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Abstract. We study the concept of a premetric space introduced by F. Rich-
man in the context of constructive mathematics, and present a method for
completing them.
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Resumen. Estudiamos el concepto de espacio premétrico introducido por F.
Richman en el contexto de las matemáticas constructivas, y presentamos un
método para completarlos.
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1. Introducción

F. Richman [8] addressed the problem of completing a metric space in con-
structive mathematics without the axiom of countable choice. In constructive
mathematics the underlying logic is intuitionistic instead of classical. The ax-
iom of countable choice (CC) says that any countable collection of non empty
sets (Xn)n has a choice function, i.e., a function f : N →

⋃
nXn such that

f(n) ∈ Xn for all n ∈ N. This weak form of choice suffices for the proof of
several classical results, for instance, CC is equivalent to the Baire category
theorem for certain class of metric spaces (the full Baire theorem requires the
axiom of dependent choice, see [2] for a complete treatment of these issues).
F. Richman [7] presented an interesting account of the arguments in favor and
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also against CC in the context of constructive mathematics. In a choiceless en-
vironment, he argued that the reals numbers should not be defined as Cauchy
sequences [6, 8]. Lubarsky has shown [3] that in constructive mathematics with-
out choice it cannot be proved that the Cauchy reals are complete. To point
out why CC is needed, we recall briefly, for the readers convenience, the usual
completion of a metric space (see for instance [10]). Given a metric space X, we
consider the quotient Z obtained by setting in the set of all Cauchy sequences
in X, the natural equivalence relation where two Cauchy sequences are equiv-
alent if its elements get as closed to 0 as we wish. Then Z is endowed with a
metric which makes it a complete metric space containing a dense isometric
copy of X. To prove that Z is indeed complete, we pick a sequence ([s]i)i in
Z, then the axiom of countable choice give us a sequence (xi)i in X such that
d(x∗n, [s]n) ≤ 1/n, where x∗ is the element in the dense copy of X inside Z
corresponding to a point x ∈ X. If ([s]i)i is Cauchy, then so is (xi)i and its
equivalence class is the limit of ([s]i)i.

Without CC, sequences are not the proper objects to represent real num-
bers. Another natural approach is through Dedekind cuts which is only appli-
cable to ordered structures (see [4, 5] for a comparison of different approaches
in the context of constructive mathematics). Richman [8] replaced the notion
of a metric space (which assumes the existence of R) by a structure he called a
premetric space which only needs the rational numbers and presented a method
for completing a premetric space. He then used these ideas to define the real
numbers in constructive mathematics without CC. We will present a method
for completing premetric spaces similar to Richman’s but simpler.

Now we recall the basic definitions and the proposed completion introduced
by Richman. Let X be a nonempty set. A binary relation d between X×X and
the nonnegative rationals is a premetric on X, and we write d(x, y) ≤ q instead
of ((x, y), q) ∈ d, if it satisfies the following conditions for all x, y, z ∈ X and
all nonnegative rational numbers p, q:

(1) d(x, y) ≤ 0 if and only if x = y.

(2) if d(x, y) ≤ q then d(y, x) ≤ q.

(3) if d(x, z) ≤ p and d(z, y) ≤ q then d(x, y) ≤ p+ q (triangular inequality).

(4) d(x, y) ≤ p if and only if d(x, y) ≤ q for all q > p (upper continuity).

A set with a premetric is called a premetric space, and we use the notation
(X, d) to specify the set and its premetric. Also, we write d(x, y) � q instead
of ((x, y), q) /∈ d. When a relation d satisfies 2, 3, 4 above and also d(x, x) ≤ 0
for all x ∈ X, then d is called a pseudo-premetric. When (X, d) is a pseudo-
premetric space, then the relation x ∼ y if d(x, y) ≤ 0 is an equivalence relation.
Thus we can define the corresponding quotient and get a premetric space where
the induced premetric is given by d([x], [y]) ≤ q if d(x, y) ≤ q. The proof that ∼
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is an equivalence relation, and that the induced premetric is indeed a premetric
depends only on the first three defining conditions of a pseudo-premetric.

In general, common notions defined for metric spaces can be copied on
premetric spaces. If D ⊆ X and X is premetric space, then D is said to be
dense in X when given any ε > 0 and x ∈ X, there exists y ∈ D such that
d(y, x) ≤ ε. A map f : X → Y between two premetric spaces (X, dX) and
(Y, dY ) is an isometric embedding if for all x, x′ ∈ X and q a non negative
rational, dX(x, x′) ≤ q if, and only if, dY (f(x), f(x′)) ≤ q. When f is in addition
onto, then it is called an isometry. The metric notion of diameter of a set is also
defined on a premetric space as a binary relation, namely, we write diamA ≤ q
for A ⊆ X and a nonnegative rational number q, if for all x, y ∈ A, d(x, y) ≤ q.

Richman introduced the following notions. A family {Sq : q ∈ Q+} of
subsets of X is regular if d(x, y) ≤ p + q for all x ∈ Sp and y ∈ Sq. Two
regular families S = {Sq : q ∈ Q+} and T = {tq : q ∈ Q+} are equivalent
if d(x, y) ≤ p + q for all x ∈ Sp and y ∈ Tq. Let X̂R be the quotient of
all regular families under that equivalence relation. The natural identification
iR : X → X̂R is defined by iR(x) = [Sx], where Sx = {Sq : q ∈ Q+} with
Sq = {x} for all q ∈ Q+. Thus we have the notion of completeness introduced
by Richman: A premetric space (X, d) is R-complete if the map iR is onto.
And finally, a premetric on X̂R is defined as follows: d̂R([S], [T ]) ≤ q, if for all
ε > 0, there are a, b, c ∈ Q+ and s ∈ Sa, t ∈ Tb such that a+ b+ c < q + ε and
d(s, t) ≤ c. Then Richman proved that iR : X → X̂R is an isometric embedding
of X into X̂R with dense image.

On his review of Richman’s paper [8], A. Setzer [9] remarked that there
was not a formal verification that (X̂R, d̂R) was indeed a R-complete premetric
space. Motivated in part by Setzer’s remark, we define a premetric space X̂
using, instead of regular families, some collections of subsets of X similar to
Cauchy filters but simpler. We introduce a notion of completeness and show
that X̂ is a completion of X. Our method is somewhat similar to that of
completing a uniform space. Finally, we show that (X̂R, d̂R) is isometric to
ours and it is R-complete, thus filling a gap left in Richman’s paper.

2. Completeness

In order to simplify the treatment of completeness developed by Richman, we
use, instead of regular families, a notion similar to that of a Cauchy filter but
much weaker. Similar ideas about the completion of uniform spaces can be
found in §3, Chapter II of [1].

Definition 2.1. Let X be a premetric space and F ⊆ P(X). We say that F
is a Cauchy family on X if it satisfies the following:

i) S ∩ T 6= ∅ for all S, T ∈ F .
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ii) for all ε > 0 there exists S ∈ F such that diamS ≤ ε.

A trivial example of Cauchy family is {{x}}, where x is any point of a
premetric space. A Cauchy filter is a just a Cauchy family which is also a
filter. Notice that a Cauchy family does not need to be even a filter base, as it
could fail to have the finite intersection property. For instance, consider Q as
a premetric space with its natural premetric given by the relation |x− y| ≤ q.
Let F = {Sq : q ∈ Q+} ∪ {Q+

0 ,Q
−
0 }, where Q

+
0 = Q+ ∪ {0}, Q−0 = Q− ∪ {0}

and
Sq = {t ∈ Q : 0 < |t| ≤ q}

for q ∈ Q+. Then F is a Cauchy family that does not satisfy the finite inter-
section property as Sp ∩Q+

0 ∩Q
−
0 = ∅.

There is no problem in using Cauchy filters instead of regular families, but
the notion of a Cauchy family is sufficient for our purposes.

Now we introduce a pseudo-premetric on the collection of Cauchy families.

Definition 2.2. Let F and F ′ be Cauchy families on X, we say that d(F, F ′) ≤
q, if for all ε > 0 there exist S ∈ F and T ∈ F ′ such that:

i) diamS,diamT ≤ ε.

ii) diam(S ∪ T ) ≤ q + ε.

The intuition behind the premetric on the collection of Cauchy families is
as follows. Considering each Cauchy family F as a point, then the elements of
F are “good approximations” of F . Thus smaller the diameter of an element
S ∈ F , the better an approximation it is. Thus, roughly speaking, two Cauchy
families F , F ′ are at distance at most q, when there are approximations S and
T of F and F ′, respectively, such that S and T are at distance at most q.

Here we abuse the notation a bit, we use d for both the premetric on X and
the ternary relation just defined above.

Theorem 2.3. Let (X, d) be a premetric space. The relation d on the collection
of Cauchy families is a pseudo-premetric.

Proof. Let F and F ′ be two Cauchy families and q a nonnegative rational
number. Applying directly conditions i) and ii) from Definition 2.2 we have
that d(F, F ) ≤ q and d(F, F ′) ≤ q if d(F ′, F ) ≤ q.

To prove the triangular inequality, suppose that d(F,G) ≤ p and d(G,H) ≤
q. Then for each ε > 0 there are subsets S ∈ F , U ∈ H and T, T ′ ∈ G such
that diamS, diamU , diamT , diamT ′ ≤ ε

2 , and such that diam (S∪T ) ≤ p+ ε
2

and diam (T ′∪U) ≤ q+ ε
2 . By condition i) of the definition of a Cauchy family,

there is t ∈ T ∩ T ′. Thus d(x, t) ≤ p+ ε
2 and d(t, y) ≤ q + ε

2 for all x ∈ S and
y ∈ U , so by the triangular inequality on X we get d(x, y) ≤ p + q + ε, and
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diam (S ∪U) ≤ p+ q+ ε. Also, by upper continuity on X, diamS, diamU ≤ ε,
so we have shown that d(F,H) ≤ p+ q.

Finally to show upper continuity, suppose first that d(F, F ′) ≤ p and q > p.
Then for each ε > 0 we can find S ∈ F and T ∈ F ′ such that diamS, diamT ≤
ε, satisfying moreover that diam (S ∪ T ) ≤ p + ε. Since p + ε < q + ε the
upper continuity of d on X implies that also diam (S ∪T ) ≤ q+ ε, and thus by
definition, d(F, F ′) ≤ q. Conversely, suppose d(F, F ′) ≤ q for all q > p. Let ε >
0 and set q = p+ ε

2 , there are S ∈ F and T ∈ F ′ such that diamS, diamT ≤ ε
2

and such that diam (S∪T ) ≤ q+ ε
2 = p+ε. By applying again upper continuity

(on X) we have that diamS, diamT ≤ ε and thus d(F, F ′) ≤ p. �X

Now we introduce the premetric space of Cauchy families of a given pre-
metric space.

Definition 2.4. Let X be a premetric space. The premetric space obtained
from the quotient of the set of all Cauchy families on X, induced by its respec-
tive pseudo-premetric, is denoted by (X̂, d̂ ). Also, we use the notation x∗ for
the equivalence class of the family {{x}}.

As usual, we denote the elements of X̂ as [F ], the equivalence class of the
Cauchy family F .

Theorem 2.5. Let X be a premetric space. The function i : X → X̂ defined
as i(x) = x∗ is an isometric embedding with dense image.

Proof. To verify that i is an isometric embedding, suppose first x, y ∈ X
and d(x, y) ≤ q. Since diam ({x} ∪ {y}) ≤ q ≤ q + ε for each ε > 0, then
d({{x}}, {{y}}) ≤ q and thus d̂(x∗, y∗) ≤ q. On the other hand, suppose
d̂(x∗, y∗) ≤ q, then diam ({x} ∪ {y}) ≤ q + ε for each ε > 0, and therefore
d(x, y) ≤ q + ε for each ε > 0. So by upper continuity we conclude d(x, y) ≤ q.

Now let us show that i(X) is dense in X̂. Suppose ε > 0 and [F ] ∈ X̂. By
the definition of a Cauchy family, there exists S ∈ F such that diamS ≤ ε.
Since S 6= ∅, fix an element s ∈ S. We claim that d(F, {{s}}) ≤ ε. In fact, let
δ > 0, there exists T ∈ F such that diamT ≤ δ. Let t ∈ T ∩ S, as S ∩ T 6= ∅.
Then for all u ∈ T we have that d(u, t) ≤ δ and d(t, s) ≤ ε, and therefore
d(u, s) ≤ ε + δ. That is, diam (T ∪ {{s}}) ≤ ε + δ and d(F, {{s}}) ≤ ε. Thus
we have found an element s ∈ X such that d̂([F ], s∗) ≤ ε. �X

Following Richman, we now introduce the notion of a complete premetric
space, in terms of its canonical map.

Definition 2.6. Let X be a premetric space. We say that X is complete, if the
map i : X → X̂ is onto.
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3. Completion

Having at hand the formal definition of completeness, we now introduce the
natural notion of a completion of a premetric space.

Definition 3.1. Let X and Y be premetric spaces. We say that Y is a comple-
tion of X, if Y is complete, and there exists an isometric embedding j : X → Y
with dense image.

By Theorem 2.5, the existence of a completion of a premetric space X will
be immediately guaranteed once we show that (X̂, d̂) is complete. To show that
X̂ is complete, we prove an extension theorem. We remark that the heart of
the argument is this extension theorem, the rest of the proof of the complete-
ness of X̂ and the uniqueness of the completion will be achieved by algebraic
manipulation of diagrams.

Theorem 3.2. Let (A, dA), (B, dB) and (C, dC) be premetric spaces, f : A→
B an isometric embedding, and h : A→ C an isometric embedding with dense
image. Then there exists a unique isometric embedding g : C → B̂ such that
the following diagram commutes

A B

C B̂

f

h i

g

Proof. We define first for each c ∈ C and each positive rational q, the set

Scq = {f(x) ∈ B : x ∈ A, dC(h(x), c) ≤ q/2}.

Thereby we set Sc = {Scq : q ∈ Q+}. We will show that Sc is a Cauchy family
on B for all c ∈ C. Indeed, since h has dense image, given two nonnegative
rationals µ and ν, there exists x ∈ A such that dC(h(x), c) ≤ 1

2 min{µ, ν}.
Therefore f(x) ∈ Scµ ∩ Scν and we have shown that Scµ ∩ Scν 6= ∅. On the other
hand, to check the second condition of a Cauchy family, it suffices to show
that diamScε ≤ ε for all ε > 0. Let ε > 0, then for all x, y ∈ A such that
dC(h(x), c) ≤ ε/2 and dC(h(y), c) ≤ ε/2, we have, by the triangular inequality,
that dC(h(x), h(y)) ≤ ε. Since h and f are isometric embeddings we also have
dA(x, y) ≤ ε and dB(f(x), f(y)) ≤ ε. Thus diamScε ≤ ε and Sc is a Cauchy
family.

Now define g(c) = [Sc] for each c ∈ C. To prove that g is an isometric
embedding suppose dC(c, c

′) ≤ p. To see that d̂B([Sc], [Sc
′
]) ≤ p, fix ε >

0, since diamScε ≤ ε and diamSc
′

ε ≤ ε, it suffices to show that diam (Scε ∪
Sc
′

ε ) ≤ p+ ε. This follows immediately from the triangular inequality since for
every f(x) ∈ Scε and f(y) ∈ Sc′ε we have dB(f(x), f(y)) ≤ p + ε. Conversely,
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suppose d̂B([Sc], [Sc
′
]) ≤ p. To see that dC(c, c′) ≤ p it suffices to show that

dC(c, c
′) ≤ p + ε for all ε > 0. Then, let ε > 0 and choose µ and ν such that

diam (Scµ ∪ Sc
′

ν ) ≤ p + ε/3. Since the image of h is dense in A, there exist
a, a′ ∈ A such that dC(h(a), c) ≤ 1

3 min{µ, ε} and dC(h(a′), c′) ≤ 1
3 min{ν, ε}.

As dC(h(a), c) ≤ ε/3 and dC(h(a′), c′) ≤ ε/3, then h(a) ∈ Scµ and h(a′) ∈ Sc′ν
and therefore dC(h(a), h(a′)) ≤ p + ε/3. Hence by the triangular inequality,
dC(c, c

′) ≤ p+ε for all ε > 0, and by upper continuity we conclude dC(c, c′) ≤ p.

Finally observe that for all a ∈ A we have f(a) ∈ Sh(a)ε for all ε > 0, thereby
diam ({f(a)} ∪ Sh(a)ε ) ≤ ε for all ε > 0. Thus {{f(a)}} is equivalent to Sh(a),
that is, i(f(a)) = (f(a))∗ = [Sh(a)] = g(h(a)). Therefore g ◦ h = i ◦ f and the
diagram commutes. �X

Finally, we show that X̂ is indeed a completion and it is unique up to
isometry.

Theorem 3.3. (X̂, d̂) is a complete premetric space for every premetric space
(X, d) and thus every premetric space admits a completion which is unique up
to isometry.

Proof. We will show that X̂ is complete. By Theorem 2.5, we have the iso-
metric embeddings i : X → X̂ and j : X̂ → ̂̂

X each one with dense image.
Thus the map k = j ◦ i : X → ̂̂

X has also dense image. Thereby we can apply
the Theorem 3.2 to find a map l such that the following diagram commutes

X X X̂

̂̂
X X̂

̂̂
X

id

k

i

i j

l j

Contracting the diagram we have

X X̂

̂̂
X

̂̂
X

i

k j

jl

By the uniqueness given by Theorem 3.2 j ◦ l = id, and this proves that j is
onto, that is, that X̂ is complete.

To prove uniqueness, suppose Y is a complete premetric space and h : X →
Y is an isometric embedding with dense image. Let j : Y → Ŷ and i : X → X̂
be the natural embeddings. Since Y is complete, j is a bijection. Then by
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Theorem 3.2 there are maps u, v such that the following diagram commutes.

X X Ŷ

Y X̂ Y

id

h

jh

i j−1

u v

Contracting the diagram we have

X Ŷ

Y Y

jh

h j−1

vu

By uniqueness we have v ◦ u = id. Thus the map u is an isometry between Y
and X̂. �X

As we said in the introduction, Richman proposed in [8] a way of completing
a premetric space but he did not formally verified that it was indeed a complete
premetric space. Now we are going to show that (X̂R, d̂R) is R-complete. The
definition was given in the introduction.

Let X̂R be the quotient of all regular families under the equivalence relation
defined in the introduction and d̂R be the premetric on X̂R. The natural iden-
tification iR : X → X̂R is defined by iR(x) = [Sx], where Sx = {Sq : q ∈ Q+}
with Sq = {x} for all q ∈ Q+. Richman proved that i is an isometric embedding

with dense image (see [8, Theorem 2.2]). Let ̂̂
XR denote the quotient of all reg-

ular families of (X̂R, d̂R) and îR : X̂R →
̂̂
XR the natural isometric embedding.

We will show that îR is onto.
We need the following lemma proved by Richman.

Lemma 3.4. [8, Lemma 2.1]. Let X be a premetric space and S = {Sq :
q ∈ Q+} a regular family on X. Then dR(iR(x), [S]) ≤ q for any x ∈ Sq and
q ∈ Q+.

Theorem 3.5. Let X be a premetric space, then

(i) There exists an isometry ϕ : (X̂R, d̂R)→ (X̂, d̂).

(ii) The map îR : X̂R →
̂̂
XR is onto.

Proof. (i) As the natural map i : X → X̂R is an isometric embedding with
dense image, then by Theorem 3.2 there exists an isometric embedding ϕ such
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that the next diagram commutes

X X

X̂R X̂

id

iR j

ϕ

We prove now that ϕ is onto. Let s ∈ X̂, we define for each positive rational q
the set

Sq = {x ∈ X : d̂(j(x), s) ≤ q}. (1)

Since j is an isometric embedding, it is easy to verify (using the triangu-
lar inequality) that S = {Sq : q ∈ Q+} is a regular family. By Lemma 3.4
d̂R([S], iR(x)) ≤ q, and thus d̂(ϕ([S]), ϕ(iR(x))) ≤ q, as ϕ is an isometric em-
bedding. By the commutativity of the diagram, we have that d̂(ϕ([S]), j(x)) ≤
q. Since x ∈ Sq we have also d̂(j(x), s) ≤ q, so by triangular inequality on X̂
we conclude d̂(ϕ([S]), s) ≤ 2q for any q ∈ Q+, that is, ϕ([S]) = s and ϕ is onto.

(ii) Let ĵ : X̂ → ̂̂
X be the natural map, ϕ : X̂R → X̂ the map defined

in part (i) and îR : X̂R →
̂̂
XR the natural map. By Theorem 3.2, there is an

isometric embedding ψ :
̂̂
XR →

̂̂
X such that the following diagram commutes

X̂R X̂

̂̂
XR

̂̂
X

ϕ

îR ĵ

ψ

Since ĵ, ϕ are onto maps, then as the diagram commutes îR is also onto. �X

Richman [8] implicitly introduced a notion of maximal regular family by
saying that a regular family {Tq}q is maximal if for any other equivalent regular
family {T ′q}q we have T ′q ⊆ Tq for each q ∈ Q+. For instance, in Q with the
usual premetric, the regular family {Tq}q with Tq = {q} is equivalent to the
maximal regular family {Sq}q with Sq = {t ∈ Q : |t| ≤ q}. He observed that
every equivalence class contains a maximal element which he called its canonical
representative. The regular family given by (1) is maximal. Moreover, it is also
a Cauchy family. It follows from the proof of the previous theorem that if T
is a regular family and F is a Cauchy family such that [F ] = ϕ[T ]R, then
[T ]R ∩ [F ] 6= ∅ (here we use [T ]R to denote the equivalence class in the sense
of Richman and [F ] in the sense used for X̂).
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