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Deducing Three Gap Theorem from
Rauzy-Veech induction

Deduciendo el teorema de las tres brechas vía inducción
Rauzy-Veech
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Abstract. The Three Gap Theorem states that there are at most three dis-
tinct lengths of gaps if one places n points on a circle, at angles of z, 2z, . . . nz
from the starting point. The theorem was first proven in 1958 by Sós and
many proofs have been found since then. In this note we show how the Three
Gap Theorem can easily be deduced by using Rauzy-Veech induction.
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Resumen. El teorema de las tres brechas indica que existen a lo sumo tres
longitudes distintas de brechas si se sitúan n puntos en un círculo, en ángulos
z, 2z, . . . , nz a partir del punto inicial. El teorema se demostró primero en 1958
por Sós y muchas pruebas han sido encontradas desde entonces. En esta nota
mostramos cómo el teorema de las tres brechas puede ser fácilmente deducido
usando inducción de tipo Rauzy-Veech.

Palabras y frases clave. Teorema de las tres brechas, inducción Rauzy-Veech,
sucesión de Kronecker, intercambio de intervalos, distribución uniforme.

1. Introduction

Kronecker sequences are important examples of uniformly distributed sequences.
Given z ∈ R, a Kronecker sequence is of the form (zn)n≥0 = ({nz})n≥0 where
{z} := z − bzc denotes the fractional part of z. Sometimes their level of uni-
formity is even as great as possible since infinitely many Kronecker sequences
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belong to the classical examples of low-discrepancy sequences, see e.g. [2], Corol-
lary 1.65. Another important property describing the uniformity of Kronecker
sequences is the Three Gap Theorem, going back to a famous conjecture of
Steinhaus which was first proved by Sós in [5]. Roughly speaking it states,
that for fixed N there are only three different possible distances between two
consecutive elements of ({nz})Nn=0, compare Figure 1.
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Figure 1. Illustration of Three Gap Theorem for N = 6 and rotation by
α = π(3−

√
5), the golden angle, i.e. z = (3−

√
5)/2.

Since the Three Gap Theorem is closely linked to continued fraction expan-
sion we shortly introduce some notation first: every irrational number z has a
uniquely determined infinite continued fraction expansion

z = a0 + 1/(a1 + 1/(a2 + . . .)) =: [a0; a1; a2; . . .],

where the ai are integers with a0 = bzc and ai ≥ 1 for all i ≥ 1. The sequence
of convergents (ri)i∈N of z is defined by

ri = [a0; a1; . . . ; ai].

The convergents ri = pi/qi with gcd(pi, qi) = 1 can also be calculated directly
by the recurrence relation

p−2 = 0, p−1 = 1, pi = aipi−1 + pi−2, i ≥ 0

q−2 = 1, q−1 = 0, qi = aiqi−1 + qi−2, i ≥ 0.
(1)

Now the Three Gap Theorem states the following.
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Theorem 1.1 (Three Gap Theorem). Let z ∈ (0, 1) be irrational with conti-
nued fraction expansion z = [a0; a1; a2; . . .] and convergents rn = pn/qn. Fur-
thermore let N ∈ N with N ≥ 2 have Ostrowski representation1

N =

m∑
j=0

bjqj

with integer coefficients b0 ≥ 1, b1, . . . , bm satisfying 0 ≤ bj ≤ aj+1 and minimal
m with qm + 1 ≤ N < qm+1 + qm. If z < 1

2 , let K2l−1 = {q2l−1z} and K2l =
1−{q2lz} for l ∈ N0, and if z > 1

2 , let K2l−1 = 1−{q2l−1z} and K2l = {q2lz}.
Then the finite sequence ({nz})n=1,...,N−1 has at most three different lengths of
gaps, namely

L1 = Km−1 − bmKm,

L2 = Km

L3 = L1 + L2.

The number of gaps of lengths L1, L2, L3 are

N1 = N − bmqm − qm−1,
N2 = N − qm,
N3 = qm − (N − bmqm − qm−1).

Later on, several further proofs of the claim have been found, see e.g. [3], [1],
[4] and most recently [6]. In this note we add another proof to the list of proofs
of Theorem 1.1: a Kronecker sequence corresponds to the rotation of the unit
circle by the angle 2πz if we identify [0, 1) with R/Z. The map x 7→ x+z mod 1
is also the simplest example of an interval exchange transformation. Indeed, it
may be considered an exchange of two subintervals of [0, 1), specifically A :=
[0, 1−{z}) and B := [1−{z} , 1). Here we show that the Three Gap Theorem can
easily be deduced from the viewpoint of interval exchange transformations by
using Rauzy-Veech induction. Our proof is shorter and more streamlined than
previous proofs that relate the Three Gap Theorem to continued fractions.

Interval Exchange Transformations. We only give a brief summary here
and refer the reader to [7], which is also our main source, for more details.
Let I ⊂ R be an interval of the form [0, λ∗) and let {Iα|α ∈ A} be a finite
partition of I into subintervals indexed by some finite alphabet A. An interval
exchange transformation is a map f : I → I which is a translation on each
subinterval Iα. It is determined by its combinatorial data and its length data.
The combinatorial data consists of two bijections π0, π1 : A → {1, . . . , n},

1Actually, this is a slightly amended version of the Ostrowski representation, since usually
it is assumed that 0 ≤ b0 < a1 and bj−1 = 0 if bj = aj+1 but not qm +1 ≤ N < qm+1 + qm.
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where n is the number of elements of A and the length data are numbers
(λα)α∈A =: λ with λα > 0 and λ∗ =

∑
α∈A λα. The number λα is the length

of the subinterval Iα and the pair π = (π0, π1) describes the ordering of the
subintervals before and after the map f is iterated. For A = {A,B}, π0(A) =
π1(B) = 1 and π1(A) = π0(B) = 2, the interval exchange transformation
becomes the rotation of R/λ∗Z by λB .

Rauzy-Veech Induction. For an interval exchange transformation f given
by the data (π, λ), we define the type ε by

λπ−1
ε (n) > λπ−1

1−ε(n)
,

if the lengths of these two intervals do not coincide. Following the usual termi-
nology, we say that Iπ−1

ε (n) is the winner and Iπ−1
1−ε(n)

is the loser. Let J be
the subinterval of I obtained by removing the loser, i.e.

J =

{
I \ f(Iπ−1

1 (n)) if f has type 0

I \ Iπ−1
0 (n) if f has type 1.

The Rauzy-Veech induction R(f) of f is its first return map to the interval
J . It is again an interval exchange transformation consisting of n subintervals.
The corresponding data (π′, λ′) can be easily calculated, see e.g. [7]. In this
note, we restrict our attention to π0(A) = π1(B) = 1 and π1(A) = π0(B) = 2
because it is the only case of interest for the proof of Theorem 1.1. The first
a−1 steps of Rauzy-Veech induction for two intervals are depicted in Figure 1,
where Ak (respectively Bk) denotes the specific interval appearing after step
k.

As long as the two rightmost intervals λπ−1
ε (n), λπ−1

1−ε(n)
have different lengths

the construction can be iterated yielding a sequence R(j)(f) = (π(j), λ(j)) of
interval exchange transformations. The type is well-defined infinitely times if
and only if the so-called Keane-condition which postulates that the orbits of
the singularities of f−1 by f are infinite and distinct is satisfied, see e.g [8].
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Figure 2. First a steps of Rauzy-Veech induction, for type 0 (left) and type 1
(right)

Besides the Rauzy-Veech induction we need the accelerated Rauzy-Veech
induction, also known as Zorich-Rauzy-Veech induction: it means that
the Rauzy-Veech induction is applied as many times a ∈ N until the type
changes, compare again Figure 1. We denote the resulting map by R̂ and the
corresponding a by ai. In the case of two intervals, the accelerated Rauzy-Veech
induction is equivalent to the continued fraction algorithm and the ai are equal
to the coefficients of the continued fraction expansion, see e.g. [7], Chapter 9.

Proof of the Three Gap Theorem. Let N ∈ N be arbitrary and let us
assume that 1 > z > 1

2 since the case z < 1
2 works likewise. At first, we prove by

induction that themth application of accelerated Rauzy-Veech yields a partition
of [0, 1) into qm long and qm−1 short intervals. Using the notation therein, we
can see from Figure 1 that the first application of accelerated Rauzy-Veech
disjointly partitions

[0, 1) = f(A)∪̇f2(A)∪̇ . . . ∪̇fa1(A)∪̇Ba−1 (2)

into 1 = q0 short interval with length l̂
(1)
s and a1 = q1 long intervals with

length l̂
(1)
l . In the same manner, the m-th application of accelerated Rauzy-

Veech partitions the long interval (before m-th step) of length l̂(m−1)l into am
long intervals (after the m-th step) of length l̂

(m)
l = l̂

(m−1)
s and one short

interval of length l̂(m)
s . Inductively it follows from (2), that applying f to one

distinguished long interval am · qm−1 + qm−2 = qm times (compare (1)) and to
one distinguished small interval qm−1 times yields again a disjoint partition of
[0, 1).

Hence, if N = qm + qm−1, then the set of left endpoints of the partition
implied by R̂m, which consists of N = qm + qm−1 subintervals, only has two
different gap lengths, i.e. N1 = 0, N2 = qm−1 and N3 = qm, as claimed. Simi-
larly, one step of the usual (not accelerated) Rauzy-Veech algorithm partitions
the long interval of length l(i)l into one interval of length l(i)l − l

(i)
s and one of

length l
(i)
s , compare again Figure 1. Note that l̂(m) = l(

∑m
k=0 ak). This proves

the formulas for N1, N2, N3 in the case N = bmqm + qm−1 since applying the
usual Rauzy-Veech algorithm at this stage increases N by qm.

Moreover by applying (2) inductively, we see that the set of left endpoints
equals the finite Kronecker sequence ((n− 2)z)n=1,...,N as a set. This transfers
the results on the number of gaps to the Kronecker sequence for N = bmqm +
qm−1. Note that considering ((n − 2)z)n=1,...,N instead of (nz)n=1,...,N−1 is
no restriction because the variable shift just corresponds to a rotation of all
points of the sequence by a fixed angle, namely −2z, which does not change
the number of gaps or their lengths.
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If i Rauzy-Veech steps have been applied and N is increased by 1, the
Kronecker sequence must approach the set of left endpoints implied by the
next Rauzy-Veech step R(i+1) as a set. In other words, one of the long intervals
is subdivided into one subinterval of length l(i)s and one subinterval of length
lm := l

(i)
l − l

(i)
s by the additional point of the Kronecker sequence while the

other intervals remain undivided. In other words, as N increases by 1 also
N1 (number of medium length intervals) and N2 (number of short intervals)
increase by 1, while N3 (number of long intervals) decreases by 1 until there is
no interval of length l

(i)
l left (and thus N1 drops to 0 again). This completes

the proof of the expressions for N1, N2 and N3 for all values of N .
The only part of the assertion which is missing are the formulas for L1, L2

and L3. Of course, the total length of all subintervals has to sum up to 1 and
we have already seen L3 = L1+L2 because lm = l

(i)
l − l

(i)
s . Therefore, it suffices

to only calculate one of the lengths. Another time we use induction to show the
formula for the shortest length L2. At the beginning there is 1 = q0 interval
of short length l̂(0)s = L

(0)
2 = 1 − {q0z} and applying accelerated Rauzy-Veech

once yields
l̂(1)s = L

(1)
2 = 1− a1(1− {q0z}) = {q1z} .

Again by accelerated Rauzy-Veech, the m-th appearing short interval length
l̂
(m)
s = L

(m)
2 has to satisfy the equation

L
(m)
2 = L

(m−1)
3 − am · L(m−1)

2

= Km−2 − amKm−1

=

{
(1− {qm−2z})− am {qm−1z} m is even
{qm−2z} − am(1− {qm−1z}) m is odd

=

{
1− {qmz} m is even
{qmz} m is odd

This finishes the proof because the length L2 does not change before one ac-
celerated Rauzy-Veech step is completed.
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