Revista Colombiana de Matemáticas Volumen 54(2020)2, páginas 129-139

On I-⊕-supplemented modules

Sobre módulos I -⊕-suplementados

Tayyebeh Amouzegar

Quchan University of Technology, Quchan, Iran

ABSTRACT. In this note we introduce $\mathcal{I}\text{-}\oplus$ -supplemented modules as a proper generalization of \oplus -supplemented modules. A module M is called $\mathcal{I}\text{-}\oplus$ -supplemented if for every $\phi \in End_R(M)$, there exists a direct summand L of M such that Im $\phi + L = M$ and Im $\phi \cap L \ll L$. It is shown that if M is a $\mathcal{I}\text{-}\oplus\text{-}$ supplemented module with D_3 condition, then every direct summand of M is $\mathcal{I}\text{-}\oplus$ -supplemented. We prove that if $M = M_1 \oplus M_2$ is $\mathcal{I}\text{-}\oplus$ -supplemented such that M_1 and M_2 are relative projective, then M_1 and M_2 are $\mathcal{I}\text{-}\oplus\mathcal{I}$ supplemented. We study some rings whose modules are $\mathcal{I}\text{-}\oplus\text{-supplemented}$.

Key words and phrases. Supplemented module, I-⊕-supplemented module, dual Rickart module, endomorphism ring, V -ring.

2020 Mathematics Subject Classification. 16D10, 16D80.

RESUMEN. En esta nota nosotros introducimos los módulos $I-\oplus$ -suplementados, una generalizacion de los módulos \oplus -suplementados. Un módulo M se dice \mathcal{I} - \oplus -suplementado si para cada $\phi \in End_R(M)$, existe un sumando directo L de M tal que Im $\phi + L = M$ y Im $\phi \cap L \ll L$. Se demuestra que si M es un módulo $\mathcal{I}\text{-}\oplus$ -suplementado con la condición D_3 , entonces cada sumando directo de M es $\mathcal{I}\text{-}\oplus$ -suplementado. Demostramos que si $M = M_1 \oplus M_2$ es I-⊕-suplementado tal que M¹ y M² son proyectivos relativos, entonces M¹ y M_2 son \mathcal{I} -⊕-suplementados. Estudiamos algunos anillos cuyos modulos son I-⊕-suplementados.

 $Palabras y frases$ clave. Módulo suplementado, módulo $\mathcal{I}-\oplus$ -suplementado, módulo Rickart dual, endomorfismo de anillos, V -anillo.

1. Introduction

Throughout this paper, R will denote an arbitrary associative ring with identity, M is a unitary right R-module and $S = End_R(M)$ is the ring of all R-endomorphisms of M. We will use the notation $N \ll M$ to indicate that N is small in M (i.e. $\forall L \leq M, L + N \neq M$). The notation $N \leq^{\oplus} M$ means that N is a direct summand of M. $N \leq M$ means that N is a fully invariant submodule of M (i.e., $\forall \phi \in End_R(M), \ \phi(N) \subseteq N$).

Let K and N be submodules of M. K is called a supplement of N in M if $M = K + N$ and K is minimal with respect to this property, or equivalently, $M = K + N$ and $K \cap N \ll K$. A module M is called *supplemented* if every submodule of M has a supplement in M . The module M is called amply supplemented if for any submodules K and N of M with $M = K + N$, there exists a supplement P of K such that $P \leq N$. A module M is called *lifting* if for every $A \leq M$, there exists a direct summand B of M such that $B \subseteq A$ and $A/B \ll M/B$ [7].

It is well known that the module M is lifting if and only if M is amply supplemented and every supplement submodule of M is a direct summand (see $[4, 7]$). As a generalization of lifting modules, Mohamed and Müller $[7]$ called a module $M \oplus$ -supplemented if every submodule of M has a supplement that is a direct summand of M.

Many generalizations of the concept of ⊕-supplemented modules have been introduced and studied by several authors [2, 3, 5].

In $[1]$, we introduced *L*-lifting modules as a generalization of lifting modules. Following [1], a module M is called *L*-lifting if for every $\phi \in S$ there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq \text{Im}\phi$ and $M_2 \cap \text{Im}\phi \ll M_2$.

In this paper, we define $\mathcal{I}\text{-}\oplus$ -supplemented modules as a proper generalization of \oplus -supplemented modules and *I*-lifting modules. A module M is called $\mathcal{I}\text{-}\oplus\text{-}supplemented$ if for every $\phi\in End_R(M)$, there exists a direct summand L of M such that $\text{Im}\phi + L = M$ and $\text{Im}\phi \cap L \ll L$. Clearly, \oplus -supplemented modules, $\mathcal{I}\text{-llifting}$ modules and dual Rickart modules are $\mathcal{I}\text{-}\oplus\text{-supplemented}$.

In Section 2, we investigate $\mathcal{I}\text{-}\oplus$ -supplemented modules. The relative $\mathcal{I}\text{-}\oplus$ supplemented condition is introduced and it is used to obtain a characterization of an $\mathcal{I}\text{-}\oplus$ -supplemented module. It is shown that if M is $\mathcal{I}\text{-}\oplus$ -supplemented with D_3 , then every direct summand of M is $\mathcal{I}-\oplus$ -supplemented. We prove that if $M = M_1 \oplus M_2$ is $\mathcal{I}\oplus\mathcal{I}\oplus\mathcal{I}\oplus\mathcal{I}\oplus\mathcal{I}\oplus\mathcal{I}$ and M_1 and M_2 are relative projective, then M_1 and M_2 are $\mathcal{I}\text{-}\oplus$ -supplemented. It is shown that every finite direct sum of copies of a dual Rickart module is $\mathcal{I}\text{-}\oplus$ -supplemented.

In Section 3, we study some rings whose modules are $\mathcal{I}\text{-}\oplus$ -supplemented.

2. I-⊕-supplemented modules

A module M is called $\mathcal{I}\text{-}\oplus\text{-supplemented}$ if for every $\phi\in End_R(M)$, there exists $L \leq^{\oplus} M$ such that $\text{Im}\phi + L = M$ and $\text{Im}\phi \cap L \ll L$.

It is clear that every \oplus -supplemented module is $\mathcal{I}\text{-}\oplus$ -supplemented.

The following example exhibits an $\mathcal{I}\text{-}\oplus$ -supplemented module which is not ⊕-supplemented.

Example 2.1. The Z-module $\mathbb Q$ of rational numbers is $\mathcal I$ - \oplus -supplemented since every endomorphism of a \mathbb{Z} -module \mathbb{Q} is an automorphism, but it is not \oplus supplemented.

Let M and N be R -modules. A module M is called an N - \mathcal{I} - \oplus -supplemented module if for every homomorphism $\phi : M \to N$, there exists $L \leq^{\oplus} N$ such that Im $\phi + L = N$ and Im $\phi \cap L \ll L$.

In view of the above definition, a right module M is $\mathcal{I}\text{-}\oplus$ -supplemented if and only if M is $M-\mathcal{I}-\oplus$ -supplemented.

A module M is called *dual Rickart* (for short *d-Rickart*) if for every $\phi \in$ $End_B(M)$, Im $\phi \leq^{\oplus} M$. Recall that a module M is called N-dual Rickart if for every homomorphism $\phi : M \to N$, Im $\phi \leq^{\oplus} N$ (see [6]). It is clear that if M is N-dual Rickart, then M is N- $\mathcal{I}\text{-}\oplus$ -supplemented. Obviously, if N is a semisimple module, then M is $N-\mathcal{I}$ - \oplus -supplemented for any R-module M.

It is clear that if M is d-Rickart, then M is $\mathcal{I}\text{-}\oplus\text{-supplemented}$, while the converse in not true (the Z-module \mathbb{Z}_4 is $\mathcal{I}\text{-}\oplus$ -supplemented but it is not d-Rickart).

Theorem 2.2. Let M and N be right modules. Then M is $N-\mathcal{I}$ - \oplus -supplemented if and only if for all direct summands $M' \leq^{\oplus} M$ and $N' \leq^{\oplus} N$, M' is $N'-\mathcal{I}$ -⊕-supplemented.

Proof. Let $M' = eM$ for some $e^2 = e \in End_R(M)$, $N' \subseteq N$ and $\psi \in$ Hom (M', N') . Since $\psi e M = \psi M' \subseteq N' \subseteq N$ and M is N-*T*- \oplus -supplemented, there exists a direct summand K of N such that $\psi e M + K = N$ and $\psi e M \cap$ $K \ll K$. Then $\psi e M + (K \cap N') = N'$. As $N' \leq N$, $K \cap N' \leq^{\oplus} N'$. Thus $\psi e M \cap (K \cap N') \ll (K \cap N')$. Therefore M' is N'-*I*-⊕-supplemented. The converse follows easily. \Box

Next, we characterize $\mathcal{I}\text{-}\oplus$ -supplemented modules.

Corollary 2.3. The following conditions are equivalent for a module M:

(1) M is an $I-\oplus$ -supplemented module.

 (2) For any fully invariant direct summand N of M, every direct summand L of M is N- $\mathcal{I}\text{-}\oplus\text{-supplemented.}$

Proposition 2.4. Let M be a module with $Rad(M) = 0$. Then M is \mathcal{I} - \oplus supplemented if and only if M is d-Rickart.

Proof. Let M be an $\mathcal{I}\text{-}\oplus$ -supplemented module and let $\phi \in S$. Then there exists a direct summand K of M such that $M = \text{Im}\phi + K$ and $\text{Im}\phi \cap K \ll K$. So Im $\phi \cap K \subseteq Rad(M) = 0$. Hence $M = \text{Im}\phi \oplus K$, this means that M is d-Rickart. The converse is clear. \Box

Recall that a ring R is said to be a *right V-ring* if every simple right R module is injective.

Corollary 2.5. Let R be a right V-ring and M be an R-module. Then M is $\mathcal{I}_{\neg} \oplus \neg \neg \neg \Box$ is a supplemented if and only if M is d-Rickart.

Proof. By [10, 23.1], for every right R-module M, $Rad(M) = 0$. Thus, by Proposition 2.4, every $\mathcal{I}\text{-}\oplus$ -supplemented R-module is d-Rickart. \Box

Corollary 2.6. Let R be a commutative regular ring and M be an R -module. Then M is $I-\oplus$ -supplemented if and only if M is d-Rickart.

Proof. It is clear by Corollary 2.5 and [10, 23.5(2)].

An R-module M is called $\mathcal T$ - noncosingular if, $\forall \phi \in End_R(M)$, Im $\phi \ll M$ implies that $\phi = 0$ [8, 9].

Proposition 2.7. The following conditions are equivalent for an \mathcal{T} - noncosingular module M:

- (1) M is an indecomposable $I-\oplus$ -supplemented module;
- (2) Every non-zero endomorphism $\phi \in S$ is an epimorphism.

Proof. Let M be an indecomposable $\mathcal{I}-\oplus$ -supplemented module. Assume that $0 \neq \phi \in End_R(M)$. Then there exists $L \leq^{\oplus} M$ such that $\text{Im}\phi + L = M$ and Im $\phi \cap L \ll L$. Since M is indecomposable, $L = M$ or $L = 0$. If $L = M$, then Im $\phi \ll M$. By \mathcal{T} - noncosingularity, $\phi = 0$, a contradiction. Thus $L = 0$ and so ϕ is an epimorphism. The converse follows easily.

Corollary 2.8. Let M be an indecomposable module. Then M is d-Rickart if and only if M is $\mathcal{I}-\oplus$ -supplemented and $\mathcal{T}-$ noncosingular.

Proof. Let M be d-Rickart, then it is clear that M is $\mathcal{I}\text{-}\oplus$ -supplemented and \mathcal{T} - noncosingular. The converse follows from Proposition 2.7 and [6, Proposition] 4.4]. \blacksquare

Recall that a module M is said to be *retractable* if, for every $0 \neq N \leq M$, $\exists 0 \neq \phi \in End_R(M)$ with $\phi(M) \subseteq N$.

Corollary 2.9. Let M be an indecomposable \mathcal{T} -noncosingular retractable module. If M is $I-\oplus$ -supplemented, then M is simple.

Proof. Let M be an indecomposable retractable \mathcal{T} - noncosingular \mathcal{I} - \oplus - supplemented module and let N be any non-zero submodule of M . Since M is retractable there exists $0 \neq \phi \in End_R(M)$ such that $\phi(M) \subseteq N$. As ϕ is an epimorphism by Proposition 2.7, $N = M$. Therefore M is a simple module. \Box

Proposition 2.10. Let M be an $I^{\text{-}}\oplus$ -supplemented module. Let N be a submodule of M such that M/N is projective. Then M is N - \mathcal{I} - \oplus -supplemented.

Proof. Let ϕ be any homomorphism from M to N. Consider the endomorphism $i\phi : M \to M$, where i is the inclusion map from N to M. Since M is $\mathcal{I}\text{-}\oplus$ supplemented, there exists a direct summand K of M such that $M = \text{Im}\phi + K$ and Im $\phi \cap K \ll K$. Thus $N = \text{Im}\phi + (N \cap K)$. By [5, Lemma 2.3], $N \cap K$ is a direct summand of M. So $N \cap K$ is a direct summand of N and K. By [7, Lemma 4.2], Im $\phi \cap K \ll N \cap K$. Therefore M is N-*T*- \oplus -supplemented. \Box

Corollary 2.11. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module and M_2 be projective. Then M_1 is $\mathcal{I}-\oplus$ -supplemented.

Proof. By Proposition 2.10, M is M_1 - $\mathcal{I}-\oplus$ - supplemented. So M_1 is $\mathcal{I}-\oplus$ supplemented by Theorem 2.2. \Box

Theorem 2.12. Let M_1 , M_2 and N be right R-modules. Assume that N is M_i - $\mathcal{I}-\oplus$ -supplemented for $i=1,2$, then N is $M_1 \oplus M_2$ - $\mathcal{I}-\oplus$ -supplemented, if for every homomorphism ϕ from N to $M_1 \oplus M_2$ and any projection map π of $M_1 \oplus M_2$ we have $\pi(Im\phi) = Im\phi \cap Im\pi$. The converse is true if every M_i is fully invariant in $M_1 \oplus M_2$.

Proof. Suppose that N is M_i -*I*-⊕-supplemented for $i = 1, 2$. We will prove that N is $M_1 \oplus M_2$ -*T*- \oplus -supplemented. Let $\phi = (\pi_1 \phi, \pi_2 \phi)$ be any homomorphism from N to $M_1 \oplus M_2$, where π_i is the projection map from $M_1 \oplus M_2$ to M_i for $i = 1, 2$. Since N is M_i -*T*-⊕-supplemented, there exists a direct summand K_i of M_i such that $\pi_i \phi N + K_i = M_i$ and $\pi_i \phi N \cap K_i \ll K_i$, for $i = 1, 2$. Let $K = K_1 \oplus K_2$, it is clear that K is a direct summand of $M_1 \oplus M_2$. As $\pi_1 \phi(N) = \pi_1(\phi(N) + M_2) = (\phi(N) + M_2) \cap M_1$ and $\pi_2 \phi(N) =$ $\pi_2(\phi(N) + K_1) = (\phi(N) + K_1) \cap M_2$ we have $M_1 \leq \phi(N) + M_2 + K_1$ and $M_2 \leq \phi(N) + K_1 + K_2$. Thus $M_1 \oplus M_2 = \phi(N) + K_1 + K_2 = \phi(N) + K$. Moreover, $M_1 \oplus M_2 = \pi_1 \phi N + \pi_2 \phi N + K_1 + K_2 = \phi N + K$. Since $\phi N \cap (K_1 + K_2) \le$ $(\phi N + K_1) \cap K_2 + (\phi N + K_2) \cap K_1$, we have $\phi N \cap (K_1 + K_2) \leq (\phi N + M_1) \cap$ $K_2 + (\phi N + M_2) \cap K_1$. As $\phi N + M_1 = \pi_2 \phi N \oplus M_1$ and $\phi N + M_2 = \pi_1 \phi N \oplus M_2$, thus $\phi N \cap K \subseteq (\pi_2 \phi N \cap K_2) + (\pi_1 \phi N \cap K_1)$. Since $\pi_i \phi N \cap K_i \ll K_i$ for $i = 1, 2, \phi N \cap K \ll K_1 + K_2 = K$. Hence N is $M_1 \oplus M_2$ -*T*- \oplus -supplemented. The converse is clear by Theorem 2.2. \blacksquare

Corollary 2.13. Let $\{M_i\}_{i=1}^n$ be right R-modules. Let $\bigoplus_{i=1}^n M_i$ be M_j - \mathcal{I} - \oplus supplemented, for $j = 1, 2, \dots, n$. Then $\bigoplus_{i=1}^{n} M_i$ is \mathcal{I} - \bigoplus -supplemented. The converse is true if every M_i is fully invariant in $\bigoplus_{i=1}^n M_i$.

Corollary 2.14. Let $\{M_i\}_{i=1}^n$ be right R-modules. Let M_i be M_j -d-Rickart for all $i, j \in \mathcal{I} = \{1, 2, ..., n\}$. Then $\bigoplus_{i \in \mathcal{I}} M_i$ is \mathcal{I} - \oplus -supplemented.

Proof. By [6, Corollary 5.4], $\bigoplus_{i\in\mathcal{I}}M_i$ is M_j -d-Rickart for all $j \in \mathcal{I}$, where $\mathcal{I} = \{1, 2, \ldots, n\}$. Thus $\bigoplus_{i \in \mathcal{I}} M_i$ is M_j - \mathcal{I} - \oplus -supplemented. By Corollary 2.13, $\oplus_{i\in\mathcal{I}}M_i$ is $\mathcal{I}\oplus$ -supplemented.

Corollary 2.15. Let M be a d-Rickart module. Then every finite direct sum of copies of M is I -⊕-supplemented.

Theorem 2.16. Let M_1 and M_2 be right R-modules. Suppose that $M_i \trianglelefteq (M_1 \oplus$ M_2) for $i = 1, 2$. Then $M_1 \oplus M_2$ is an \mathcal{I} - \oplus -supplemented module if and only if M_i is $\mathcal{I}\text{-}\oplus\text{-supplemented for }i=1,2.$

Proof. The necessity follows from Theorem 2.2. Conversely, let M_i be $\mathcal{I}\text{-}\oplus$ supplemented for $i = 1, 2$. Let $\phi = (\phi_{ij})_{i,j=1,2} \in S = End_R(M_1 \oplus M_2)$ be arbitrary, where $\phi_{ij} \in \text{Hom}(M_i, M_i)$. Since $M_i \leq M_1 \oplus M_2$ for $i = 1, 2$, Im $\phi =$ Im $\phi_{11} \oplus \text{Im}\phi_{22}$. As M_i is $\mathcal{I}\text{-}\oplus$ -supplemented for $i=1,2$, there exists direct summand K_i of M_i such that $\text{Im}\phi_{ii} + K_i = M_i$ and $\text{Im}\phi_{ii} \cap K_i \ll K_i$. Let $K =$ $K_1 \oplus K_2$, then K is a direct summand of M. Moreover, $M_1 \oplus M_2 = (\text{Im}\phi_{11} \oplus$ $\text{Im}\phi_{22}$ + $(K_1\oplus K_2)$. Since $\text{Im}\phi \cap (K_1\oplus K_2) \subseteq (\text{Im}\phi + K_1) \cap K_2 + (\text{Im}\phi + K_2) \cap K_1$, we have $\text{Im}\phi \cap (K_1 \oplus K_2) \subseteq (\text{Im}\phi_{11} \cap K_1) + (\text{Im}\phi_{22} \cap K_2) \ll K_1 \oplus K_2$. Hence $M_1 \oplus M_2$ is $\mathcal{I}\text{-}\oplus$ -supplemented.

The module M is called a *duo module*, if every submodule of M is fully invariant.

Corollary 2.17. Let $M = M_1 \oplus M_2$ be a duo module. Then M is an $\mathcal{I} \oplus \mathcal{I}$ supplemented module if and only if M_1 and M_2 are $\mathcal{I}-\oplus$ -supplemented.

Lemma 2.18. Let $M = M_1 \oplus M_2$. Then M is M_2 - \mathcal{I} - \oplus -supplemented if and only if for every $\phi \in End_R(M)$ with $Im \phi \geq M_1$, there exists a direct summand K of M such that $K \leq M_2$, $M = K + Im\phi$ and $K \cap Im\phi \ll M$.

Proof. Let M be M_2 - \mathcal{I} - \oplus -supplemented. Assume that $\phi = (\pi_1 \phi, \pi_2 \phi)$ is any endomorphism of M with $\text{Im}\phi \geq M_1$, where π_1 is the projection map from M onto M_i for $i = 1, 2$. Since M is M_2 - \mathcal{I} - \oplus -supplemented, there exists a direct summand K of M_2 such that $M_2 = \text{Im}\pi_2\phi + K$ and $\text{Im}\pi_2\phi \cap K \ll K$. It is clear that Im $\phi \cap M_2 = \text{Im}\pi_2\phi$. Therefore $M = M_1 + M_2 = M_1 + (\text{Im}\phi \cap M_2) + K =$ Im $\phi + K$ and Im $\phi \cap K \ll K$.

Conversely, suppose that M has the stated property. Let ϕ be any homomorphism from M to M_2 . Consider the endomorphism $\psi = \phi + \pi_1 \in S$, where π_1 is the natural projection of M onto M_1 . Since Im $\psi = \text{Im}\phi \oplus M_1 \geq M_1$, there exists a direct summand K of M such that $K \le M_2$, $M = K + \text{Im}\psi$ and $K \cap \text{Im}\psi \ll M$ by hypothesis. Then $M_2 = K + \text{Im}\phi$, $K \cap \text{Im}\phi \ll K$ and K is a direct summand of M_2 . Therefore M is M_2 - $\mathcal{I}-$ ⊕-supplemented. \blacksquare

Theorem 2.19. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module. Assume that for every direct summand K of M with $M = K + M_2$, $K \cap M_2$ is a direct summand of M. Then M is M_2 - $\mathcal{I}-\oplus$ -supplemented.

Proof. Let $\phi = (\pi_1 \phi, \pi_2 \phi)$ be an endomorphism of M with $\text{Im}\phi > M_1$, where π_j is the natural projection of M onto M_j for $j = 1, 2$. Consider the endomorphism $i_2\pi_2\phi \in End_R(M)$, where i_2 is the canonical inclusion from M_2 to M. Note that $\text{Im}i_2\pi_2\phi = \text{Im}\phi \cap M_2$. Since M is $\mathcal{I}\text{-}\oplus$ -supplemented, there exists a direct summand K of M such that $M = (\text{Im}\phi \cap M_2) + K$ and $\text{Im}\phi \cap M_2 \cap K \ll K$. It is clear $M = \text{Im}\phi + M_2$. By [4, Lemma 1.2], $M = (K \cap M_2) + \text{Im}\phi$. By hypothesis, $K \cap M_2$ is a direct summand of M as $M = K + M_2$. Therefore M is M_2 - $\mathcal{I}\text{-}\oplus$ -supplemented by Lemma 2.18.

Corollary 2.20. Let M be an $\mathcal{I}-\oplus$ -supplemented module and N be a direct summand of M such that M/N is N-projective. Then M is an N- $\mathcal{I}\oplus$ supplemented module.

Proof. Let L be a direct summand of M with $M = L + N$. Note that there exists a submodule N' of M such that $M = N \oplus N'$ as $N \leq N$. Thus N' is N-projective. By [10, 41.14], there exists $L' \leq L$ such that $M = L' \oplus N$. So $L = L' \oplus (L \cap K)$. This means that $L \cap K \leq^{\oplus} M$. By Theorem 2.19, M is N - I - \oplus -supplemented.

Corollary 2.21. Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module such that M_1 is M_2 -projective. Then M is M_2 - $\mathcal{I}-\oplus$ -supplemented.

Proof. It is easy to see by Corollary 2.20.

Recall that a module M is said to have D_3 condition whenever $M = M_1 +$ M_2 , where M_1 and M_2 are direct summands of M , then $M_1 \cap M_2$ is a direct summand of M.

Corollary 2.22. (1) Let $M = M_1 \oplus M_2$ be a module. If for every $\phi \in End_R(M)$ with $Im \phi \geq M_1$, there exists a direct summand K of M such that $K \leq M_2$, $M = K + Im\phi$ and $K \cap Im\phi \ll M$, then M_2 is \mathcal{I} - \oplus -supplemented.

(2) Let M be an $\mathcal{I}\text{-}\oplus\text{-supplemented}$ module with D_3 condition. Then every direct summand of M is $I-\oplus$ -supplemented.

(3) Let $M = M_1 \oplus M_2$ be an \mathcal{I} - \oplus -supplemented module such that M_1 is M_2 -projective. Then M_2 is $\mathcal{I}-\oplus$ -supplemented.

Proof. (1) By Lemma 2.18 and Theorem 2.2.

(2) By Theorem 2.19 and Theorem 2.2.

(3) By Corollary 2.21 and Theorem 2.2. \Box

Recall that a module M is said to be *Hopfian* if every epimorphism $\phi \in$ $End_R(M)$ is an isomorphism.

Proposition 2.23. Let M be an \mathcal{T} -noncosingular noetherian \mathcal{I} - \oplus -supplemented module. Then there exists a decomposition $M = M_1 \oplus \cdots \oplus M_n$, where M_i is an indecomposable noetherian $\mathcal{I}-\oplus$ -supplemented module with $End_R(M_i)$ a division ring.

Proof. Since M is noetherian, it has a finite decomposition with indecomposable noetherian direct summands. By Corollary 2.8, [6, Corollary 4.8] and since every noetherian module is Hopfian, each indecomposable direct summand has a division ring. \Box

3. Rings whose modules are $I-\oplus$ -supplemented

In this section, we study some rings whose modules are $\mathcal{I}\text{-}\oplus\text{-supplemented}$.

Theorem 3.1. Consider the following conditions for a ring R :

- (1) R is a semisimple artinian ring.
- (2) Every right R-module is an $\mathcal{I}-\oplus$ -supplemented module.
- (3) Every free (projective) right R-module is an $\mathcal{I}-\oplus$ -supplemented module.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. Moreover, if $Rad(R) = 0$, then $(3) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) are clear.

 $(3) \Rightarrow (1)$ Let I be a right ideal of R. There exists a free R-module F_R and an epimorphism $\phi : F_R \to I$. Note that $\phi(F_R) = I$. By (3), there exists a direct summand K of F_R such that $F_R = K + I$ and $K \cap I \ll K$. Since $Rad(R) = 0, K \cap I = 0$. Thus $I \leq^{\oplus} F_R$ and so $I \leq^{\oplus} R_R$. Therefore R is a semisimple artinian ring. \Box

Recall that an epimorphism $f : P \to M$ with P projective, is called a projective cover of M if Ker $f \ll P$.

Proposition 3.2. Let M be a projective module. Then the following are equivalent:

- (1) M is an $\mathcal{I}\leftarrow$ -supplemented module.
- (2) $M/Im\phi$ has a projective cover for every $\phi \in S$.

Proof. (1) \Rightarrow (2) Let M be an I-⊕-supplemented module and $\phi \in S$. There exists a direct summand $K \leq M$ with $M = \text{Im}\phi + K$ and $\text{Im}\phi \cap K \ll K$. Note that K is projective. Consider the epimorphism $f: K \to M \to M/\text{Im}\phi$. Thus $Ker f = Im \phi \cap K \ll K$. Therefore $M/Im \phi$ has a projective cover.

 $(2) \Rightarrow (1)$ Let $\phi \in S$ and $f : P \rightarrow M/\text{Im}\phi$ be a projective cover. Then there exists a homomorphism $g : M \to P$ such that $fg = \pi$, where $\pi : M \to P$

 $M/\text{Im}\phi$ is the canonical epimorphism. Note that g is surjective. Thus g splits. Hence there exists a homomorphism $h : P \to M$ such that $gh = id_P$ and so $f = fgh = \pi h$. Thus Im $\phi + h(P) = M$ and Im $\phi \cap h(P) \ll h(P)$. Therefore M is $\mathcal{I}\text{-}\oplus$ -supplemented.

Corollary 3.3. For a ring R the following statements are equivalent:

- (1) R_R is $\mathcal{I}\text{-}\oplus\text{-supplemented.}$
- (2) $R_R/Im\phi$ has a projective cover for every $\phi \in End_R(R_R)$.

A ring R is called *perfect* if, every R -module has a projective cover.

Proposition 3.4. Let R be a ring. Consider the following conditions:

- (1) R is right perfect;
- (2) Every projective right R-module is $I-\oplus$ -supplemented;
- (3) Every free right R-module is $I-\oplus$ -supplemented.
- Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. (1) \Rightarrow (2) by Proposition 3.2.

- $(2) \Rightarrow (3)$ is clear.
- $(3) \Rightarrow (2)$ It follows from Corollary 2.11.

A module M is called *lifting* if for all $N \leq M$, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq N$ and $N \cap M_2 \ll M$.

Obviously, we have the following implications:

lifting $\Rightarrow \oplus$ -supplemented $\Rightarrow \mathcal{I}$ - \oplus -supplemented.

A ring R is called f-semiperfect if, every finitely presented R-module has a projective cover. A module M is said to be *principally* \oplus -*supplemented* if, for all cyclic submodule N of M , there exists a direct summand X of M such that $M = N + X$ and $N \cap X \ll X$.

The following theorem gives a characterization of f-semiperfect rings.

Theorem 3.5. The following are equivalent for a ring R :

- (1) R is f-semiperfect.
- (2) R_R is finitely supplemented.
- (3) Every cyclic right ideal has a supplement in R_R .
- (4) R_R is principally lifting.
- (5) R_R is principally \oplus -supplemented.
- (6) R_R is $\mathcal{I}\text{-}\oplus\text{-supplemented.}$

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$ by [10, 42.11].

- $(4) \Rightarrow (5)$ and $(5) \Rightarrow (3)$ are clear.
- $(5) \Rightarrow (6)$ It is obvious because Im ϕ is cyclic for every $\phi \in End_R(R_R)$.

 $(6) \Rightarrow (5)$ Assume that $I = aR$ is any principal right ideal of R. Consider the R-homomorphism $\phi: R_R \to R_R$ defined by $\phi(r) = ar$, where $r \in R$. Then Im $\phi = I$. By (6), there exists a direct summand K of R_R such that Im $\phi + K = R_R$ and Im $\phi \cap K \ll K$. So R_R is principally \oplus -supplemented. \Box

References

- [1] T. Amouzegar, generalization of lifting modules, Ukrainian Math. J., DOI: 10.1007/s11253-015-1042-z 66 (2015), no. 1.
- [2] T. Amouzegar and Y. Talebi, A generalization of ⊕-supplemented modules, Eur. J. Pure Appl. Math. 5 (2012), no. 2, 108–115.
- [3] E. Türkmen H. Çalisici, Generalized ⊕-supplemented modules, Algebra Discrete Math. 10 (2010), no. 2, 10–18.
- [4] D. Keskin, On lifting modules, Comm. Algebra 28 (2000), no. 7, 3427– 3440.
- [5] D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar 91 (2001), no. 3, 253–261.
- [6] G. Lee, S. T. Rizvi, and C. S. Roman, Dual Rickart modules, Comm. Algebra 39 (2011), 4036–4058.
- [7] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [8] D. K. Tütüncü and R. Tribak, On $\mathcal T$ -noncosingular modules, Bull. Aust. Math. Soc. 80 (2009), 462–471.
- [9] , On dual Baer modules, Glasgow Math. J. 52 (2010), 261-269.
- [10] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.

(Recibido en enero de 2020. Aceptado en agosto de 2020)

Department of Mathematics Quchan University of Technology P.O.Box 94771-67335, Quchan, Iran $\it e\text{-}mail:$ t.amoozegar@yahoo.com; t.amouzgar@qiet.ac.ir