by

Bhamini M. P. Nayar and S. P. Arya

ABSTRACT. Extending the concept of s - normal spaces to bitopological spaces, the concept of pairwise s - normal spaces is introduced. A space X is said to be s - normal if any two disjoint semi - closed subsets of X can be separated by disjoint semi - open sets. A space (X, τ_1, τ_2) is said to be pairwise s - normal if for any τ_i -semi-closed set A and a τ_i - semi-closed set B disjoint from A, there exists a τ_i - semi - open set U and a τ_i - semi - open set V such that $A \subseteq V$, $B \subseteq U$ and $U \cap V = 0$ where $i \neq j$; i, j = 1, 2. Several characterizations and other results concerning pairwise s - normal spaces have been obtained.

In [1], the authors introduced the concept of s-normal spaces. A space X is said to be s-normal if for any two disjoint semi-closed subsets A and B of X there exist disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. The purpose of the present paper is to extend this concept to bitopological spaces. It is shown that a pairwise normal space of Kelly [7] need not be pairwise s-normal and a pairwise s-normal space need not be pairwise normal.

A set $A \subseteq X$ is said to be *semi-open* [9] if there exists an open set $U \subseteq X$ such that $U \subseteq A \subseteq clU$, clU denoting the closure of U. A complement of a semi-open set is said to be *semi-closed* [3]. The semi-closure of A, denoted by scl A, is the intersection of all semi-closed sets containing A. The semi-interior of A, denoted by scl A, is the union of all semi-open sets contained in A. In

section 1 several properties of pairwise s-normal spaces are studied and examples are given in section 2.

§1. Pairwise s-normal Spaces.

- 1.1 DEFINITION [7]. A space (X, τ_1, τ_2) is said to be *pairwise* normal if for each τ_i closed set A and a τ_j closed set B disjoint from A, there exists a τ_j open set U and a τ_i open set V such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$, where i, j = 1, 2; $i \neq j$.
- 1.2 **DEFINITION.** A space (X, τ_1, τ_2) is said to be *pairwise* s-normal if for any τ_i -semi-closed set A and a τ_j -semi-closed set B disjoint from A, there exists a τ_i -semi-open set V and a τ_j -semi-open set U such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$, where i, j = 1, 2; $i \neq j$.
- 1.3 DEFINITION. A space X is said to be *pairwise semi-nor-mal* if for every τ_i -closed set A and a τ_j -closed set B disjoint from A, there exists a τ_i -semi-open set U and a τ_j -semi-open set V such that $A \subseteq V$, $B \subseteq U$ and $U \cap V = \emptyset$, where i, j = 1, 2; $i \neq j$.

In fact the concept of pairwise semi-normal spaces defined above is due to Maheshwary and Prasad [11] who called them pairwise s-normal spaces.

Obviously, every pairwise s-normal space is pairwise seminormal. But the converse need not be true as can be seen from Examples 2.1.

- 1.4 REMARK. The examples 2.1 and 2.2 show that a pairwise normal space need not be pairwise s-normal and a pairwise s-normal may fail to be pairwise normal.
- 1.5 THEOREM. A space (X, τ_1, τ_2) is pairwise s normal if and only if for every τ_i semi closed set A and a τ_i semi open set

B containing A, there exists a τ_j -semi-open set U such that $A \subseteq U \subseteq \tau_i$ -scl $U \subseteq B$, $i \neq j$; i, j = 1, 2.

Proof. Let (X, τ_1, τ_2) be pairwise s - normal. Let F be a τ_i - semi-closed set and U a τ_j - semi-open set containing F, $i \neq j$; i, j = 1, 2. Hence there exists a τ_i - semi-open set G and a τ_j - semi-open set K such that $F \subseteq K$, $(X - U) \subseteq G$ and $G \cap K = \emptyset$. That is, $F \subseteq K \subseteq X - G \subseteq U$ which implies that $F \subseteq K \subseteq \tau_i$ - scl $K \subseteq X$ - $G \subseteq U$, since G is τ_i - semi-open. Thus there exists a τ_j - semi-open set K containing F such that $F \subseteq K \subseteq \tau_i$ -scl $K \subseteq U$ where $i \neq j$; i, j = 1, 2.

Conversely, let F_1 be a τ_i -semi-closed set and let F_2 be a τ_j -semi-closed set disjoint from F_1 , $i \neq j$; i, j = 1, 2. Then $X - F_2$ is a τ_j -semi-open set containing F_1 . Hence in view of the hypothesis, there exists a τ_j -semi-open set V such that $F_1 \subseteq V \subseteq \tau_i$ -scl $V \subseteq X$ - F_2 . Now $F_1 \subseteq V$ and $F_2 \subseteq X - \tau_i$ -scl V. Thus X is pairwise s-normal.

- 1.6 DEFINITION. A real valued function f on a space X is said to be quasi-lower semi-continuous (denoted as q.l.s.c.) if the set $\{x:f(x)>a\}$ is a semi-open subset of X and f is said to be quasi-upper semi-continuous (denoted as q.u.s.c.) if the set $\{x:f(x)<b\}$ is a semi-open subset of X where a and b are any two real numbers.
- 1.7 LEMMA. Let D be any dense subset of the set of all positive real numbers. To each $t \in D$ there corresponds a τ_j semiopen subset U_t of a space (X, τ_1, τ_2) such that t < s in D implies that τ_i scl $U_t \subseteq U_s$ and $U_{t \in D}$ $U_t = X$. Then the function f defined as $f(x) = \inf\{t : x \in U_t\}$ is τ_j q.u.s.c. and τ_i q.l.s.c., $i \neq j$; i, j = 1, 2.

Proof. The set $f^{-1}\{t:t < b\}$ is τ_j -semi-open, j = 1, 2, since each U_t is τ_j -semi-open and $f^{-1}\{t:t < b\} = \bigcup \{U_t:t \in D, t < b\}$ (Lemma 4.2 [6]). Thus f is τ_j -q.u.s.c. Now $f^{-1}\{t:t > a\} = X - f^{-1}\{t:t < a\} = X - \bigcap \{U_t:t > a \text{ and } t \in D\}$ in view of Lemma 4.2 of [6]. It can be proved as in the proof of Lemma 7 of [1] that $\bigcap \{U_t:t \in D, t > a\} = \bigcap \{\tau_i$ -scl $U_t:t \in D, t > a\}$, $i \neq j$; i, j = 1, 2. Thus $f^{-1}\{t:t \in D, t > a\}$

t > a} = $X - \bigcap \{\tau_i - scl\ U_t : t \in D,\ t > a\}$ a τ_i - semi- open set. Thus f is τ_i - q.l.s.c.

1.8 THEOREM. A space (X, τ_1, τ_2) is pairwise s-normal if and only if for a τ_i - semi-closed set A and a τ_j - semi-closed set B disjoint from A, there exists a τ_j - q.u.s.c. and τ_i - q.l.s.c. function $f: X \to [0, 1]$ such that f(x) = 0 for $a \in A$ and f(x) = 1 for $x \in B$.

Proof. The easy proof of the 'if' part is omitted.

To prove the 'only if' part, let X be pairwise s-normal and let A be a τ_i - semi - closed set and B be a τ_j - semi - closed set disjoint from A where $i \neq j$. Let Q be the set of all positive rational num bers. For each $t \in Q$ let us define a τ_i -semi-open set U_t , as follows: For t > 1, let $U_t = X$. Let $U_1 = X - B$, which is a τ_i - semi - open set contained A. Therefore, in view of Theorem 1.5, there exist a τ_i - semi - open set, say U_0 , such that $A \subseteq U_0 \subseteq \tau_i$ -scl $U_0 \subseteq U_1 = X - B$. Let $\{t_n : n \in \mathbb{N}\}$ be the sequence of rational numbers in [0, 1] with $t_1 = 0$ and $t_2 = 1$. For each $n \ge 3$, we shall inductively define the set Utn in the following way. Let tk be the largest number such that $t_k < t_n$ and t_s be the smallest number such that $t_n < t_s$ where k, s < n. Now corresponding to t_k and t_s , the U_{t_k} and U_{t_s} are defined as: U_{t_s} is a τ_i -semi-open set containing τ_i -slc U_{t_k} . In view of Theorem 1.5 there exists a τ_i - semi- open set, say U_{t_n} , such that τ_i - slc $U_{t_k} \subseteq U_{t_n} \subseteq \tau_i$ - slc U_{t_n} . Thus, U_t is defined for each $t \in Q$ such that for $t_1 < t_2$, U_{t_2} is a τ_i - semi- open set containing τ_i - slc U_{t_1} , $i \neq j; i, j = 1, 2 \text{ and } \bigcup_{t \in D} U_t = X.$

Let us define a real valued function f on X as $f(x) = \inf\{t : x \in U_t\}$. In view of Lemma 1.7, f is τ_j - q.u.s.c. and τ_i - q.l.s.c., $i \neq j$; i, j = 1, 2. It can be easily verified that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$.

1.9 DEFINITION [10]. A space (X, τ_1, τ_2) is said to be *pair-wise-semi-T*₁ if for any two distinct points x and y of X there exists a τ_1 - semi- open set U and a τ_2 - semi- open set V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

- 1.10 DEFINITION [2]. A space (X, τ_1, τ_2) is said to be pairwise completely s-regular if for any point x and a τ_i -closed set F not containing x, there exists a τ_i -q.u.s.c. and τ_j -q.l.s.c. function f on X such that f(x) = 0 and f(F) = 1 where $i \neq j$; i, j = 1, 2.
- 1.11 DEFINITION [12]. A space (X, τ_1, τ_2) is said to be *pairwise s-regular* if for each τ_i -closed set F and a point $x \notin F$, there exists a τ_j -semi-open set U and a τ_i -semi-open set V such that $F \subseteq U$, $x \in V$ and $U \cap V = \emptyset$ where $i \neq j$; i, j = 1, 2.
- 1.12 REMARK. In view of Theorem 1.8 it can be observed that every pairwise semi- τ_1 pairwise s-normal space is pairwise completely s-regular. In 1.14 we prove that a pairwise s-normal space is pairwise completely s-regular if and only if it is pairwise s-regular. In 2.3 we give examples to show that a pairwise semi- τ_1 space may fail to be either pairwise s-normal or pairwise s-regular. Also, the space in Example 2.11 is pairwise s-regular and pairwise semi- τ_1 but not pairwise s-normal.
- 1.13 LEMMA [14]. A space (X, τ_1, τ_2) is pairwise s-regular if and only if for each point $x \in X$ and each τ_i open set V containing x, there exists a τ_i semi-open set U such that $x \in U \subseteq \tau_j$ scl $U \subseteq V$ where $i \neq j$; i, j = 1, 2.
- 1.14 THEOREM. A pairwise s-normal space is pairwise completely s-regular if and only if it is pairwise s-regular.

Proof. The 'only if' part is immediate in view of the fact that every pairwise completely s-regular space is pairwise s-regular.

To prove the 'if' part, let F be a τ_i - closed set and let $x \in X$ - F. Then X - F is a τ_i - open set containing x. Hence in view of Lemma 1.13, there exists a τ_i - semi-open set V such that $x \in V \subseteq \tau_j$ - scl V $\subseteq X$ - F where $i \neq j$; i, j = 1, 2. Now in view of Theorem 1.8 there

exists a τ_i - q.u.s.c. and τ_j - q.l.s.c. function f on X such that f(F) = 1 and $f(\tau_j$ - scl V) = 0. Thus f(x) = 0 and f(F) = 1. Hence X is pairwise completely s-regular.

In [8], Lane proved that if (X, τ_1, τ_2) is a pairwise normal space, g and f are functions on X such that f is τ_1 -l.s.c. and g is τ_2 -u.s.c. and $g(x) \le f(x)$ for every $x \in X$, then there exists a τ_1 -l.s.c. and τ_2 -u.s.c. function h on X such that $g \le h \le f$. We obtain a similar result for pairwise s-normal spaces.

1.15 THEOREM. If a space (X, τ_1, τ_2) is pairwise s-normal, then for every pair of functions f and g defined on X such that f is τ_1 -q.l.s.c. and g is τ_2 -q.u.s.c. and g $(x) \le f(x)$ for every $x \in X$, there exists $a\tau_1$ -q.l.s.c. and τ_2 -q.u.s.c. function h on X such that $g \le h \le f$.

Proof. Let P be the power set of X and ρ be the relation defined on P as $A \rho B$ if only if τ_1 - scl $A \subseteq \tau_2$ - sint B. The relation ρ satisfies the following three conditions: (i) Let $A = \{A_1, A_2, ..., A_n\}$ A_m , and $B = \{B_1, B_2, ..., B_n\}$ be two finite subcollections of P. Suppose that $A \rho B$. That is, $A_i \rho B_i$ for every i and j, i = 1, 2, ..., m and j = 1, 2, ..., n. $A_i \rho B_i$ implies that τ_1 - scl $A_i \subseteq \tau_2$ - sint B_i . Hence in view of Theorem 7, there exists a τ_2 - semi-open set $C \subseteq X$ such that τ_1 - scl $A_i \subseteq C \subseteq \tau_1$ - scl $C \subseteq \tau_2$ - sint B_i . Thus there exists a $C \in P$ such that $A \rho C$ and $C \rho B$. (ii) Let $A, B \in P$. We shall prove that $A \subseteq B$ implies that $A \overline{\rho}$ B where $\overline{\rho}$ is defined as: $A \overline{\rho}$ B if and only if B \rho D implies A \rho D and C \rho A implies C \rho B for any C and D belonging to P. Let $A \subseteq B$. Let C an D be any two members of P. Then B ρ D implies that $\tau_1 - scl \subseteq B \subseteq \tau_2 - sint$ D. Therefore, τ_1 - scl A $\subseteq \tau_2$ - sint D which means that A ρ D. Also C ρ A implies that τ_1 - scl $C \subseteq \tau_2$ - sint $A \subseteq \tau_2$ - sint B. Hence $C \rho B$. That is, $A \subseteq B$ implies that $A \overline{\rho} B$. (iii) Let $A \rho B$. Then τ_1 - scl $A \subseteq \tau_2$ - sint B which means that $A \subseteq B$. Hence in view of Lemma 1 of [5] ρ satisfies the following properties (a) and (b):

- (a) Let U an V be two countable subcollections of P. Let A, $B \in P$ such that U $\overline{\rho}$ A, $A \rho V$, U ρ B and B $\overline{\rho}$ V. Then there exists $a C \in P$ such that U ρ C and C ρ V.
- (b) For any finite subcollection U of P, there exist A, $B \in P$ such that (i) $U \overline{\rho} A$ and $A \rho C$ whenever $U \rho C$, (ii) $B \overline{\rho} U$ and $C \rho B$ whenever $C \rho U$ where $c \in P$.

Let σ be the natural order in the set Q of rational numbers. Let F and G be two functions defined from O into the power set P of X as $F(t) = \{x \in X : f(x) \le t\}$ and $G(t) = \{x : g(x) < t\}$. Since f is τ_1 - q.l.s.c. and g is τ_2 - q.u.s.c., F(t) is τ_1 - semi-closed and G(t) in τ_2 - semi- open. Since σ is the natural order on Q, we have for F, $G \in \mathbb{P}^{\mathbb{Q}}$, $F \rho \circ G$, $F \rho \circ G$ and $G \rho \circ G$. Therefore in view of Lemma 2 of [5] there exists a function U from Q into X such that $F\rho\sigma U$. $U\rho^{\sigma}U$ and $U\rho^{\sigma}G$. That is, $t_1 < t_2$ in Q, $F(t_1)\rho U(t_2)$, $U(t_1)\rho U(t_2)$ and $U(t_1)\rho G(t_2)$. Since $F(t_1)$ is τ_1 - semi-closed and $G(t_2)$ is τ_2 semi-open, we have from the above relation $F(t_1) \subset \tau_2$ -sint $U(t_2)$, τ_1 - slc $U(t_1) \subseteq \tau_2$ - sint $U(t_2)$ and τ_1 - scl $U(t_1) \subseteq G(t_2)$. Now for each x in X, let us define a function h from X to Q as h(x)= $\inf\{t \in Q: x \in U(t)\}$. h is a real valued function on X such that $g(x) \le h(x) \le f(x)$ for each x in X. Now it remains to be proved that h is τ_1 - q.l.s.c. and τ_2 - q.u.s.c. Let $x \in X$ and let ε be a positive number. We can choose a t' in Q such that $h(x) - \varepsilon < t' <$ h (x). There exists a t in Q such that t' < t < h(x). Since t < h(x), $x \notin U(t)$. Also, since t' < t, $\tau_1 - scl U(t') \subseteq \tau_2 - sint U(t) \subseteq U(t)$. Thus $x \in X - \tau_1$ - scl U(t'), a τ_1 - semi- open set. Now consider $t \in Q$ such that t < t'. We have $U(t) \subseteq \tau_1 - scl U(t) \subseteq \tau_2 - sint U(t')$ $\subseteq \tau_1$ - scl U(t'). So, if $p \in X - \tau_1$ - scl U(t'), then for t < t', $p \notin U(t)$. Therefore, $h(p) \ge t'$. Thus for $p \in X - \tau_1 - scl U(t')$, $h(x) - \varepsilon < t$ h (p). Hence h is τ_1 - q. l. s. c. Let us now take t' in Q such that $h(x) < t' < h(x) + \varepsilon$. Choose t in Q such that h(x) < t < t'. Since h (x) < t, x \in U(t). Since t < t', τ_1 - scl U(t) $\subseteq \tau_2$ - sint U(t'). Thus $x \in \tau_2$ - sint U(t'), a τ_2 - semi- open set. Hence h is τ_2 - q.u.s.c. Thus the proof is complete.

- 1.16 **DEFINITION** [13]. A subset A of a space X is said to be an α set if A \subseteq int(cl(int A))).
- 1.17 LEMMA [1]. Let $Y \subseteq X$ be semi-closed and α . If A is a semi-closed subset of Y, then A is a semi-closed subset of X.
- 1.18 THEOREM. Every bi- α , bi-semi-closed subset of pairwise s-normal space is pairwise s-normal.

Proof. Using Lemma 17 and the fact that the intersection of a semi-open set with an α - set is semi-open [13], the result can be easily proved.

- 1.19 DEFINITIONS. A function $f: X \to Y$ is said to be *semi-continuos* [9] (respectively, *irresolute* [4]) if $f^{-1}(A)$ is semi-open for every open (respectively, semi-open) subset A of Y. $f: X \to Y$ is said to be *semi-closed* [15] if the image of every closed subset of X is semi-closed.
- 1.20 DEFINITION. A function $f: X \rightarrow Y$ is said to be *presemi-closed* if the image of every semi-closed subset of X is semi-closed.

Clearly, every pre-semi-closed function is semi-closed. But the converse is not necessarily true as can be seen from the following example.

- 1.21 EXAMPLE. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\}\}$ and $\tau_2 = \{\emptyset, X, \{a\}, \{a, b\}\}$. Let $f: (X,\tau_1) \rightarrow (X,\tau_2)$ be the identity function. Then f is semi-closed but not pre-semi-closed.
- 1.22 DEFINITIONS. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, U_1, U_2)$ is said to be *pairwise semi-continuos* (respectively, *irresolute, semi-closed*, *pre-semi-closed*) if $f: (X, \tau_1) \rightarrow (Y, U_1)$ and $f: (X, \tau_2) \rightarrow (Y, U_2)$ are semi-continuos (respectively, irresolute, semi-closed, pre-semi-closed).

1.23 THEOREM. A pairwise irresolute pairwise pre-semiclosed image of a pairwise s-normal space is pairwise s-normal.

Proof. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, U_1, U_2)$ be pairwise irresolute pairwise pre-semi-closed and (X, τ_1, τ_2) be pairwise s-normal. Let A be a U_i - semi-closed and B be a U_j - semi-closed subsets of Y such that $A \cap B = \emptyset$, $i \neq j$; i, j = 1, 2.

1.24 THEOREM. Every pairwise semi-continuos, pairwise pre-semi-closed image of a pairwise s-normal space is pairwise semi-normal.

Proof. Is similar to the prof of Theorem 1.23.

- §2 Examples.
- 2.1 Examples of pairwise normal but not pairwise s-normal spaces.
- 2.1.1. Let $X = \{\{0\} \cup \mathbb{N} \cup \{j + (1/n) : j, n \in \mathbb{N} \{1\}\}$ where \mathbb{N} is the set of positive integers. Let τ_1 be generated by the following open set base: (1) the relative open sets from the set of real numbers in $X \{0, 1\}$; (2) all subsets of the form $\{0\} \cup \{j + (1/2n), j \ge k; k, n \in \mathbb{N} \text{ where } k \ge 2\}$; and (3), all subsets of the form $\{1\} \cup \{j + (1/(2n+1)), j \ge p; p, n \in \mathbb{N} \text{ and } p \ge 2\}$. Let τ_2 be the topology defined by the following open set base: (1) the relative open sets from the set of real numbers in $X \{0, 1\}$. (2) all subsets of the form $\{0\} \cup \{j + (1/(2n+2)); j \ge k; k, n \in \mathbb{N} \text{ and } k \ge 2\}$; and (3), all subsets of the form $\{1\} \cup \{j + (1/(2n+3)), j \ge p, p, n \in \mathbb{N} \text{ and } k \ge 2\}$; and

and $p \ge 2$. Then (X, τ_1, τ_2) is a pairwise normal but not pairwise s-normal. X is a pairwise normal space because, for any two disjoint sets A and B such that A is τ_1 - closed and B is τ_2 - closed but neither of which contains either {0} or {1}, we can easily find τ_1 - open sets and τ_2 - open sets satisfying the required condition. Also, it should be noted that both $\{0\}$ and $\{1\}$ are τ_1 closed as well as τ_2 - closed. Any set of the form $\{1\} \cup \{j + (1/(2n))\}$ + 3)), $j \ge 2$ and for some $n \in \mathbb{N}$ } is τ_1 - closed as well as τ_2 - semiopen and $\{1\} \cup \{j + (1/(2n + 3)), j \ge 2, n \in \mathbb{N}\} = U$ is τ_2 - open. Also $\{0\} \cup \{j + (1/2n); j \ge 2 \text{ and for some } n \in \mathbb{N} \} \text{ is } \tau_2 \text{ - closed as well}$ as τ_1 - semi- open and $V = \{0\} \cup \{j + (1/2n), j \ge 2, n \in \mathbb{N}\}$ is τ_1 open and $U \cap V = \emptyset$. Thus (X, τ_1, τ_2) is pairwise normal. X is not pairwise s-normal because, consider the τ_1 -semi-closed set U = $\{1\} \cup \{2n: n \in \mathbb{N}\} \cup \{2n + (1/2n): n \in \mathbb{N}\} \text{ and } \tau_2 \text{ - semi-closed set}$ $V = \{0\} \cup \{2n+1 : n \in \mathbb{N}\} \cup \{2n+1+(1/(2n+1)) : n \in \mathbb{N}\}. \text{ Any } \tau_1 - \tau_2 = \{0\} \cup \{2n+1 : n \in \mathbb{N}\}.$ semi-open set containing {0} has to contain a set of the form {j + (1/2n): $j \ge p$, $p \ge 2$ and for some $n \in \mathbb{N}$ } which has to intersect U. Therefore there is not τ_1 - semi- open set G containing V and a τ_2 - semi-open set H containing U such that $G \cap H = \emptyset$. Thus (X, τ_1, τ_2) is not pairwise s-normal.

2.1.2. Let X = [-1, 1] and $\tau_1 = \{\emptyset, X, [-1, b), b > 0\}$ and $\tau_2 = \{\emptyset, X, [-1, 1/2^n), n = 1, 2, ...\}$. In both topologies, a non-empty semiopen set is the super set of a non-empty open set. This space (X, τ_1, τ_2) is vacuously pairwise normal since every τ_1 - closed set intersect every τ_2 - closed set. X is not pairwise s-normal because for some b > 0, the set of rationals in [b, 1] is τ_1 - semi-closed and the set of irrationals in [b, 1] is τ_2 - semi-closed. But there is not τ_1 - semi-open set U and τ_2 - semi-open set V such that $U \cap V = \emptyset$ and U containing the set of irrationals in [b, 1].

2.1.3. Let X = (0, 1) and $\tau_1 = \{U_n = (0, 1 - \frac{1}{n}); n = 2, 3, ...\} \cup \{X, \emptyset\}$ and $\tau_2 = \{U_n = (0, \frac{1}{n}); n = 2, 3, ...\} \cup \{X, \emptyset\}. (X, \tau_1, \tau_2)$ is vacuously pairwise normal since every non-empty τ_1 - closed set as well as

every non-empty τ_2 - closed set contains points very close to 1. Since every τ_1 - semi- open set intersect every τ_2 - semi- open set and since there are τ_1 - semi- closed sets disjoint from τ_2 - semi-closed sets, X is not a pairwise s - normal space.

- 2.2 Examples of pairwise s-normal but not pairwise normal spaces.
- 2.2.1. Let X = [-1, 1] and τ_1 be generated by the family $\{[-1, b), b > 0; (a, 1], a < 0\}$. Hence, sets of the form (a, b), a < 0, b > 0 will also be open. Let $\tau_2 = \{[-1, 0), (0, 1], \{1\}, \{-1\}, \{-1, 1\}, [-1, 0) \cup (0, 1]\}$. This space (X, τ_1, τ_2) is not pairwise normal because [b, 1], b > 0, is τ_1 closed and $\{0\}$ is τ_2 closed. Every τ_1 open set containing $\{0\}$ contains an interval with 0 as interior point and hence intersect the smallest τ_2 open set (0, 1] containing [b, 1]. It is easy to verify that X is pairwise normal.
- 2.2.2. Let X=(0,1) and τ_1 be the topology generated by sets of the form $S_a=\{x\in X\mid x>a,a\in X\}$ and $\tau_2=\{U_n\mid U_n=(0,1/2^n);n=1,2,...\}$ \cup $\{X,\emptyset\}.$ (X,τ_1,τ_2) is not pairwise normal because for some $n\in \mathbb{N}$, $[1/2^n,1)$ is τ_2 -closed and (0,a] where $1/2^{n+1}< a<1/2^n$ is τ_1 -closed and $(0,a]\cap [1/2^n,1)=\emptyset$. Then every τ_2 -open set containing (0,a] intersect any τ_1 -open set containing $[1/2^n,1)$. Since in both topologies, a super set of non-empty open set is semi-open, it is easy to verify that (X,τ_1,τ_2) is pairwise s-normal.
- 2.3 Examples of a pairwise semi- T_1 space which is neither pairwise s-regular nor pairwise s-normal.
- **2.3.1.** Let $X = \{-1, 1\}$ and τ_1 be generated by the family $\{[-1, b), b > 0; (a, 1], a < 0\}$. Then the sets of the form (a, b) are also open. Let τ_2 be defined as follows: For each $x \in [-1, 0]$, a basic open set is of the form $[-1, 1/2^n)$; n = 1, 2, ... and for $x \in (0, 1/2)$, a

basic open set is of the form $(0, 1/2^n)$; n = 1, 2, ... and for $x \in [1/2, 1]$ X is the neighborhood. Then (X, τ_1, τ_2) is pairwise semi- T_1 but neither pairwise s-regular nor pairwise s-normal. X is not pairwise s-regular because [-1, a], a < 0 is τ_1 -closed and $0 \notin [-1, a]$. Every τ_1 -semi-open set containing $\{0\}$ will intersect any τ_2 -semi-open set containing [-1, a]. X is not pairwise semi-normal and hence not pairwise s-normal since [-1, a], a < 0 is τ_1 -closed and $[1/2^n, 1]$ for some $n \in X$ is τ_2 -closed. Every τ_1 -semi-open set containing $[1/2^n, 1]$ has to contain an interval with 0 as interior point and hence intersects every τ_2 -semi-open set containing [-1, a].

2.3.2. Let X = (0, 1) and let $\tau_1 = \{\emptyset, X_1 \{(0, 1/2^n), n = 1, 2, ...\}\}$ and let τ_2 be the co-finite topology. Then (X, τ_1, τ_2) is pairwise semi- T_1 . But it is not pairwise s-regular because $[1/2^n, 1)$ for some $n \in \mathbb{N}$ is τ_1 - closed and let $a < 1/2^n$. Every τ_2 - semi-open set containing $[1/2^n, 1)$ intersects every τ_1 - semi-open set containing a. X is not pairwise s-normal because consider the τ_1 - semi-closed set $\{b\} \cup [a, 1)$ where b < a. Let c and d be two distinct points of X such that b < c < d < a. Then $\{c, d\}$ is τ_2 - semi-closed. Every τ_2 - semi-open set containing $\{b\} \cup [a, 1]$ intersects every τ_1 - semi-open set containing $\{c, d\}$.

REFERENCES

- [1] ARYA S. P. and BHAMINI M. P., A generalization of normal spaces, Mat. Vesnik 35 (1983), 1-10.
- [2] ARYA S. P. and BHAMINI M. P., A note on completely s-regular spaces, pre-print.
- [3] CROSSLEY S. G. and HILDEBRAND S. K., *Semi-closure*, Texas J. Sci., 22 (1971), 99-112.
- [4] CROSSLEY S. G. and HILDEBRAND S. K., Semi-topological properties, Fund. Math. 74 (1972), 233-254.

- [5] KATETOV M., "Correction to "on real valued functions in topological spaces", Fund. Math. 38 (1951), 85-91, Ibid. 40 (1953), 203-205.
- [6] KELLEY J. L., *General Topology*, Van Nostrand, Reinhold Company, New York 1969.
- [7] KELLEY J. C., *Bitopological spaces*, Proc. London Math. Soc. (3) 13 (1963), 71-89.
- [8] LANE E. P., Bitopological spaces and quasi-uniform spaces, Ibid, 27 (1967), 241-256.
- [9] LEVINE N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [10] MAHESHWARY S. N. and PRASAD R., Some new separation axioms in bitopological spaces, Mat. Vesnik 12 (27) (1975), 159-162.
- [11] MAHESHWARY S. N. and PRASAD R., On pairwise s-normal spaces, Kyungpook Math. J. 15 (1975), 37-40.
- [12] MAHESHWARY S. N. and PRASAD R., On pairwise s-regular spaces, Riv. Mat. Univ. Parma (4) 4(1979), 45-48.
- [13] NJÅSTAD O., On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [14] NOIRI T., On pairwise s-regular spaces, Atti. Accad. Naz. Lencei, Rend. Cl. Sci. Fis. Mat. Natur. (8) 62 (1977), 787-790.
- [15] NOIRI T. A generalization of closed mappings, Ibid, (8) 54 (1973), 412-415.

First author:
Department of Mathematics
Howard University
Washington, D. C. 20059
USA

Second author: Maitreyi College Netaji Nagar New Delhi - 110023 INDIA

(Recibido en agosto de 1990)

