r)!r

(m− r)!r
[m+ nr]bm+nr−1D(b)

=
(m+ (n− 1)r)!r

(m− r)!r
[m+ nr]bm+nr−1[br+1]

=
(m+ nr)!r
(m− r)!r

bm+(n+1)r.

Hence Dn(bm) =
(m+ (n− 1)r)!r

(m− r)!r
bm+nr. �X
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For the following identity for (2n+1)!! we give a proof by means of context-
free grammars.

Corollary 3.2. (2n+ 1)!! =

n∑
k=0

(
n

k

)
(2k − 1)!!(2(n− k))!!, for all n > 0.

Proof. If r = 2 in Proposition 3.1 we obtain the context-free grammar G =

{a → ab2; b → b3} for which Dn(bm) = (m+2(n−1))!!
(m−2)!! bm+2n; then by Leibniz’s

formula we get

Dn(b3) =

n∑
k=0

(
n

k

)
Dk(b)Dn−k(b2). (9)

By Proposition 3.1, Dk(b) = (2k− 1)!!b2k+1, Dn−k(b2) = (2(n− k))!!b2(n−k)+2

and Dn(b3) = (2n+ 1)!!b2n+3; replacing in (9) we obtain

(2n+ 1)!!b2n+3 =

n∑
k=0

(
n

k

)(
(2k − 1)!!b2k+1

) (
(2(n− k))!!b2(n−k)+2

)
=

n∑
k=0

(
n

k

)
(2k − 1)!!(2(n− k))!!b2n+3.

By equating the coefficients, (2n+ 1)!! =

n∑
k=0

(
n

k

)
(2k − 1)!!(2(n− k))!!. �X

The next corollary is proved in [1] by combinatorial arguments; here a proof
can be obtained by rewriting some terms in Corollary 3.2.

Corollary 3.3 ([1], result 4.5). (2n − 1)!! =

n∑
k=1

(2n− 2)!!(2k − 3)!!

(2k − 2)!!
for all

n ≥ 1.

The following proposition is an identity about multifactorial numbers.

Proposition 3.4. For integers n ≥ 0 and m, r ≥ 1 we have

(2m+ (n− 1)r)!r
(2m− r)!r

=

n∑
k=0

(
n

k

)(
(m+ (k − 1)r)!r

(m− r)!r
(m+ (n− k − 1)r)!r

(m− r)!r

)
.

Proof. Let G be the grammar
{
a→ abr; b→ br+1

}
. Applying Leibniz’s for-

mula in Dn(ambm) we get

Dn(ambm) =

n∑
k=0

(
n

k

)
Dk(am)Dn−k(bm).
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134 JUAN TRIANA & RODRIGO DE CASTRO

By Proposition 3.1 we have Dk(am) = (m+(k−1)r)!r
(m−r)!r

ambkr and Dn−k(bm) =
(m+(n−k−1)r)!r

(m−r)!r
bm+(n−k)r, then Dn(ambm) is given by

n∑
k=0

(
n

k

)(
(m+ (k − 1)r)!r

(m− r)!r
ambkr

)(
(m+ (n− k − 1)r)!r

(m− r)!r
bm+(n−k)r

)

=

n∑
k=0

(
n

k

)
(m+ (k − 1)r)!r

(m− r)!r
(m+ (n− k − 1)r)!r

(m− r)!r
ambm+nr.

On the other hand, by Proposition 3.1 we have

Dn(ambm) =
(2m+ (n− 1)r)!r

(2m− r)!r
ambm+nr,

therefore by equating coefficients of bm+nr we get

(2m+ (n− 1)r)!r
(2m− r)!r

=

n∑
k=0

(
n

k

)(
(m+ (k − 1)r)!r

(m− r)!r
(m+ (n− k − 1)r)!r

(m− r)!r

)
.

�X

By taking r = m in Proposition 3.4 we have the following identity for
multifactorial numbers.

Corollary 3.5. ((n+ 1)r)!r = r

n∑
k=0

(
n

k

)
(kr)!r((n− k)r)!r.

Additionally, by taking r = 1 in Proposition 3.4 we get

(2m+ n− 1)!

(2m− 1)!
=

n∑
k=0

(
n

k

)
(m+ k − 1)!

(m− 1)!

(m+ n− k − 1)!

(m− 1)!
. (10)

Identity (10) can be expressed in terms of rising factorial numbers,

mn = m(m+ 1) · · · (m+ n− 1),

also known as Pochhammer upper factorial (m)n, cf. [11]. Since mn =
(
m+n−1

n

)
,

(10) can also be expressed in terms of binomial coefficients as stated in the
following corollary.

Corollary 3.6. For n ≥ 0, m ≥ 1 we have:

(1) (2m)n =

n∑
k=0

(
n

k

)
mkmn−k.
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(2)

(
2m+ n− 1

n

)
=

n∑
k=0

(
m+ k − 1

k

)(
m+ n− k − 1

n− k

)
.

By taking r = 2 in Proposition 3.4 we obtain a property relating binomial
coefficients, double factorial and rising factorial numbers.

Corollary 3.7. 2nmn =

n∑
k=0

(
n

k

)(
(m+ 2(k − 1))!!

(m− 2)!!

(m+ 2(n− k − 1))!!

(m− 2)!!

)
.

Proof. If r = 2 in Proposition 3.4, we obtain

(2m+ 2(n− 1))!!

(2m− 2)!!
=

n∑
k=0

(
n

k

)(
(m+ 2(k − 1))!!

(m− 2)!!

(m+ 2(n− k − 1))!!

(m− 2)!!

)
.

Since 2tt! = (2t)!!, we have

(2m+ 2(n− 1))!!

(2m− 2)!!
=

2m+n−1(m+ n− 1)!

2m−1(m− 1)!
= 2nmn,

thus

2nmn =

n∑
k=0

(
n

k

)(
(m+ 2(k − 1))!!

(m− 2)!!

(m+ 2(n− k − 1))!!

(m− 2)!!

)
.

�X

By taking m = 1 in Corollary 3.7 we get the next result, presented as a
problem in [8], which is proved in [9] by combinatorial methods.

Corollary 3.8 ([9], Theorem 3). (2n)!! =

n∑
k=0

(
n

k

)
(2(n − k) − 1)!!(2k − 1)!!,

for all n ≥ 0.
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