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New analytical method for solving
nonlinear time-fractional

reaction-diffusion-convection problems
Nuevo método analítico para resolver problemas no lineales

fraccionados por tiempo reacción-difusión-convección
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Abstract. In this paper, we propose a new analytical method called gener-
alized Taylor fractional series method (GTFSM) for solving nonlinear time-
fractional reaction-diffusion-convection initial value problems. Our obtained
results are given in the form of a new theorem. The advantage of the pro-
posed method compared with the existing methods is, that method solves the
nonlinear problems without using linearization and any other restriction. The
accuracy and efficiency of the method is tested by means of two numerical ex-
amples. Obtained results interpret that the proposed method is very effective
and simple for solving different types of nonlinear fractional problems.
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Resumen. En este artículo, proponemos un nuevo método analítico denom-
inado método generalizado de la serie fraccional de Taylor (MGSFT) para
resolver problemas de valor inicial no lineales fraccionales en el tiempo de
reacción-difusión-convección. Nuestros resultados obtenidos se dan en la forma
de un nuevo teorema. La ventaja del método propuesto en comparación con
los métodos existentes es que ese método resuelve los problemas no lineales sin
utilizar la linealización y cualquier otra restricción. La precisión y la eficien-
cia del método se prueban mediante dos ejemplos numéricos. Los resultados
obtenidos interpretan que el método propuesto es muy eficaz y simple para
resolver diferentes tipos de problemas fraccionarios no lineales.
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Palabras y frases clave. Problemas no lineales fraccionados en el tiempo de
reacción-difusión-convección, derivado fraccional de Caputo, método de serie
fraccional de Taylor generalizado.

1. Introduction

In recent years, there has been a rapid development in the concept of fractional
calculus and its applications [3, 4, 7, 9]. The fractional calculus which deals with
derivatives and integrals of arbitrary orders [8] plays a vital role in many fields
of applied science and engineering. Recently, nonlinear partial differential equa-
tions with fractional order derivatives have been successfully applied to many
mathematical models in mathematical biology, aerodynamics, rheology, diffu-
sion, electrostatics, electrodynamics, control theory, fluid mechanics, analytical
chemistry and so on. In all these scientific fields, it is important to obtain exact
or approximate solutions of nonlinear fractional partial differential equations
(NFPDEs). But in general, there exists no method that gives an exact solution
for NFPDEs and most of the obtained solutions are only approximations.

Various analytical and numerical methods have been proposed to solve
the NFPDEs. The most commonly used ones are: Adomian decomposition
method (ADM) [11], variational iteration method (VIM) [6], fractional dif-
ference method (FDM) [8], generalized differential transform method (GDTM)
[2], homotopy analysis method (HAM) [12], homotopy perturbation method
(HPM) [1].

The main objective of this paper is to conduct a new analytical method
called generalized Taylor fractional series method (GTFSM) to study the so-
lution of nonlinear time-fractional reaction-diffusion-convection initial value
problems described by{

Dα
t u = (a(u)ux)x + b(u)ux + c(u),

u(x, 0) = f0(x), x ∈ R,
(1)

whereDα
t is the Caputo fractional derivative operator of order α, 0 < α ≤ 1 and

0 < t < R < 1. u = u(x, t) is an unknown function, and the arbitrary smooth
functions a(u), b(u) and c(u) denote the diffusion term, the convection term and
the reaction term respectively. The reaction-diffusion-convection problems are
very useful mathematical models in applied sciences such as biology modeling,
physics, chemistry, astrophysics, hydrology, medicine and engineering.

The paper is organized as follows. In Section 2, we give some necessary
definitions and properties of the fractional calculus theory. In Section 3, we
introduce our results to solve the nonlinear time-fractional reaction-diffusion–
convection initial value problems (1) using the GTFSM. In Section 4, we present
two examples to show the efficiency and effectiveness of this method. In Section
5, we discuss our obtained results represented by figures and tables. These
results were verified with Matlab (version R2016a). Section 6, is devoted to the
conclusions on the work.
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2. Basic Definitions

In this section, we give some basic definitions and properties of the fractional
calculus theory which are used further in this paper. For more details see [8].

Definition 2.1. A real function u(x, t), x ∈ I ⊂ R, t > 0, is considered to be
in the space Cµ(I × R+), µ ∈ R if there exists a real number p > µ, so that
u(x, t) = tpv(x, t), where v ∈ C (I × R+), and it is said to be in the space Cnµ
if u(n) ∈ Cµ (I × R+) , n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order
α ≥ 0 of u ∈ Cµ(I × R+), µ ≥ −1 is defined as follows

Iαt u(x, t) =


1

Γ(α)

∫ t
0

(t− ξ)α−1
u(x, ξ)dξ, α > 0, x ∈ I, t > ξ ≥ 0,

u(x, t) α = 0.
(2)

Definition 2.3. The Caputo time-fractional derivative operator of order α > 0
of u ∈ Cn−1(I × R+), n ∈ N is defined as follows

Dα
t u(x, t) =


1

Γ(n− α)

t∫
0

(t− ξ)n−α−1
u(n)(x, ξ)dξ, n− 1 < α < n,

u(n)(x, t) α = n.

(3)

For this definition we have the following properties

1)
Dα
t (c) = 0, where c is a constant.

2)

Dα
t t
β =

{
Γ(β+1)

Γ(β−α+1) t
β−α if β > n− 1,

0 if β ≤ n− 1.

Definition 2.4. The Mittag-Leffler function is defined as follows

Eα (z) =

∞∑
n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0. (4)

A further generalization of (4) is given in the form

Eα,β (z) =

∞∑
n=0

zn

Γ(nα+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0. (5)

For α = 1, Eα (z) reduces to ez.
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3. Analysis of the Method

Method 3.1. Consider the nonlinear time-fractional reaction-diffusion-con-
vection initial value problems in the form (1).

Then, by GTFSM the solution of (1) is given in the form of an infinite
series which converges rapidly to the exact solution as follows

u(x, t) =

∞∑
i=0

ci(x)
tiα

Γ(iα+ 1)
,

where ci(x) are the coefficients of the series.

Proof. In order to achieve our goal, we consider the following nonlinear reaction-
diffusion-convection initial value problems in the form (1).

Assume that the solution takes the following infinite series form

u(x, t) =

∞∑
i=0

ci(x)
tiα

Γ(iα+ 1)
. (6)

Consequently, the approximate solution to (1), can be written in the form of

un(x, t) =

n∑
i=0

ci(x)
tiα

Γ(iα+ 1)
= c0(x) +

n∑
i=1

ci(x)
tiα

Γ(iα+ 1)
. (7)

By applying the operator Dα
t on Eq. (7), and using the properties (1) and (2),

we obtain the formula

Dα
t un(x, t) =

n−1∑
i=0

ci+1(x)
tiα

Γ(iα+ 1)
. (8)

Next, we substitute both (7) and (8) in (1). Therefore, we have the following
recurrence relations

0 =

n−1∑
i=0

ci+1(x)
tiα

Γ(iα+ 1)

−

(
a

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)(
n∑
i=0

c′i(x)
tiα

Γ(iα+ 1)

))
x

− b

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)(
n∑
i=0

c′i(x)
tiα

Γ(iα+ 1)

)

− c

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)
.
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We follow the same analogue used in obtaining the Taylor series coefficients. In
particular, to determine the function cn(x), n = 1, 2, 3, .., we have to solve the
following

D
(n−1)α
t {L(x, t, α, n)}t=0 = 0,

where

L(x, t, α, n) =

n−1∑
i=0

ci+1(x)
tiα

Γ(iα+ 1)

−

(
a

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)(
n∑
i=0

c′i(x)
tiα

Γ(iα+ 1)

))
x

− b

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)(
n∑
i=0

c′i(x)
tiα

Γ(iα+ 1)

)

− c

(
n∑
i=0

ci(x)
tiα

Γ(iα+ 1)

)
.

Now, we determine the first terms of the sequence {cn(x)}N1 . For n = 1 we have

L(x, t, α, 1) = c1(x)

−
(
a

(
c0(x) + c1(x)

tα

Γ(α+ 1)

)(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

))
x

− b
(
c0(x) + c1(x)

tα

Γ(α+ 1)

)(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

)
− c

(
c0(x) + c1(x)

tα

Γ(α+ 1)

)
.

Solving L(x, 0, α, 1) = 0, yields

c1(x) = (a (c0(x)) c′0(x))x + b (c0(x)) c′0(x) + c (c0(x)) .

To determine c2(x), we consider L(x, t, α, 2) and we solve

Dα
t {L(x, t, α, 2)} ↓t=0= 0.

To determine c3(x), we consider L(x, t, α, 3) and we solve

D2α
t {L(x, t, α, 3)} ↓t=0= 0,

and so on.
In general, to obtain the coefficient function ck(x) we solve

D
(k−1)α
t {L(x, t, α, k)} ↓t=0= 0.
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Finally, the solution of (1), can be expressed by

u(x, t) =

∞∑
i=0

ci(x)
tiα

Γ(iα+ 1)
.

The proof is complete. �X

4. Numerical Examples

In this section, we test the validity of the proposed method to solve some
nonlinear Caputo time-fractional reaction-diffusion-convection problems.

We define En to be the absolute error between the exact solution u and the
approximate solution un, as follows

En(x, t) = |u(x, t)− un(x, t)| , n = 0, 1, 2, 3, ...

Example 4.1. Consider the following initial value nonlinear problem{
Dα
t u = uxx + uux + u− u2, 0 < α ≤ 1,

u(x, 0) = 1 + ex x ∈ R.
(9)

By applying the steps involved in GTFSM as presented in Section 3, we have
the solution of the problem (9) is in the form

u(x, t) =

∞∑
i=0

ci(x)
tiα

Γ(iα+ 1)
, t ∈ [0, R) , x ∈ R. (10)

and
ci(x) = ex, for i = 1, 2, 3, ...

Therefore, the solution of (9), can be expressed by

u(x, t) = 1 + ex
(

1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...

)
= 1 + ex

∞∑
n=0

(tα)
n

Γ(nα+ 1)
= 1 + exEα (tα) ,(11)

where Eα (tα) is the Mittag-Leffler function, defined by Eq. (4).
Taking α = 1 in (11), the solution of (9) has the general pattern form which

is coinciding with the following exact solution in terms of infinite series

u(x, t) = 1 + ex
(

1 + t+
t2

2!
+
t3

3!
+ ...

)
.

So, the exact solution of (9) in a closed form of elementary function will be

u(x, t) = 1 + ex+t,

which is exactly the same solution obtained by HAM [5].
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Example 4.2. Consider the following initial value nonlinear problem{
Dα
t u = (uux)x + 3uux + 2(u− u2), 0 < α ≤ 1,

u(x, 0) = 2
√
ex − e−4x x ∈ R.

(12)

By applying the steps involved in GTFSM as presented in Section 3, we have
the solution of problem (12) in the form

u(x, t) =

∞∑
i=0

ci(x)
tiα

Γ(iα+ 1)
, t ∈ [0, R) , x ∈ R. (13)

and
ci(x) = 2i

√
ex − e−4x, for i = 1, 2, 3, ...

Therefore, the solution of (12), can be expressed by

u(x, t) = 2
√
ex − e−4x

(
1 +

2tα

Γ(α+ 1)
+

22t2α

Γ(2α+ 1)
+

23t3α

Γ(3α+ 1)
+ ...

)
= 2

√
ex − e−4x

∞∑
n=0

(2tα)
n

Γ(nα+ 1)
= 2
√
ex − e−4xEα (2tα) ,(14)

where Eα (2tα) is the Mittag-Leffler function, defined by Eq. (4).
Taking α = 1 in (14), the solution of (12) has the general pattern form

which is coinciding with the following exact solution in terms of infinite series

u(x, t) = 2
√
ex − e−4x

(
1 + 2t+

(2t)
2

2!
+

(2t)
3

3!
+ ...

)
.

So, the exact solution of (12) in a closed form of elementary function will be

u(x, t) = 2e2t
√
ex − e−4x,

which is exactly the same solution obtained by HAM [10].

5. Numerical Results and Discussion

In this section the numerical results for both Examples 4.1 and 4.2 are pre-
sented. Figures 1 and 3 represent the surface graph of the exact solution and
the approximate solution u4(x, t) at α = 0.6, 0.8, 1. Figures 2 and 4 represents
the behavior of the exact solution and the approximate solution u4(x, t) at
α = 0.7, 0.8, 0.9, 1. Tables 1 and 2 show the absolute errors between the exact
solution and the approximate solution u4(x, t) at α = 1 for different values of
x and t. The numerical results afirm that when α approaches 1, our obtained
results by the GTFSM approach the exact solution.
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Figure 1. The surface graph of the exact solution u and the approximate solution
u4 by GTFSM for different values of α for Example 4.1.
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Figure 2. The behavior of the exact solution u and the approximate solution u4 by
GTFSM for different values of α for Example 4.1 when x = 0.5.

t/x 0.1 0.3 0.5 0.7

0.1 9.3655× 10−8 1.1439× 10−7 1.3972× 10−7 1.7065× 10−7

0.3 2.3549× 10−5 2.8762× 10−5 3.5130× 10−5 4.2908× 10−5

0.5 3.1362× 10−4 3.8305× 10−4 4.6786× 10−4 5.7144× 10−4

0.7 1.7482× 10−3 2.1353× 10−3 2.6081× 10−3 3.1855× 10−3

0.9 6.3720× 10−3 7.7828× 10−3 9.5059× 10−3 1.1611× 10−2

Table 1. Comparison of the absolute errors for the approximate solution u4(x, t) and
the exact solution for Example 4.1, when α = 1.
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Figure 3. The surface graph of the exact solution u and the approximate solution
u4 by GTFSM for different values of α for Example 4.2.
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Figure 4. The behavior of the exact solution u and the approximate solution u4 by
GTFSM for different values of α for Example 4.2 when x = 0.5.

t/x 0.1 0.3 0.5 0.7

0.1 3.6376× 10−6 5.6490× 10−6 6.7862× 10−6 7.7089× 10−6

0.3 9.4800× 10−4 1.4722× 10−3 1.7685× 10−3 2.0090× 10−3

0.5 1.3121× 10−2 2.0375× 10−2 2.4477× 10−2 2.7806× 10−2

0.7 7.6230× 10−2 1.1838× 10−1 1.4221× 10−1 1.6155× 10−1

0.9 2.9048× 10−1 4.5109× 10−1 5.4190× 10−1 6.1558× 10−1

Table 2. Comparison of the absolute errors for the approximate solution u4(x, t) and
the exact solution for Example 4.2, when α = 1.
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6. Conclusion

In this paper, a new analytical method called generalized Taylor fractional series
method (GTFSM) is presented for finding the solution of the nonlinear time-
fractional reaction-diffusion-convections problems. The method was applied to
two numerical examples. The results show that the GTFSM is an efficient and
easy to use technique for finding approximate and analytic solutions for these
problems. The obtained approximate solutions using the suggested method is
in excellent agreement with the analytic solution. This confirms our belief that
the efficiency of our technique gives it much wider applicability for general
classes of nonlinear fractional problems.
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