
Revista Colombiana de Matemáticas
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Recubrimientos de configuraciones, configuraciones primas, y
orbiconfiguraciones
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Abstract. This exploratory paper considers the notion of a covering of a
configuration and G-coverings which are coverings that are quotients under
a semi-regular group action. We consider prime configurations, those which
cannot G-cover other configurations, before considering orbiconfigurations.
These are a generalized notion of a configuration in the spirit of an orbifold.
We derive some specific results as to when configurations are prime as well
as considering when an orbiconfiguration is bad - that is, when it cannot be
G-covered by a configuration. A number of open questions are posited within.
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Resumen. Este art́ıculo exploratorio considera la noción de un recubrimiento
de una configuración y los G-recubrimientos, recubrimientos que son cocientes
de una acción de grupo semi-regular. Consideramos las configuraciones primas,
aquellas que no pueden G-recubrir otras configuraciones, antes de considerar
las orbiconfiguraciones. Se trata de una noción generalizada de una configu-
ración en el esṕıritu de un orbifold. Derivamos algunos resultados espećıficos
de cuándo las configuraciones son primas. Tenemos en cuenta cuándo una
orbiconfiguración es mala, es decir, cuándo no puede ser recubierta por una
configuración. En el art́ıculo se plantean una serie de preguntas abiertas.
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1. Introduction

An incidence geometry is combinatorially given by a pair (P,L) where P =
{p1, . . . , pn}; L = {l1, . . . , lm}; each li ⊂ P; and for any pair pi1 , pi2 there is
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at most one line lj that contains both elements. Naturally, the elements of P
are known as points and the elements of L are known as lines (or in some
sources as blocks). We make the assumption that the space is connected in the
sense that the collection of points cannot be split without splitting a line. An
incidence geometry is further known as a configuration if each point is incident
with the same number of lines as any other (denoted s); each line is incident
with the same number of points as any other (denoted t); and there are at least
three points. Configurations are treated as purely combinatorial objects in this
paper.

The possible configurations have been considered in particular when n =
m and s = t. These are known as (ns) symmetric configurations. For more
details, see in particular Grünbaum’s book Configurations of Points and Lines
[5]. This paper considers more generally (ns,mt) configurations as described
above and the possible semi-regular group actions on these spaces. That is,
subgroups of the automorphism group such that each element acts freely on
the configuration. In this case, the orbit space may also be a configuration -
there are further conditions to ensure this.

Once this has been considered, we turn our attention to orbit spaces that
are not themselves configurations and use the modern notion of orbifold to
construct a definition of an orbiconfiguration. Orbifolds were introduced by
Thurston as a more refined notion of a branched covering. A good source on
orbifolds would be Chapter 13 of his notes The geometry and topology of 3-
manifolds [12]. This has some connections with (and inspiration due to) the
recent work in orbigraphs by Daly et. al. in Orbigraphs: a graph theoretic analog
to Riemannian orbifolds [4], but we begin entirely from scratch to define our
notion of an orbiconfiguration.

As per orbifolds (and orbigraphs), some interest lies in which orbiconfigu-
rations cannot be covered by a configuration. We give some examples of such
orbiconfigurations.

2. Preliminaries

2.1. Definitions

For convenience, we will at times suppress pi, lj to simply their integers i, j. We
also use the notation of Betten et. al. in their paper Counting symmetric v3 con-
figurations [2] to denote the lines of certain configurations using modulus. For
example {1, 2, 4} mod 7 would indicate that the lines are {1, 2, 4}, {2, 3, 5}, . . .
etc.

Due to its importance to this paper we formally define the notion of an
automorphism of a configuration:

Definition 2.1. An automorphism on a (ns,mt)-configuration (P,L) is a bi-
jection f : P → P such that for each li1 there is some li2 such that f(li1) = li2 .
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COVERINGS OF CONFIGURATIONS & ORBICONFIGURATIONS 143

We use the notation Aut((P,L)) to refer to the group of all automorphisms of
the configuration.

A duality between configurations is an incidence preserving map that sends
points to lines and lines to points. A configuration is self-dual if there is a
duality from itself to itself.

A Menger graph is a representation of a configuration as an undirected
graph where the points are shown as the vertices and the lines are made up by
a collection of edges. See The topology of the configuration of Desargues and
Pappus by Van Straten [11] and Configurations and maps by Coxeter [3].

As noted in Planar projective configurations (Part 1) by Mendelsohn et.
al. [9], a Menger graph does not uniquely determine the configuration. We
hence consider the Levi graph that was presented by Friedrich Levi in Finite
geometrical systems [8]. This is a bipartite graph where (conventionally) black
vertices refer to the points of the configuration and white vertices refer to
the lines. Edges exist only between black and white vertices and refer to an
incidence of the point and the line. The Levi graph uniquely determines the
configuration.

2.2. Results

We then state some known results for exposition:

Lemma 2.2. Aut((P,L)) is a subgroup of the symmetric group with order the
minimum of n and m.

Proof. This follows directly from the fact that each automorphism is a both
a permutation on the n points and m lines. �X

We now make the note that it is well established that n,m, s, t do not
uniquely determine a configuration. For example, [2] deals with the number of
non-isomorphic (n3) configurations.

Finally, we state the following two well known foundational results. For
more details, see page 15 of [5].

Proposition 2.3. For a (ns,mt)-configuration, the following equation holds:

nt = ms.

Proposition 2.4. For a (ns,mt)-configuration, the following inequalities hold:

s(t− 1) + 1 ≤ m;

t(s− 1) + 1 ≤ n.

These will be used as we continue.
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3. Coverings of Configurations

Coverings of graphs have been considered primarily by Frank Leighton, Dana
Angluin, Anthony Gardiner, and Walter Neumann in [1], [7], and [10]. We note
here again that even though a configuration can be represented by a graph
(the Menger graph), a graph can represent two different configurations. Thus
the notion of a covering of a configuration is certainly distinct and mention
must also be made here that an automorphism of a configuration may not be
continuous when viewed as a self-map of the associated graph.

To see this consider:

Example 3.1. Take the configuration of 25 points and 10 lines arranged in an
array - that is two sets of 5 parallel lines.

There is a well defined automorphism that exchanges two parallel lines (l1
and l2 say) and leaves all other lines invariant.

Figure 1. Non-continuous automorphism of a Menger graph

It can be seen that this automorphism is not a continuous self-map of any
Menger graph representation (see Figure 1) as any non-parallel line (l3 say) is
sent to itself such that 2 points are exchanged and three left invariant. There
is no such continuous self-map of the interval or S1 that can do this.

We then make the following definition:
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COVERINGS OF CONFIGURATIONS & ORBICONFIGURATIONS 145

Definition 3.2. A configuration (P̃, L̃) covers another configuration (P,L) if
there exists an incidence preserving surjection q : P̃ → P so that each inverse
image of a point contains the same number of points and lines are mapped to
lines. We call q : P̃ → P a covering map.

This again takes some motivation from standard covering space theory in
geometric topology. Here by incidence preserving we mean that if a point p is
incident with a line l in (P̃, L̃), then q(p) is incident with q(l) in (P,L) and
also that the number of points a line is incident with does not change. This last
condition effectively says that both s and t are invariant under the covering.
This will become clearer throughout the paper, but one can consider these
indices as analogous to dimension in geometric topology, which by necessity is
invariant under a covering.

To elucidate this definition we give here an example of such a covering:

Example 3.3. We choose a (283, 283)-configuration given by the Menger graph
in Figure 2: One can see the vertical and horizontal lines of the symmetry that

Figure 2. Cover of the Fano configuration

demonstrate that this configuration covers the Fano configuration (see Figure
4).

The above example shows a covering as a quotient of a semi-regular (no
fixed points, but non-transitive) action of a group of automorphisms.

We hence consider if all covering maps are in fact quotient maps of a semi-
regular group action.

To see that they in fact are not, we first define what we mean by a covering
transformation:
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Definition 3.4. If q : P̃ → P is a covering map where (P̃, L̃) covers (P,L),
then we say that g ∈ Aut((P̃ , L̃)) is a covering transformation if for any point
x we have that

q(g(x)) = q(x).

The term deck transformation is often used by algebraic topologists and
could certainly be used interchangeably here.

It is easy enough to see that for a cover q : P̃ → P the set of covering
transformations form a group and we call the set of all covering transformations
the group of covering transformations under the covering map. We denote this
group as G(q). We here show that the elements of this group all act freely both
on the set of points and the set of lines, that is:

Proposition 3.5. For a covering map q : P̃ → P where (P̃, L̃) covers (P,L),
the group G(q) acts semi-regularly both on the set of points and the set of lines.

Proof. We note that by definition of a cover, the values of s and t are invariant.

Suppose that some element g ∈ G(q) fixes a line l. So then if g does not fix
all points of the line, we note that g(x1) = x2 for x1, x2 ∈ l with x1 6= x2. So
then q(x1) = q(x2) and hence q(l) has less than t points. This is a contradiction
to the definition of a cover.

So now all points on l are fixed by g. So taking some point x on the line l,
if g does not fix all lines incident with x then q(x) is incident with less than s
lines. This is again a contradiction.

So then g fixes all lines incident with x, and following the above arguments
recursively we find that necessarily g fixes all points and all lines, that is, g is
the identity. �X

Note that the argument could have begun with a point fixed instead.

We now ask whether every covering map is also a quotient map. To see that
it is not, we give the following configuration which covers the unique (43, 62)
configuration:
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Figure 3. Cover of the (43, 62) configuration

Example 3.6. Here the labelling of a, b, c, d demonstrates exactly how this
covers the (43, 62) configuration.

Observing the (lack of) symmetry one can see that this covering map is not
a quotient map and indeed, running some GAP code confirms that G(q) is in
fact trivial.

We therefore restrict to a definition of a G-cover:

Definition 3.7. A cover q of configurations is a G-cover if it is also a quotient
map under the action of G(q).

This paper will work exclusively with G-covers and hence we can work under
the assumption that if q(x1) = q(x2) then there is some g ∈ G(q) such that
g(x1) = x2. Here the xi are either points or lines.

We now consider how we can relate automorphisms of the covering config-
uration to the covered configurations. This is analogous to the lifting criterion
in algebraic topology, see for example Allen Hatcher’s Algebraic Topology [6].

We first state and prove the following:

Lemma 3.8. Suppose that we have a group G of covering transformations for
a G-covering q : (P̃, L̃)→ (P,L). Then any automorphism of (P̃, L̃) projects to
an automorphism of (P,L) if the automorphism commutes with each covering
transformation in G.

Proof. Suppose that f is an automorphism of (P̃, L̃) and then consider qfq−1.
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To see that this is well defined, suppose that x1, x2 are distinct points (or
lines) of (P̃, L̃) with q(x1) = q(x2).

Then there is a g ∈ Aut((P,L)) so that g(x1) = x2. Now note that qf(x2) =
qfg(x1) = qgf(x1) = qf(x1).

Hence qfq−1 is well defined and lifts to f . �X

We consider now when an automorphism lifts. We first take an example:

Example 3.9. We G-cover the Fano plane (lines {1, 2, 4} mod 7) by the config-
uration given by lines {1, 2, 4} mod 14. The group of covering transformations
is simply C2 given by the points modulo 7.

Now by [2], the order of the automorphism group of the Fano plane is 168
whilst the size of the automorphism group of our covering configuration is 14
(in fact C14). Hence there are lots of automorphisms that do not lift. We exhibit
just one here.

Using the classic Menger graph representation: We can define a reflection

Figure 4. Fano configuration

through the vertical line so that 2, 6, 7 are fixed; 3 and 5 are exchanged; and 1
and 4 are exchanged.

For contradiction, suppose that there is a lift of this automorphism. Take
the line {1, 2, 4}. These points will lift to {4 or 11, 2 or 9, 1 or 8}. The only
possible combinations which are lines are {4, 2, 1} and {11, 9, 8}. We deal with
{4, 2, 1} and note that the second case is very similar.

So {3, 4, 6} lifts to {5 or 12, 1, 6 or 13}. Only {12, 1, 13} is a line. Then
{4, 5, 7} lifts to {1, 3 or 10, 7 or 14}. There is no line with these combinations
and so this particular automorphism of the Fano configuration cannot lift.

We note that in the above example, the only automorphism that does lift
is the order 7 automorphism that rotates the points in their order.

For clarity we give a lemma describing what we require for an automorphism
to lift:
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Lemma 3.10. Suppose that we have a group G of covering transformations
for a G-covering q : (P̃, L̃)→ (P,L). Then any automorphism of (P,L) lifts to
an automorphism of (P̃, L̃) if there is a pointwise lift that sends lines to lines.

Proof. So given an automorphism f : (P,L)→ (P,L), it is certainly possible
to lift to f̃ which is a permutation of the points in P̃. In order for this to be
an automorphism, it must send lines to lines. Hence the result follows. �X

Clearly, this is little more than a restating of what is required for an auto-
morphism to lift. We therefore ask the question:

Question 1. For a G-covering of configurations, what are the requirements of
an automorphism on the covered configuration in order for it to lift?

This question is asking for an answer analogous to the Lifting Criterion in
algebraic topology. Once again see [6] for more details.

In [1], [7], and [10], the authors ask when two graphs have a common cov-
ering. We then anologously ask:

Question 2. When do two configurations have a common covering? Or have a
common G-covering?

Clearly if t = 2 then the results of [1], [7], and [10] apply (as a Menger graph
uniquely determines the configuration), but for t ≥ 3 the question stands open.

4. Prime Configurations

We begin this section with another definition that follows directly from the
previous section. This is the notion of something being prime if it cannot be
divided in some particular sense.

Definition 4.1. A configuration is prime if it does not G-cover any other
configuration.

Consider now an action of a subgroup of the automorphism group of a
configuration. We determine when this action gives an orbit space which itself
can be considered a configuration.

Initially, the orbit space will just be a collection of points (each representing
an orbit of points in the configuration) and a collection of lines that contain
those points (again, each representing an orbit of lines in the configuration).
Hence, we need only consider when this can be given the incidence structure
of a configuration.

Proposition 4.2. Suppose that G is a subgroup of the automorphism group of
(P̃, L̃) that acts to give a configuration orbit space (P,L) with the same s and
t values. Then the following hold:
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(1) G is a semi-regular action on both the collection of points and the collec-
tion of lines.

(2) |G| ≤ n
3 .

(3) s(t− 1) + 1 ≤ m
|G| .

(4) t(s− 1) + 1 ≤ n
|G| .

Proof. It is clear that the action must be such that each element is a derange-
ment of both the points and lines as s and t are invariant and using the same
argument as the proof of Proposition 3.5. However, there must be more than 2
orbits of points and lines, hence a semi-regular action.

Then (P,L) has n2 = n
|G| points and m2 = m

|G| lines. For the orbit space to

be a configuration, there must be at least three points, so |G| ≤ n
3 .

Clearly Proposition 2.3 is satisfied, and Proposition 2.4 requires s(t−1)+1 ≤
m
|G| and t(s− 1) + 1 ≤ n

|G| . �X

This proposition yields the corollaries:

Corollary 4.3. A configuration is prime if n or m is prime.

Proof. |G| divides n (or m) so G is trivial or |G| = n (or |G| = m), hence no
action can satisfy the requirements of Proposition 4.2. �X

Corollary 4.4. An (ns,mt) configuration is prime if no factor of m is greater
than or equal to s(t − 1) − 1 or no factor of n is greater than or equal to
t(s− 1)− 1.

Proof. This follows directly from parts 3 and 4 of Proposition 4.2. �X

We now consider some properties of the possible groups G.

First note that each element must act freely, and hence each element is a
derangement.

So now we give the following result:

Lemma 4.5. Suppose G is a group acting on a (ns,mt)-configuration so that
each element except the identity is a derangement. Then any element is a prod-
uct of n

k disjoint k-cycles.

Proof. Suppose that an element g is not a product of n
k disjoint k-cycles. So

then g can expressed as a product of perhaps an a-cycle and a b-cycle (and
some others too) with a < b. Then ga would not be a derangement. This gives
our contradiction. �X
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We now consider the definitions of point- and line- transitivity. A configu-
ration is point-transitive (respectively line-transitive) if there is only one orbit
under the automorphism group acting on the points (respectively lines). If a
configuration is not point or line transitive, it is then possible to state the orbit
numbers of points (and lines). It then follows that:

Proposition 4.6. Suppose that G acts on a configuration (P,L). Suppose that
there is some orbit number of points or lines of (P,L) under the action of the
automorphism group such that no factor of |G| divides it. Then the orbit space
of (P,L) cannot be a configuration.

Proof. Take the described number of an orbit of (without loss of generality)
points that no factor of |G| divides. Call this collection {p1, . . . , pk}. So then
G acts (non-effectively) on these points. But if no factor of |G| divides k then
it must fix some point. Hence the orbit space cannot be a configuration. �X

We now give a table with some selected examples (n3) from [2] to illustrate
the above results. Note that s(t− 1) + 1 = 7, so that by Corollary 4.4, we need
7 ≤ m = n.

Number in [2] Prime/Non-prime

7.1 (Fano) Prime (7 is prime)

8.1 (Möbius-Kantor) Prime (largest factor 4 < 7)

9.1 Prime (largest factor 3 < 7

9.3 (Pappus) Prime (largest factor 3 < 7

10.8 (Desargues) Prime (largest factor 5 < 7

11.1 Prime (11 is prime)

12.1 Prime (largest factor 6 < 7)

13.3 Prime (13 is prime)

14.2 Not prime (covers Fano)

15.4 Prime (largest factor 5 < 7)

16.2 Not Prime (covers Fano)

18.1 Not prime (covers 9.1)

21.1 Prime (see remark)

Table 1. Table of examples of prime or non-prime configurations from [2]

Remark 4.7. Note that by [2], the configuration 21.1 has two orbits of 14 and
7 lines. For the configuration to be not prime, it would have to have a C3 action
(which is true - the automorphism group is order 42) and cover 7.1, the Fano
configuration. But by Proposition 4.6, this is not possible. Hence 21.1 is prime
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despite there being a group action that satisfies conditions 2-4 of Proposition
4.2.

5. Definition of an Orbiconfiguration

We now open up to consideration of group actions that are not semi-regular and
hence the orbit space cannot be given the incidence structure of a configuration.

We begin with a simple motivating example:

Example 5.1. Take a cyclic C3 action on the 3 point geometry. Then clearly
the orbit space is one point with that point covered by 3 points and one line
with that line covered by three lines. This is not a configuration as it fails the
minimum number of points.

We now task ourselves with a rigorous combinatorial definition:

Definition 5.2. An orbi-incidence structure is a set of points P = {p1, . . . , pn′}
and a set of lines L = {l1, . . . , lm′} with each point and line having an associated
positive integer a(i) and b(j). Each line lj is a set of points with an associated
integer d(j) and where each point pi on the line has a further associated non-
negative integer c(i, j).

Here a(i), b(i) refer to the inverse of the “weight” of the point or line. So
for instance, if a point has an associated value of 2 this would mean the point
has weight 1

2 .

The value c(i, j) refers to the multiplicity of a point pi on the line lj . d(j)
refers to the multiplicity of a line.

Note that c(i, j) = 0 if the point pi is not on the line lj .

We then define n :=
n′∑
i=1

1
a(i) and m :=

m′∑
j=1

d(j)
b(j) as the sum of the weights of

the points and the lines respectively.

We then consider firstly how many points are incident with a line. This is:

t(j) =

n′∑
i=1

d(j)c(i, j).

As each line has multiplicity d(j) and contains
n′∑
i=1

c(i, j) points counting mul-

tiplicity.

Finally, we consider how many lines are incident with a point. This is:

s(i) =

m′∑
j=1

a(i)c(i, j)d(j)

b(j)
.
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Of the 4 associated numbers this is the least clear. We explain as follows: Each
line has a weight, hence we multiply by 1

b(j) to equalize this, then the product

a(i)c(i, j) is the number of times the point occurs on a line divided by its’
weight.

We can now refine this definition as follows:

Definition 5.3. If any pair of points lies on at most one line (not counting
multiplicity), then we refer to the structure as an orbi-incidence geometry.

Definition 5.4. If furthermore, s, t are constant functions, then we refer to
the structure as an orbiconfiguration.

6. Properties of Orbiconfigurations

We first offer an anologue to a Menger graph. Here the points (vertices) and
lines (collection of edges) are annotated with the associated integers a(i) and
b(j). By convention, if a(i) = 1 or b(j) = 1 then the integers are not shown. If
d(j) is greater than 1, then the line is drawn d(j) times.

We similarly extend the concept of a Levi graph by having the vertices carry
their associated integers a(i) and b(j) (unless equal to 1); a line of multiplicity
d(j) is represented d(j) times; and there may be multiple edges between vertices
according to c(i, j).

We now show a few examples of orbiconfigurations with associated Menger
and Levi graphs.

Example 6.1. Consider the orbiconfiguration with P = {p1, p2},
L = {{p1, p2}, {p2}} and associated values: a(1) = 2, a(2) = 1, b(1) = 1, b(2) = 2,
c(1, 1) = 1, c(1, 2) = 0, c(2, 1) = 1, c(2, 2) = 2, d(1) = 1, d(2) = 1.

A Menger graph is:

Figure 5. Menger graph for orbiconfiguration of Example 6.1

A Levi graph is:

Figure 6. Levi graph for orbiconfiguration of Example 6.1

So then n = 1
2 + 1

1 = 3
2 and m = 1

2 + 1
1 = 3

2 .

Revista Colombiana de Matemáticas



154 BENJAMIN PEET

Now t(1) = 1 + 1 = 2 and t(2) = 0 + 2 = 2.

Finally, s(1) = (2)(1)
1 + (2)(0)

2 = 2 and s(2) = (1)(1)
1 + (1)(2)

2 = 2.

Note for future reference that the functions s and t are both equal to the
constant 2.

Example 6.2. Consider the orbiconfiguration with P= {p1, p2},L= {{p1, p2}}
and associated values: a(1) = 1, a(2) = 1, b(1) = 1, b(2) = 1, c(1, 1) = 1, c(1, 2) =
1, d(1) = 2.

A Menger graph is:

Figure 7. Menger graph for orbiconfiguration of Example 6.2

A Levi graph is:

Figure 8. Levi graph for orbiconfiguration of Example 6.2

It should be clear that a Levi graph will uniquely determine an orbiconfig-
uration whilst a Menger graph will not - consider simply a configuration as a
special case of an orbiconfiguration.

We now consider the extension of the concept of a dual configuration:

Definition 6.3. For two orbiconfigurations, a duality is an incidence-preserving
correspondence that maps points to lines (and vice versa) with the associated
integers a(i) and b(j) being carried with the points and lines respectively.

This definition requires a little more explanation and an example.

If we let a duality be given by f : (P1,L1) → (P2,L2) then each line
f(pi) will have associated integer a(i) and each point f(lj) will have associated
integer b(j). Now if a line lj has multiplicity d(j), f(lj) will be a collection of
d(j) points. If pi and lj are incident c(i, j) times, then f(lj) and f(pi) will be
incident c(i, j) times.

The Levi graph makes this much easier to visualize.

Example 6.4. We reuse the orbiconfiguration of Example 6.1 to get the dual
orbiconfiguration given by:
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P = {p1, p2},L = {{p1, p2}, {p2}} and associated values: a(2) = 1, a(1) =
2, b(1) = 1, b(2) = 2, c(1, 1) = 1, c(1, 2) = 1, c(2, 1) = 0, c(2, 2) = 2, d(1) =
1, d(2) = 1.

The Levi graph is then given by Figure 6 and this makes it very clear that
this orbiconfiguration is self-dual.

We now note the following formula still holds:

Proposition 6.5. For an orbiconfiguration with values m,n, s, t, we have:

ns = mt.

Proof. We simply calculate:

ns =

n′∑
i=1

m′∑
j=1

1

a(i)

a(i)c(i, j)d(j)

b(j)
=

n′∑
i=1

m′∑
j=1

c(i, j)d(j)

b(j)

and

mt =

m′∑
j=1

n′∑
i=1

d(j)

b(j)
c(i, j) =

m′∑
j=1

n′∑
i=1

c(i, j)d(j)

b(j)
.

Clearly the summands can be exchanged. �X

We can also further refine to a symmetric orbiconfiguration where m = n
and hence also s = t.

We now formally show that if a configuration is acted upon by a group G
then the orbit space can be considered as an orbiconfiguration with the values
of s, t invariant and the values of m,n divided by the order of the group of
covering transformations.

So firstly given a configuration (P,L) with quotient map q, the orbit space
is initially just a collection of points {p1, . . . , pn′}. To each of these points we
associate values a(i) by:

a(i) =
|G|

#q−1(pi)
.

This is |G| divided by the orbit number of any lift of pi.

Then the orbit space can also be considered as a collection of lines {l1, . . . , lm′}.
We then associate integers d(j) and b(j) by the following:

b(j)

d(j)
=

|G|
#q−1(lj)

.

This is once again |G| divided by the orbit number of any lift of lj .
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Here we assume that the fraction in its lowest terms. Note that either b(j)
or d(j) must be equal to one.

Finally, we define:

c(i, j) = #(q−1(pi) ∩ l̃j)

Here l̃j is any lift of lj .

Proposition 6.6. Suppose that a configuration (P,L) with values m̃, ñ, s̃, t̃ is
acted on by a group G. Then the orbit space is an orbiconfiguration when the
lines and points are given the associated integers as above. Moreover, m,n, s, t
can be determined by:

(1) s̃ = s;

(2) t̃ = t;

(3) m̃ = |G|m;

(4) ñ = |G|n.

Proof. We first need to show that for any pair of points, there is at most
one line incident with them. Suppose for contradiction that (without loss of
generality) p1 and p2 are incident with both l1 and l2. Then lifting the lines to
(the distinct lines) l̃1 and l̃2, we can lift p1 and p2 to (distinct) points p̃1 and
p̃2 which are on the lines l̃1 and l̃2. This contradicts the fact that (P,L) is a
configuration.

We now show that both s and t are constant functions equal to s̃ and t̃.

Note that:

t(j) =

n′∑
i=1

d(j)c(i, j) = d(j)

n′∑
i=1

#(q−1(pi) ∩ l̃j).

If d(j) = 1, then this is the number of points incident to the line l̃j , which is
the constant t̃.

If instead b(j) = 1, then d(j) =
#q−1(lj)
|G| , that is, lj lifts to d(j)|G| lines.

Hence t(j) is the number of points incident to l̃j , which is again the constant t̃
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Now:

s(i) =

m′∑
j=1

a(i)c(i, j)d(j)

b(j)

=

m′∑
j=1

|G|
#q−1(pi)

#(q−1(pi) ∩ l̃j)
#q−1(lj)

|G|

=
1

#q−1(pi)

m′∑
j=1

#(q−1(pi) ∩ l̃j)#q−1(lj).

This is the number of lines incident with any point in q−1(pi) divided by the
number of points in q−1(pi), hence the number of lines incident with any point
in q−1(pi). This is the constant s̃.

Finally, it is quick to see that:

m =

m′∑
j=1

b(j)

d(j)
=

m′∑
j=1

#q−1(lj)

|G|
=

m̃

|G|

and

n =

n′∑
i=1

1

a(i)
=

n′∑
i=1

#q−1(pi)

|G|
=

ñ

|G|
.

�X

7. Good and Bad Orbiconfigurations

We now make a further definition:

Definition 7.1. An orbiconfiguration is good if it can be G-covered by a con-
figuration and bad if it cannot.

This uses the familiar terminology of good and bad orbifolds.

We note that as we did not require s, t to be integer and greater than or
equal to two, there are some very easily constructed bad orbiconfigurations by
noting the invariance of s under actions by Proposition 6.6.

Corollary 7.2. An (ns,mt) orbiconfiguration is bad if either s or t are not
integers or either s or t are less than 2.

We give a brief example to illustrate this:

Example 7.3. We take the orbiconfiguration P = {p1, p2},L = {{p1, p2}} and
associated values a(1) = 1, a(2) = 1, b(1) = 2, c(1, 1) = 1, c(1, 2) = 1, d(1) = 1.
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Here s = 1
2 and t = 1, so by Corollary 7.2, this is a bad orbiconfiguration.

22

Figure 9. Menger graph for orbiconfiguration of Example 7.3

Other than these somewhat trivial examples, we have only seen good or-
biconfigurations, so we now give an example of a nontrivial bad orbiconfigura-
tion and task ourselves with considering what possible nontrivial bad orbicon-
figurations there are in the case when s = t = 2.

Example 7.4. We take the orbiconfiguration given by the Menger graph in
Figure 10.

22

Figure 10. Menger graph of an example orbiconfiguration

To see that this is necessarily a bad orbiconfiguration we note that s = t = 2. So
that any G-covering configuration would necessarily be a polygon with an even
number of sides. Yet the automorphism group of such a configuration is Dk -
the dihedral group on k points. It is fairly immediate to note that any orbit
space would either be another polygon configuration or an orbiconfiguration
that can be represented by Figure 11.

22

Figure 11. Orbit space of an (n2) configuration when n is even

Or by the dual of the above configuration. Here the dotted line represents a
chain of points and lines.

Hence the given orbiconfiguration is bad.

We use this example to state the following:

Proposition 7.5. An (n2) orbiconfiguration is bad if it is not a configuration
or one of the following forms:
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22

Figure 12. Orbit spaces of (n2) configurations

Proof. The proof follows again by just considering how the dihedral group
acts on a polygon. �X

Question 3. What are the bad (n3) orbiconfigurations?

8. Summary

We here summarize the work of this paper. We have considered how a covering
of a configuration could be defined and refined to a G-covering. We then intro-
duced the definition of a configuration being prime if it cannot cover another
configuration. Finally we defined an orbiconfiguration - a generalized concept
of an orbit space of a configuration. We considered some specific properties of
orbiconfigurations and then considered the notion of good/bad orbiconfigura-
tions.
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