On \mathcal{I} - \oplus -supplemented modules

Sobre módulos \mathcal{I} - \oplus -suplementados

Tayyebeh Amouzegar

Quchan University of Technology, Quchan, Iran

ABSTRACT. In this note we introduce \mathcal{I} - \oplus -supplemented modules as a proper generalization of \oplus -supplemented modules. A module M is called \mathcal{I} - \oplus -supplemented if for every $\phi \in End_R(M)$, there exists a direct summand L of M such that $Im\phi + L = M$ and $Im\phi \cap L \ll L$. It is shown that if M is a \mathcal{I} - \oplus -supplemented module with D_3 condition, then every direct summand of M is \mathcal{I} - \oplus -supplemented. We prove that if $M = M_1 \oplus M_2$ is \mathcal{I} - \oplus -supplemented such that M_1 and M_2 are relative projective, then M_1 and M_2 are \mathcal{I} - \oplus -supplemented. We study some rings whose modules are \mathcal{I} - \oplus -supplemented.

Key words and phrases. Supplemented module, \mathcal{I} - \oplus -supplemented module, dual Rickart module, endomorphism ring, V-ring.

2020 Mathematics Subject Classification. 16D10, 16D80.

Resumen. En esta nota nosotros introducimos los módulos \mathcal{I} - \oplus -suplementados, una generalizacion de los módulos \oplus -suplementados. Un módulo M se dice \mathcal{I} - \oplus -suplementado si para cada $\phi \in End_R(M)$, existe un sumando directo L de M tal que $\mathrm{Im}\phi + L = M$ y $\mathrm{Im}\phi \cap L \ll L$. Se demuestra que si M es un módulo \mathcal{I} - \oplus -suplementado con la condición D_3 , entonces cada sumando directo de M es \mathcal{I} - \oplus -suplementado. Demostramos que si $M = M_1 \oplus M_2$ es \mathcal{I} - \oplus -suplementado tal que M_1 y M_2 son proyectivos relativos, entonces M_1 y M_2 son \mathcal{I} - \oplus -suplementados. Estudiamos algunos anillos cuyos modulos son \mathcal{I} - \oplus -suplementados.

Palabras y frases clave. Módulo suplementado, módulo \mathcal{I} -⊕-suplementado, módulo Rickart dual, endomorfismo de anillos, V-anillo.

1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity, M is a unitary right R-module and $S = End_R(M)$ is the ring of all R-endomorphisms of M. We will use the notation $N \ll M$ to indicate that

N is small in M (i.e. $\forall L \leq M, L+N \neq M$). The notation $N \leq^{\oplus} M$ means that N is a direct summand of M. $N \subseteq M$ means that N is a fully invariant submodule of M (i.e., $\forall \phi \in End_R(M), \ \phi(N) \subseteq N$).

Let K and N be submodules of M. K is called a *supplement* of N in M if M = K + N and K is minimal with respect to this property, or equivalently, M = K + N and $K \cap N \ll K$. A module M is called *supplemented* if every submodule of M has a supplement in M. The module M is called *amply supplemented* if for any submodules K and N of M with M = K + N, there exists a supplement P of K such that $P \leq N$. A module M is called *lifting* if for every $A \leq M$, there exists a direct summand B of M such that $B \subseteq A$ and $A/B \ll M/B$ [7].

It is well known that the module M is lifting if and only if M is amply supplemented and every supplement submodule of M is a direct summand (see [4, 7]). As a generalization of lifting modules, Mohamed and Müller [7] called a module $M \oplus$ -supplemented if every submodule of M has a supplement that is a direct summand of M.

Many generalizations of the concept of \oplus -supplemented modules have been introduced and studied by several authors [2, 3, 5].

In [1], we introduced \mathcal{I} -lifting modules as a generalization of lifting modules. Following [1], a module M is called \mathcal{I} -lifting if for every $\phi \in S$ there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq \text{Im}\phi$ and $M_2 \cap \text{Im}\phi \ll M_2$.

In this paper, we define \mathcal{I} - \oplus -supplemented modules as a proper generalization of \oplus -supplemented modules and \mathcal{I} -lifting modules. A module M is called \mathcal{I} - \oplus -supplemented if for every $\phi \in End_R(M)$, there exists a direct summand L of M such that $Im\phi + L = M$ and $Im\phi \cap L \ll L$. Clearly, \oplus -supplemented modules, \mathcal{I} -lifting modules and dual Rickart modules are \mathcal{I} - \oplus -supplemented.

In Section 2, we investigate \mathcal{I} - \oplus -supplemented modules. The relative \mathcal{I} - \oplus -supplemented condition is introduced and it is used to obtain a characterization of an \mathcal{I} - \oplus -supplemented module. It is shown that if M is \mathcal{I} - \oplus -supplemented with D_3 , then every direct summand of M is \mathcal{I} - \oplus -supplemented. We prove that if $M = M_1 \oplus M_2$ is \mathcal{I} - \oplus -supplemented such that M_1 and M_2 are relative projective, then M_1 and M_2 are \mathcal{I} - \oplus -supplemented. It is shown that every finite direct sum of copies of a dual Rickart module is \mathcal{I} - \oplus -supplemented.

In Section 3, we study some rings whose modules are \mathcal{I} - \oplus -supplemented.

2. \mathcal{I} - \oplus -supplemented modules

A module M is called \mathcal{I} - \oplus -supplemented if for every $\phi \in End_R(M)$, there exists $L \leq^{\oplus} M$ such that $Im\phi + L = M$ and $Im\phi \cap L \ll L$.

It is clear that every \oplus -supplemented module is \mathcal{I} - \oplus -supplemented.

The following example exhibits an \mathcal{I} - \oplus -supplemented module which is not \oplus -supplemented.

Example 2.1. The \mathbb{Z} -module \mathbb{Q} of rational numbers is \mathcal{I} - \oplus -supplemented since every endomorphism of a \mathbb{Z} -module \mathbb{Q} is an automorphism, but it is not \oplus -supplemented.

Let M and N be R-modules. A module M is called an N- \mathcal{I} - \oplus -supplemented module if for every homomorphism $\phi: M \to N$, there exists $L \leq^{\oplus} N$ such that $\operatorname{Im} \phi + L = N$ and $\operatorname{Im} \phi \cap L \ll L$.

In view of the above definition, a right module M is \mathcal{I} - \oplus -supplemented if and only if M is M- \mathcal{I} - \oplus -supplemented.

A module M is called $dual\ Rickart$ (for short d-Rickart) if for every $\phi \in End_R(M)$, $Im\phi \leq^{\oplus} M$. Recall that a module M is called $N\text{-}dual\ Rickart$ if for every homomorphism $\phi: M \to N$, $Im\phi \leq^{\oplus} N$ (see [6]). It is clear that if M is $N\text{-}dual\ Rickart$, then M is $N\text{-}\mathcal{I}\text{-}\oplus\text{-supplemented}$. Obviously, if N is a semisimple module, then M is $N\text{-}\mathcal{I}\text{-}\oplus\text{-supplemented}$ for any $R\text{-module\ }M$.

It is clear that if M is d-Rickart, then M is \mathcal{I} - \oplus -supplemented, while the converse in not true (the \mathbb{Z} -module \mathbb{Z}_4 is \mathcal{I} - \oplus -supplemented but it is not d-Rickart).

Theorem 2.2. Let M and N be right modules. Then M is $N-\mathcal{I}-\oplus$ -supplemented if and only if for all direct summands $M' \leq^{\oplus} M$ and $N' \leq^{\oplus} N$, M' is $N'-\mathcal{I}-\oplus$ -supplemented.

Proof. Let M' = eM for some $e^2 = e \in End_R(M)$, $N' \unlhd^{\oplus} N$ and $\psi \in Hom(M', N')$. Since $\psi eM = \psi M' \subseteq N' \subseteq N$ and M is $N - \mathcal{I} - \oplus$ -supplemented, there exists a direct summand K of N such that $\psi eM + K = N$ and $\psi eM \cap K \ll K$. Then $\psi eM + (K \cap N') = N'$. As $N' \unlhd N$, $K \cap N' \subseteq^{\oplus} N'$. Thus $\psi eM \cap (K \cap N') \ll (K \cap N')$. Therefore M' is $N' - \mathcal{I} - \oplus$ -supplemented. The converse follows easily.

Next, we characterize \mathcal{I} - \oplus -supplemented modules.

Corollary 2.3. The following conditions are equivalent for a module M:

- (1) M is an \mathcal{I} - \oplus -supplemented module.
- (2) For any fully invariant direct summand N of M, every direct summand L of M is $N-\mathcal{I}-\oplus$ -supplemented.

Proposition 2.4. Let M be a module with Rad(M) = 0. Then M is \mathcal{I} - \oplus -supplemented if and only if M is d-Rickart.

Proof. Let M be an \mathcal{I} - \oplus -supplemented module and let $\phi \in S$. Then there exists a direct summand K of M such that $M = \operatorname{Im} \phi + K$ and $\operatorname{Im} \phi \cap K \ll K$. So $\operatorname{Im} \phi \cap K \subseteq Rad(M) = 0$. Hence $M = \operatorname{Im} \phi \oplus K$, this means that M is d-Rickart. The converse is clear.

Recall that a ring R is said to be a $\mathit{right}\ V\text{-}\mathit{ring}$ if every simple right R- module is injective.

Corollary 2.5. Let R be a right V-ring and M be an R-module. Then M is \mathcal{I} - \oplus -supplemented if and only if M is d-Rickart.

Proof. By [10, 23.1], for every right R-module M, Rad(M) = 0. Thus, by Proposition 2.4, every \mathcal{I} - \oplus -supplemented R-module is d-Rickart.

Corollary 2.6. Let R be a commutative regular ring and M be an R-module. Then M is \mathcal{I} - \oplus -supplemented if and only if M is d-Rickart.

Proof. It is clear by Corollary 2.5 and [10, 23.5(2)].

An R-module M is called \mathcal{T} - noncosingular if, $\forall \phi \in End_R(M), Im\phi \ll M$ implies that $\phi = 0$ [8, 9].

Proposition 2.7. The following conditions are equivalent for an \mathcal{T} -noncosingular module M:

- (1) M is an indecomposable \mathcal{I} - \oplus -supplemented module;
- (2) Every non-zero endomorphism $\phi \in S$ is an epimorphism.

Proof. Let M be an indecomposable \mathcal{I} - \oplus -supplemented module. Assume that $0 \neq \phi \in End_R(M)$. Then there exists $L \leq^{\oplus} M$ such that $Im\phi + L = M$ and $Im\phi \cap L \ll L$. Since M is indecomposable, L = M or L = 0. If L = M, then $Im\phi \ll M$. By \mathcal{T} - noncosingularity, $\phi = 0$, a contradiction. Thus L = 0 and so ϕ is an epimorphism. The converse follows easily.

Corollary 2.8. Let M be an indecomposable module. Then M is d-Rickart if and only if M is \mathcal{I} - \oplus -supplemented and \mathcal{T} - noncosingular.

Proof. Let M be d-Rickart, then it is clear that M is \mathcal{I} - \oplus -supplemented and \mathcal{T} - noncosingular. The converse follows from Proposition 2.7 and [6, Proposition 4.4].

Recall that a module M is said to be retractable if, for every $0 \neq N \leq M$, $\exists 0 \neq \phi \in End_R(M)$ with $\phi(M) \subseteq N$.

Corollary 2.9. Let M be an indecomposable \mathcal{T} -noncosingular retractable module. If M is \mathcal{I} - \oplus -supplemented, then M is simple.

Proof. Let M be an indecomposable retractable \mathcal{T} - noncosingular \mathcal{I} - \oplus - supplemented module and let N be any non-zero submodule of M. Since M is retractable there exists $0 \neq \phi \in End_R(M)$ such that $\phi(M) \subseteq N$. As ϕ is an epimorphism by Proposition 2.7, N = M. Therefore M is a simple module. \square

Proposition 2.10. Let M be an \mathcal{I} - \oplus -supplemented module. Let N be a submodule of M such that M/N is projective. Then M is N- \mathcal{I} - \oplus -supplemented.

Proof. Let ϕ be any homomorphism from M to N. Consider the endomorphism $i\phi: M \to M$, where i is the inclusion map from N to M. Since M is \mathcal{I} - \oplus -supplemented, there exists a direct summand K of M such that $M = \operatorname{Im}\phi + K$ and $\operatorname{Im}\phi \cap K \ll K$. Thus $N = \operatorname{Im}\phi + (N \cap K)$. By [5, Lemma 2.3], $N \cap K$ is a direct summand of M. So $N \cap K$ is a direct summand of N and K. By [7, Lemma 4.2], $\operatorname{Im}\phi \cap K \ll N \cap K$. Therefore M is N- \mathcal{I} - \oplus -supplemented.

Corollary 2.11. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module and M_2 be projective. Then M_1 is \mathcal{I} - \oplus -supplemented.

Proof. By Proposition 2.10, M is M_1 - \mathcal{I} - \oplus - supplemented. So M_1 is \mathcal{I} - \oplus -supplemented by Theorem 2.2.

Theorem 2.12. Let M_1 , M_2 and N be right R-modules. Assume that N is M_i - \mathcal{I} - \oplus -supplemented for i=1,2, then N is $M_1 \oplus M_2$ - \mathcal{I} - \oplus -supplemented, if for every homomorphism ϕ from N to $M_1 \oplus M_2$ and any projection map π of $M_1 \oplus M_2$ we have $\pi(Im\phi) = Im\phi \cap Im\pi$. The converse is true if every M_i is fully invariant in $M_1 \oplus M_2$.

Proof. Suppose that N is M_i - \mathcal{I} - \oplus -supplemented for i=1,2. We will prove that N is $M_1 \oplus M_2$ - \mathcal{I} - \oplus -supplemented. Let $\phi=(\pi_1\phi,\pi_2\phi)$ be any homomorphism from N to $M_1 \oplus M_2$, where π_i is the projection map from $M_1 \oplus M_2$ to M_i for i=1,2. Since N is M_i - \mathcal{I} - \oplus -supplemented, there exists a direct summand K_i of M_i such that $\pi_i\phi N+K_i=M_i$ and $\pi_i\phi N\cap K_i\ll K_i$, for i=1,2. Let $K=K_1\oplus K_2$, it is clear that K is a direct summand of $M_1\oplus M_2$. As $\pi_1\phi(N)=\pi_1(\phi(N)+M_2)=(\phi(N)+M_2)\cap M_1$ and $\pi_2\phi(N)=\pi_2(\phi(N)+K_1)=(\phi(N)+K_1)\cap M_2$ we have $M_1\leq \phi(N)+M_2+K_1$ and $M_2\leq \phi(N)+K_1+K_2$. Thus $M_1\oplus M_2=\phi(N)+K_1+K_2=\phi(N)+K$. Moreover, $M_1\oplus M_2=\pi_1\phi N+\pi_2\phi N+K_1+K_2=\phi N+K$. Since $\phi N\cap (K_1+K_2)\leq (\phi N+K_1)\cap K_2+(\phi N+K_2)\cap K_1$, we have $\phi N\cap (K_1+K_2)\leq (\phi N+M_1)\cap K_2+(\phi N+M_2)\cap K_1$. As $\phi N+M_1=\pi_2\phi N\oplus M_1$ and $\phi N+M_2=\pi_1\phi N\oplus M_2$, thus $\phi N\cap K\subseteq (\pi_2\phi N\cap K_2)+(\pi_1\phi N\cap K_1)$. Since $\pi_i\phi N\cap K_i\ll K_i$ for $i=1,2,\ \phi N\cap K\ll K_1+K_2=K$. Hence N is $M_1\oplus M_2$ - \mathcal{I} - \oplus -supplemented. The converse is clear by Theorem 2.2.

Corollary 2.13. Let $\{M_i\}_{i=1}^n$ be right R-modules. Let $\bigoplus_{i=1}^n M_i$ be M_j - \mathcal{I} - \bigoplus -supplemented, for $j=1,2,\cdots,n$. Then $\bigoplus_{i=1}^n M_i$ is \mathcal{I} - \bigoplus -supplemented. The converse is true if every M_i is fully invariant in $\bigoplus_{i=1}^n M_i$.

Corollary 2.14. Let $\{M_i\}_{i=1}^n$ be right R-modules. Let M_i be M_j -d-Rickart for all $i, j \in \mathcal{I} = \{1, 2, ..., n\}$. Then $\bigoplus_{i \in \mathcal{I}} M_i$ is \mathcal{I} - \bigoplus -supplemented.

Proof. By [6, Corollary 5.4], $\bigoplus_{i\in\mathcal{I}}M_i$ is M_j -d-Rickart for all $j\in\mathcal{I}$, where $\mathcal{I}=\{1,2,\ldots,n\}$. Thus $\bigoplus_{i\in\mathcal{I}}M_i$ is M_j - \mathcal{I} - \bigoplus -supplemented. By Corollary 2.13, $\bigoplus_{i\in\mathcal{I}}M_i$ is \mathcal{I} - \bigoplus -supplemented.

Corollary 2.15. Let M be a d-Rickart module. Then every finite direct sum of copies of M is \mathcal{I} - \oplus -supplemented.

Theorem 2.16. Let M_1 and M_2 be right R-modules. Suppose that $M_i \leq (M_1 \oplus M_2)$ for i = 1, 2. Then $M_1 \oplus M_2$ is an \mathcal{I} - \oplus -supplemented module if and only if M_i is \mathcal{I} - \oplus -supplemented for i = 1, 2.

Proof. The necessity follows from Theorem 2.2. Conversely, let M_i be \mathcal{I} - \oplus -supplemented for i=1,2. Let $\phi=(\phi_{ij})_{i,j=1,2}\in S=End_R(M_1\oplus M_2)$ be arbitrary, where $\phi_{ij}\in \operatorname{Hom}(M_j,M_i)$. Since $M_i\unlhd M_1\oplus M_2$ for i=1,2, $\operatorname{Im}\phi=\operatorname{Im}\phi_{11}\oplus\operatorname{Im}\phi_{22}$. As M_i is \mathcal{I} - \oplus -supplemented for i=1,2, there exists direct summand K_i of M_i such that $\operatorname{Im}\phi_{ii}+K_i=M_i$ and $\operatorname{Im}\phi_{ii}\cap K_i\ll K_i$. Let $K=K_1\oplus K_2$, then K is a direct summand of M. Moreover, $M_1\oplus M_2=(\operatorname{Im}\phi_{11}\oplus\operatorname{Im}\phi_{22})+(K_1\oplus K_2)$. Since $\operatorname{Im}\phi\cap (K_1\oplus K_2)\subseteq (\operatorname{Im}\phi+K_1)\cap K_2+(\operatorname{Im}\phi+K_2)\cap K_1$, we have $\operatorname{Im}\phi\cap (K_1\oplus K_2)\subseteq (\operatorname{Im}\phi_{11}\cap K_1)+(\operatorname{Im}\phi_{22}\cap K_2)\ll K_1\oplus K_2$. Hence $M_1\oplus M_2$ is \mathcal{I} - \oplus -supplemented.

The module M is called a $duo\ module$, if every submodule of M is fully invariant.

Corollary 2.17. Let $M = M_1 \oplus M_2$ be a duo module. Then M is an \mathcal{I} - \oplus -supplemented module if and only if M_1 and M_2 are \mathcal{I} - \oplus -supplemented.

Lemma 2.18. Let $M = M_1 \oplus M_2$. Then M is M_2 - \mathcal{I} - \oplus -supplemented if and only if for every $\phi \in End_R(M)$ with $Im\phi \geq M_1$, there exists a direct summand K of M such that $K \leq M_2$, $M = K + Im\phi$ and $K \cap Im\phi \ll M$.

Proof. Let M be M_2 - \mathcal{I} - \oplus -supplemented. Assume that $\phi = (\pi_1 \phi, \pi_2 \phi)$ is any endomorphism of M with $\operatorname{Im} \phi \geq M_1$, where π_1 is the projection map from M onto M_i for i=1,2. Since M is M_2 - \mathcal{I} - \oplus -supplemented, there exists a direct summand K of M_2 such that $M_2 = \operatorname{Im} \pi_2 \phi + K$ and $\operatorname{Im} \pi_2 \phi \cap K \ll K$. It is clear that $\operatorname{Im} \phi \cap M_2 = \operatorname{Im} \pi_2 \phi$. Therefore $M = M_1 + M_2 = M_1 + (\operatorname{Im} \phi \cap M_2) + K = \operatorname{Im} \phi + K$ and $\operatorname{Im} \phi \cap K \ll K$.

Conversely, suppose that M has the stated property. Let ϕ be any homomorphism from M to M_2 . Consider the endomorphism $\psi = \phi + \pi_1 \in S$, where π_1 is the natural projection of M onto M_1 . Since $\text{Im}\psi = \text{Im}\phi \oplus M_1 \geq M_1$, there exists a direct summand K of M such that $K \leq M_2$, $M = K + \text{Im}\psi$ and $K \cap \text{Im}\psi \ll M$ by hypothesis. Then $M_2 = K + \text{Im}\phi$, $K \cap \text{Im}\phi \ll K$ and K is a direct summand of M_2 . Therefore M is M_2 - \mathcal{I} - \oplus -supplemented.

Theorem 2.19. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module. Assume that for every direct summand K of M with $M = K + M_2$, $K \cap M_2$ is a direct summand of M. Then M is M_2 - \mathcal{I} - \oplus -supplemented.

Proof. Let $\phi = (\pi_1 \phi, \pi_2 \phi)$ be an endomorphism of M with $\operatorname{Im} \phi \geq M_1$, where π_j is the natural projection of M onto M_j for j=1,2. Consider the endomorphism $i_2\pi_2\phi \in End_R(M)$, where i_2 is the canonical inclusion from M_2 to M. Note that $\operatorname{Im} i_2\pi_2\phi = \operatorname{Im} \phi \cap M_2$. Since M is \mathcal{I} - \oplus -supplemented, there exists a direct summand K of M such that $M = (\operatorname{Im} \phi \cap M_2) + K$ and $\operatorname{Im} \phi \cap M_2 \cap K \ll K$. It is clear $M = \operatorname{Im} \phi + M_2$. By [4, Lemma 1.2], $M = (K \cap M_2) + \operatorname{Im} \phi$. By hypothesis, $K \cap M_2$ is a direct summand of M as $M = K + M_2$. Therefore M is M_2 - \mathcal{I} - \oplus -supplemented by Lemma 2.18.

Corollary 2.20. Let M be an \mathcal{I} - \oplus -supplemented module and N be a direct summand of M such that M/N is N-projective. Then M is an N- \mathcal{I} - \oplus -supplemented module.

Proof. Let L be a direct summand of M with M = L + N. Note that there exists a submodule N' of M such that $M = N \oplus N'$ as $N \leq^{\oplus} M$. Thus N' is N-projective. By [10, 41.14], there exists $L' \leq L$ such that $M = L' \oplus N$. So $L = L' \oplus (L \cap K)$. This means that $L \cap K \leq^{\oplus} M$. By Theorem 2.19, M is N- \mathcal{I} - \oplus -supplemented.

Corollary 2.21. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module such that M_1 is M_2 -projective. Then M is M_2 - \mathcal{I} - \oplus -supplemented.

Proof. It is easy to see by Corollary 2.20.

V

Recall that a module M is said to have D_3 condition whenever $M = M_1 + M_2$, where M_1 and M_2 are direct summands of M, then $M_1 \cap M_2$ is a direct summand of M.

Corollary 2.22. (1) Let $M = M_1 \oplus M_2$ be a module. If for every $\phi \in End_R(M)$ with $Im\phi \geq M_1$, there exists a direct summand K of M such that $K \leq M_2$, $M = K + Im\phi$ and $K \cap Im\phi \ll M$, then M_2 is \mathcal{I} - \oplus -supplemented.

- (2) Let M be an \mathcal{I} - \oplus -supplemented module with D_3 condition. Then every direct summand of M is \mathcal{I} - \oplus -supplemented.
- (3) Let $M=M_1\oplus M_2$ be an \mathcal{I} - \oplus -supplemented module such that M_1 is M_2 -projective. Then M_2 is \mathcal{I} - \oplus -supplemented.

Proof. (1) By Lemma 2.18 and Theorem 2.2.

- (2) By Theorem 2.19 and Theorem 2.2.
- (3) By Corollary 2.21 and Theorem 2.2.

V

Recall that a module M is said to be Hopfian if every epimorphism $\phi \in End_R(M)$ is an isomorphism.

Proposition 2.23. Let M be an \mathcal{T} -noncosingular noetherian \mathcal{I} - \oplus -supplemented module. Then there exists a decomposition $M = M_1 \oplus \cdots \oplus M_n$, where M_i is an indecomposable noetherian \mathcal{I} - \oplus -supplemented module with $End_R(M_i)$ a division ring.

Proof. Since M is noetherian, it has a finite decomposition with indecomposable noetherian direct summands. By Corollary 2.8, [6, Corollary 4.8] and since every noetherian module is Hopfian, each indecomposable direct summand has a division ring.

3. Rings whose modules are \mathcal{I} - \oplus -supplemented

In this section, we study some rings whose modules are \mathcal{I} - \oplus -supplemented.

Theorem 3.1. Consider the following conditions for a ring R:

- (1) R is a semisimple artinian ring.
- (2) Every right R-module is an \mathcal{I} - \oplus -supplemented module.
- (3) Every free (projective) right R-module is an \mathcal{I} - \oplus -supplemented module. Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, if Rad(R) = 0, then $(3) \Rightarrow (1)$.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ are clear.

 $(3)\Rightarrow (1)$ Let I be a right ideal of R. There exists a free R-module F_R and an epimorphism $\phi:F_R\to I$. Note that $\phi(F_R)=I$. By (3), there exists a direct summand K of F_R such that $F_R=K+I$ and $K\cap I\ll K$. Since Rad(R)=0, $K\cap I=0$. Thus $I\leq^{\oplus}F_R$ and so $I\leq^{\oplus}R_R$. Therefore R is a semisimple artinian ring.

Recall that an epimorphism $f:P\to M$ with P projective, is called a projective cover of M if $\operatorname{Ker} f\ll P$.

Proposition 3.2. Let M be a projective module. Then the following are equivalent:

- (1) M is an \mathcal{I} - \oplus -supplemented module.
- (2) $M/Im\phi$ has a projective cover for every $\phi \in S$.
- **Proof.** (1) \Rightarrow (2) Let M be an \mathcal{I} - \oplus -supplemented module and $\phi \in S$. There exists a direct summand $K \leq M$ with $M = \operatorname{Im} \phi + K$ and $\operatorname{Im} \phi \cap K \ll K$. Note that K is projective. Consider the epimorphism $f: K \to M \to M/\operatorname{Im} \phi$. Thus $\operatorname{Ker} f = \operatorname{Im} \phi \cap K \ll K$. Therefore $M/\operatorname{Im} \phi$ has a projective cover.
- (2) \Rightarrow (1) Let $\phi \in S$ and $f: P \to M/\mathrm{Im}\phi$ be a projective cover. Then there exists a homomorphism $g: M \to P$ such that $fg = \pi$, where $\pi: M \to P$

 $M/\mathrm{Im}\phi$ is the canonical epimorphism. Note that g is surjective. Thus g splits. Hence there exists a homomorphism $h:P\to M$ such that $gh=id_P$ and so $f=fgh=\pi h$. Thus $\mathrm{Im}\phi+h(P)=M$ and $\mathrm{Im}\phi\cap h(P)\ll h(P)$. Therefore M is $\mathcal{I}\text{-}\oplus\text{-supplemented}$.

Corollary 3.3. For a ring R the following statements are equivalent:

- (1) R_R is \mathcal{I} - \oplus -supplemented.
- (2) $R_R/Im\phi$ has a projective cover for every $\phi \in End_R(R_R)$.

A ring R is called *perfect* if, every R-module has a projective cover.

Proposition 3.4. Let R be a ring. Consider the following conditions:

- (1) R is right perfect;
- (2) Every projective right R-module is \mathcal{I} - \oplus -supplemented;
- (3) Every free right R-module is \mathcal{I} - \oplus -supplemented.

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. $(1) \Rightarrow (2)$ by Proposition 3.2.

- $(2) \Rightarrow (3)$ is clear.
- $(3) \Rightarrow (2)$ It follows from Corollary 2.11.

V

A module M is called *lifting* if for all $N \leq M$, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll M$.

Obviously, we have the following implications:

lifting $\Rightarrow \oplus$ -supplemented $\Rightarrow \mathcal{I}$ - \oplus -supplemented.

A ring R is called f-semiperfect if, every finitely presented R-module has a projective cover. A module M is said to be $principally \oplus -supplemented$ if, for all cyclic submodule N of M, there exists a direct summand X of M such that M = N + X and $N \cap X \ll X$.

The following theorem gives a characterization of f-semiperfect rings.

Theorem 3.5. The following are equivalent for a ring R:

- (1) R is f-semiperfect.
- (2) R_R is finitely supplemented.
- (3) Every cyclic right ideal has a supplement in R_R .
- (4) R_R is principally lifting.
- (5) R_R is principally \oplus -supplemented.
- (6) R_R is \mathcal{I} - \oplus -supplemented.

Revista Colombiana de Matemáticas

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ by [10, 42.11].

- $(4) \Rightarrow (5)$ and $(5) \Rightarrow (3)$ are clear.
- $(5) \Rightarrow (6)$ It is obvious because $\text{Im}\phi$ is cyclic for every $\phi \in End_R(R_R)$.
- $(6)\Rightarrow (5)$ Assume that I=aR is any principal right ideal of R. Consider the R-homomorphism $\phi:R_R\to R_R$ defined by $\phi(r)=ar$, where $r\in R$. Then $\mathrm{Im}\phi=I$. By (6), there exists a direct summand K of R_R such that $\mathrm{Im}\phi+K=R_R$ and $\mathrm{Im}\phi\cap K\ll K$. So R_R is principally \oplus -supplemented. $\ensuremath{\ensuremath{\boxtimes}}$

References

- [1] T. Amouzegar, generalization of lifting modules, Ukrainian Math. J., DOI: 10.1007/s11253-015-1042-z **66** (2015), no. 1.
- [2] T. Amouzegar and Y. Talebi, A generalization of \oplus -supplemented modules, Eur. J. Pure Appl. Math. **5** (2012), no. 2, 108–115.
- [3] E. Türkmen H. Çalişici, Generalized ⊕-supplemented modules, Algebra Discrete Math. 10 (2010), no. 2, 10–18.
- [4] D. Keskin, On lifting modules, Comm. Algebra 28 (2000), no. 7, 3427–3440.
- [5] D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar **91** (2001), no. 3, 253–261.
- [6] G. Lee, S. T. Rizvi, and C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), 4036–4058.
- [7] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [8] D. K. Tütüncü and R. Tribak, On \mathcal{T} -noncosingular modules, Bull. Aust. Math. Soc. **80** (2009), 462–471.
- [9] _____, On dual Baer modules, Glasgow Math. J. **52** (2010), 261–269.
- [10] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.

(Recibido en enero de 2020. Aceptado en agosto de 2020)

DEPARTMENT OF MATHEMATICS
QUCHAN UNIVERSITY OF TECHNOLOGY
P.O.Box 94771-67335,
QUCHAN, IRAN

 $e\text{-}mail: \verb|t.amoozegar@yahoo.com; t.amouzgar@qiet.ac.ir|\\$