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LOS ESPACIOS lC*n 
(UNA CLASE DE ESPACIOS CONFORMES-EUCIDEOS)

Y SU MODELACIÓN EN ESPACIOS EUCLIDEOS

por

José Ricardo Árteaga Bejarano

RESU M EN. liste artículo trata de una clase de espacios conforme-euclí- 

deos de dimensión n y codimensión 1, donde se define el factor conforme 

como resultado de una exigencia de tipo geométrico. Para este propósito 

se definió una relación entre rectas del plano proyectivo de dimensión 

n + 1 y los factores conformes. Luego se establecen los siguientes resulta­

dos: Hxiste una relación entre las superficies de nivel del factor conforme 

y las superficies de Ricci. Hstas superficies relacionadas son de la misma 

clase, es decir, tienen la misma curvatura y las mismas características geo­

métricas. Para que las superficies de nivel asociadas al factor conforme 

sean ombílicas es necesario y suficiente que satisfagan una condición muy 

especial en el espacio proyectivo. Se encuentran los grupos fundamentales 

para algunos representantes de esta clase.

§1. Espacios conform es

1.1. Espacios conformes pseudoeuciídeos de dim ensión n y  
codimensión uno, como son los que vamos a tratar, son espacios 
pseudoeuciídeos a los cuales se les ha agregado puntos o rectas o 
planos o espacios de dimensión n - 1  al infinito, denominados 
también impropios; en este artículo los llamaremos complemen­
tarios. Los elementos geométricos fundamentales son las esferas.
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Por ejemplo, para n = 3, una circunferencia es el corte o línea de 
intersección de dos esferas, una recta es una circunferencia que 
pasa por un punto impropio del plano complementario, un plano 
es una esfera que contiene un punto impropio y  un punto puede 
considerarse como una esfera de radio nulo, es decir, un cono 
isotrópico. En otras palabras un espacio conforme y  un espacio 
proyectivo guardan una estrecha relación.

1.2. La relación existente entre los espacios proyectivos y  los 
espacios conformes fue establecida por F. Klein [4], cuando  
mostró que el grupo fundamental de la geometría conforme es 
isomorfo a un subgrupo del grupo fundamental de la geometría 
proyectiva.

1.3. Escogiendo coordenadas conformes (cartesianas) en un 
espacio conformé euclídeo de dimensión n y  codimensión 1 , ^n, 
el elem ento lineal (cuadrado de la distancia) se puede escribir 
así:

ds2 = 0"2 gijdxidxj ( 1 )

ds2 = e '2,‘ gij dx'dxj (2 )
donde
a) 0 es una función de X(x*, x2, x3, xn), la cual se llama el factor 
conforme, al igual que n, del espacio JCn.
b) gij es el tensor métrico del espacio pseudoeuclídeo ^n.
NOTA. En todo el artículo a no ser que se especifique lo contrario 
los índices latinos varían entre 1  y  n.

§2 . R elación en tre  e l tensor de curvatura del esp acio  
*Cn y  las superficies d e  segundo orden del espacio  
de Lobatchevski LN _ i

2.1. El tensor de curvatura de un espacio 1Cn tiene la siguiente 
estructura:
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LOS ESPACIOS *C*

Rijki = 4gf i/fkSi]/j| (3)

donde g¡j es el tensor métrico del espacio ^ n . Los corchetes [ ] 
significan la operación alternación: a^i = ( i /2)(a,j - ajj) y las ba­
rras significan que lo que está en su interior permanece fijo 
cuando actúa la alternación. Además S¡j es un tensor simétrico de­
finido por:

o oSij = - (nj;i - HiHj) " jA i n gij, (4)
o ()

^  es la derivada covariante Vi w respecto a la métrica g ¡j,

Ai es el parámetro diferencial de Beltrami de primer orden:
o o ••Am= g ,¡ jiiHj. (5)

2.2. Observación. En un espacio de Riemann, si el tensor de 
curvatura satisface (3) para algún tensor S¡j, que tiene la estruc­
tura (4), para poder hallar las componentes de S¡j, es necesario 
resolver el sistema de ecuaciones diferenciales (4). Para el caso 
de n = 3, los tensores R y S tienen sólo seis componentes repre­
sentativas y considerando (3) como un sistema de seis ecuaciones 
lineales con seis incógnitas, es lógico esperar que tal tensor S¡j 
siempre se puede encontrar. Estas componentes necesariamente 
satisfacen:

S ¡ ¡ =  - R i j  +  R g i j  ( 6 )
4

en donde R¡j es el tensor de Ricci y  R es la curvatura escalar. Por 
esta razón para n = 3 fuera de la condición (3), para que el espa­
cio sea conforme, se debe agregar la condición de integrabilidad 
de (4):

VfiSj]k= 0. (7)

Para n > 3 la condición (3) es suficiente y  necesaria para que el 
espacio sea conforme, ya que la condición (7) es consecuencia de
(3), [7].
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2.3. En adelante n toma sólo los valores de 3 y  4. Mostraremos 
que el estudio del tensor de curvatura del espacio está  
estrechamente relacionado con el estudio de todos los tipos de 
superficies de segundo orden (o curvas en el caso n = 3) del 
espacio de Lobatchevski Ln-i. El espacio tangente TxOCn) del 
espacio !Cn en el punto Xfx1, x2, x3, xn) no es otra cosa que la 
proyectivización del espacio de Lobatchevski Ln_i en el cual se ha 
tomado como absoluto la cuadrática:

gijdx‘dxj = 0  (8 )

y dx' se consideran las coordenadas homogéneas del modelo pro- 
yectivo de Ln .̂

2 .4 . DEFINICION. El tensor de modelación conforme  del 
espacio JCn se define según la fórmula:

M¡j= ( n - 2) fru-j- n¡nj]. (9)

En T^Cn) = L-n-i definimos además las siguientes superficies:

Rijdx‘dxj= 0 , la superficie de Ricci,
M ij dxj dxj = 0 , la superficie de la modelación conforme, (10) 
Sijdx'dx^O , la S-superficie,

donde:
a) Rjj es el tensor de Ricci, que en coordenadas cartesianas se ex­
presa así:

R¡j  = (n - 2) + [Á2 n+ (n  - 2) Ai fijgij, (11)

l  ¿ es el parámetro diferencial de Beltrami de segundo orden, 
definido según la fórmula:

A2 (.=  g UM¡i. ( 1 2 )

b) M¡j es el tensor de modelación conforme, que satisface junto 
con el tensor de Ricci la siguiente relación:

Mjj = Rij - [A2 n + (n - 2) A j n] g ij (13)
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Por lo tanto, el estudio del tensor de curvatura está estrecha­
mente ligado con el estudio de todos los tipos de superficies (o 
curvas para n = 3) del espacio de Lobatchevski, las cuales perte­
necen a un haz absoluto definido por los tensores g¡j y Ŝ :

2.5. El tensor de modelación conforme sólo se puede calcular 
una vez se haya establecido tanto el factor conforme, como el 
tensor métrico del espacio pseudoeuclídeo. Por este motivo, a 
diferencia de los tensores de R¡j y S¡j los cuales expresan la 
naturaleza interna del espacio ^n, el tensor M¡j está relacionado 
sólo con la posibilidad de modelar el espacio en el espacio !En. 
Por ejemplo, y esto se mejorará más adelante, para n = 3, en la 
interpretación conforme de Poincaré, el tensor de modelación 
conforme de todo espacio conforme con curvatura constante es 
nulo, en el caso que el absoluto sea un plano, pero es proporcio­
nal al métrico, si el absoluto es una esfera.
Es cierto, que el tensor de modelación conforme no refleja todos 
los detalles de la posibilidad de modelación; por ejemplo, tratando 
de diferenciar la clase de modelos conformes de espacios de 
curvatura constante, cuando el absoluto es un plano, de la clase 
de los modelos de estos espacios cuando el absoluto es una esfera, 
el tensor M¡j no lo permite, pues no permite inmediatamente 
diferenciar en cual de estas clases está el modelo de los espacios 
de curvatura nula. Sin embargo para este propósito se pueden  
utilizar, con buen éxito, los tensores R¡j o S¡j.
Si el tensor métrico g¡j se expresa en coordenadas cartesianas (1), 
entonces el tensor M¡j se expresa así:

Mi, = (- 1 / 0) Bij; 

los tensores R¡j y S¡j se relacionan:

(14)

S¡| — - — 1—  Rjj + --------
n - 2 2 (n -

---------- ---------- - g i j .
2 (n - 2 ) (n - 1 )

(15)
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1 *§3. Los espacios C n

3.1. La relación existente entre los espacios conformes y los 
espacios proyectivos, los cuales se construyen con base en los 
espacios euclídeos, la encontró F. Klein [4]. De manera análoga 
utilizaremos este principio para modelar los espacios conformes 
'Cn-
Consideremos el espacio proyectivo Pn+I la hipercuádrica Q con 
ecuación:

a<.oÍ“ Í |J -  g¡¡ i ‘i '  + ( i n+1 ) 2 - (g "+2) 2 = 0 . (16)

O bservación . Los índices latinos toman valores de 1 a n, 
mientras que los griegos de 1 a n + 2. Esta regla se mantendrá 
hasta el final del trabajo, si no se especifica otra cosa.

3.1 .1 . La aplicación F: P -*> se define de la siguiente 
manera:
a) Por medio de la proyección estereográfica con centro en el 
punto N(0:0: ... :0:1:1), llamado polo norte, establecemos una co­
rrespondencia entre puntos 1  de Q y  puntos X pertenecientes al 
hiperplano gn+1 = 0 , el cual se considera como un espacio pseudo- 
euclídeo, que es donde modelaremos el espacio conforme ^ n . Al 
punto N sobre Q le hacemos corresponder un punto complemen­
tario de ]Cn.
b) A cada punto A(a!; a2; ...;  an+2) e  Pn+i, que esté fuera de fí le co­
rresponde una polar (hiperplano) con relación a Q. Esta polar 
intersecta la hipercuádrica Q en una hiperesfera la cual se 
proyecta por medio de la proyección estereográfica F en una es­
fera del hiperplano | n+1 = 0. En adelante diremos simplemente ^n, 
en lugar del hiperplano | n+1 = 0 y esferas en lugar de hiperesfe- 
ras.
De esta forma la aplicación F establece una relación biunívoca 
entre puntos de Pn+i que están sobre Q o fuera de ella y  esferas de 
!Cn. En particular, los puntos de ^n, se pueden considerar como
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esferas de radio cero o conos isotrópicos.

3.2. Veamos en coordenadas lo expresado en 3.1.
F establece una relación entre las coordenadas homogéneas í=a de 
un punto sobre Q y las no homogéneas x* del espacio !Cn, que se 
puede expresar así:

^ = 2x j

| n + 1 = 2 - l  (17)

£ n‘ 2 = 2 + 1

donde:

2 =  gjj x ‘x j.

A las coordenadas | H les llamaremos policíclicas del punto X e  'Cn. 
Esta es una generalización de las coordenadas tetracíclicas y 
pentacíclicas definidas en [4] y [2] respectivamente. A un punto 
A(a!; a2; ... ; an+2) e  Pn+i le corresponde una polar con relación a Q
(16), la cual en coordenadas policíclicas tiene ecuación:

a«£(l=0  (18)

donde:

a« = a(tpap.

Reemplazando (17) en (18), obtenemos la ecuación de la esfera 
que es la proyección de la intersección de la polar de A con Q. 
Esta esfera de tiene ecuación:

(an+1 + an+2) 2 + 2a¡ x* + (an+2 ~ an+1 ) = 0 . (19)

De esta forma cada punto Aía1; a2; ... ; an+2) E Pn+], le corresponde 
una esfera en JCn.

O b se rv a c io n es :
a) Si el punto A e  Q, entonces no vamos a encontrar la polar de 
este punto, simplemente lo proyectamos a mediante F, imagen
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que será una esfera de radio cero.
b) Si el punto A está en el hiperplano tangente al polo norte N, es 
decir, si an+i - an+2 = 0, entonces su imagen mediante F será una 
esfera que pasa por un punto complementario.

3.3. Mostremos ahora, cómo se puede obtener un espacio de 
curvatura constante cuyo elemento lineal es:

ds2 (20 )
(2 - l)2

Normalicemos la hipercuádrica Q por el método Norden [7].
Como normal I (de primer género) tomamos la recta que pasa por 
el punto e  Q y por el vértice ideal del poliedro absoluto (marco 
proyectivo) en+i(0 ; ...;0 ; 1 ; 0 ), es decir, la normal I pasa por un 
punto cualquiera de la hipercuádrica Q y por el polo del hi­
perplano £n+1 = 0. Denotemos este último vértice en+i(0; ...;0 ; 1; 0) 
con la letra S. Aquí se excluyen los puntos de intersección del 
hiperplano !Cn con Q. Como normal II (de segundo género) to­
mamos la intersección del hiperplano tangente en el punto |  con 
el hiperplano ^n.
Consideremos ahora las rectas en el espacio tangente TxOCn) = Ln_! 
en el punto g, que pasen por el punto *= y  que tengan direcciones 

= d|/dx¡, es decir, las rectas tangentes a las líneas coordenadas 
en el punto |  e  Q. Estas rectas intersectan la normal II de se­
gundo género en los puntos:

Tli = d ¡ ^ - L i ,  a ¡ |  = Í L  (2 1 )
dxl

donde L¡ son las coordenadas del normalizador (bajo las transfor­
madas de las coordenadas curvilíneas, ellos se transforman según 
las leyes tensoriales).
Por lo tanto tenemos el marco proyectivo riu E}, y cualquier 
punto del espacio proyectivo Pn+i se puede expresar como una 
combinación lineal en términos de los puntos de este marco. Des­
componiendo las derivadas de estos nuevos puntos §, ti¡, S, en
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términos de ellos mismos, obtenemos las ecuaciones diferenciales 
fundamentales de la hipercuádrica Q.

di£- = L i ^ +r | i  (2 2 )

Vít]í = Lí r| j + Jt¡ĵ  + bijH (23)

c>j H =YjNk + Y j i  " LjS (24)
La fórmula (23) se puede escribir así:

diT|j = r̂ jrik + L i r| j + Jiiĵ  + bijS. (25)

Diferenciando cada una de las coordenadas | lx, definidas en (17) y  
utilizando (21), se encuentran las coordenadas ti¡. Luego exi­
giendo que T|j pertenezca a lCn, encontramos:

L . - l l i l E Ü .  (26)
1 - 2

Diferenciando las coordenadas de los puntos m y comparándolas 
con la fórmula (25) encontramos las componentes de la conexión:

ri) = 2 ^ 'P-  - 6f + P - 1 6|+ : - tü-gj. (27)
1 - 2  1 - 2  1 - 2

Llamando:

„ _ 2 g ,p xp
H , ---------- . --------------- .

1  -2

encontramos que las componentes de la conexión de la superficie 
normalizada según el método de Norden se pueden expresar así:

riij = nif>js + njt)i>- n sgij; (ns = g spjip) (28)

es decir, son iguales a las componentes de la conexión de Rie- 
mann del espacio (20) ([3] § 8).

3.4. DEFINICION. Supongamos que el punto A(a!; a2; ... ; an+2) 
e  Pn+i, se mueve sobre una recta, entonces la esfera (19) se 
mueve describiendo un haz de esferas o familia de esferas.
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Llamaremos haz fundamental a un haz de esferas asociado a una
1 *recta en el espacio Pn+i- Los espacios Cn los definimos como 

espacios xCn ( 1 ), para los cuales las superficies de nivel del factor 
conforme 0, 0 = constante, coinciden con un haz fundamental.

i *
3.5. TEOREMA 1. Un haz fundamental del espacio Cn es un 

haz de superficies ombüicas si y  solamente si, la recta asociada al 
haz fundamental pasa por el punto  N (centro de la proyección 
estereográfica).

Demostración. Antes que todo, hallemos una expresión para 
la diferencial absoluta del vector normal (ortonormal) en cada 
uno de los puntos de la esfera que es una superficie de nivel del 
espacio ^n.
La función p de la fórmula:

2u 0gü = e^‘gij

la consideraremos como una función de la otra función f, es de­
cir,

¿i = n(f), donde f  = f(x‘). (32)
1 *Consideremos ahora las superficies de nivel del espacio Cn, f = 

constante. Con estos supuestos el vector normal (orto) en el 
punto x = (x‘), tiene como componentes:

n' = .-g—— g lp f p (33)
VE7

o
donde fj = df y  A ¡ f  es el parámetro diferencial de Beltrami de 
primer orden:

A , f = g « f i f j .  (34)

Sea t un vector tangente unitario en el punto x = (x1) de la su­
perficie de nivel f  = constante, encontramos las componentes de 
la forma de conexión:

donde,
cu] =  nj t 1 -  n 11j ( 3 5 )

7 8
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(36)

El diferencial absoluto del vector n en la dirección de t se define

En nuestro caso, los sumandos de la derecha de (37) tienen la si­
guiente expresión:

dn‘(t) = (A |f) e-’‘g lmgrs[frfsfmk-fmfrfsk]tk. (39)
Ahora sí demostraremos el teorema.
Haremos la demostración para n = 3, pero todos los cálculos pue­
den ser generalizados para n = 4.

Suficiencia. Sea L una recta en P4 que pasa por los puntos:
A(a!: a2: a3: a:4 a5) y B(bJ: b2: b3: b4: b5) . El punto genérico de esta 
recta es C = A + tB y  tiene como coordenadas:

donde a° = a^  a°, definido en (16) para n = 3.
Subiendo índices en (42), obtenemos la ecuación del haz de esfe-

así:

6n*(t) = dn*(t) + m |( t ) n s. (37)

(38)

3/2

c i = a, + t b 1. (40)
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Si la recta L pasa por el punto N(0: 0: 0: 1: 1), queda completa­
m ente determ inada definiendo las coordenadas del segundo  
punto, por ejemplo: A(a!: a2: a3: a4: 0). Reemplazando las coorde­
nadas de N y  A en (43) obtenemos la ecuación de la familia de es­
feras:

a4 - 2 t = (a4) 2 + 2a 1 x 1 + a 2x 2 - a3x 3. (44 )

Llamando f = a4 - 2t, la ecuación (44) la podemos escribir así:

f = a .*2 + 2aix‘. (45)
1 *De la definición de espacios Cn se deduce entonces que la fun­

ción factor conforme  ̂ = - lne debe tener la estructura:

M = (46)

donde f  está definida en (45).
En la fórmula (46), para a_* * 0, cambiando las coordenadas

■ i _ y* - 2 a

obtenemos:

x* = x‘
a4

h = h(2). (47)

Y en el caso en que a4 = 0, entonces:

n « n ( a  í x ¡) .  (48)

En el caso (47) calculando la diferencial absoluta del vector n en 
la dirección de t y utilizando (37), (38) y (39), obtenemos:

6n i( t ) = K nti (49)
donde:

K „ = ^ - ( l  + 2,.'2). (50)
VT

Y en el caso (48), también la diferencial absoluta tiene la misma 
estructura (49), pero con curvatura normal:

Kn = - e ' (‘. (51)

Las fórmulas obtenidas (49), (50) y (51), muestran que la familia 
de esferas asociada a la recta L, que pasa por el punto N (centro
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de la proyección estereográfica), es una familia de superficies 
ombílicas con curvatura normal constante.

Observación. La curvatura normal en general es diferente 
para superficies diferentes.

Necesidad. Si la recta L en el espacio proyectivo P4 no pasa 
por el punto N, mediante ayuda de movimientos (transformacio­
nes de P4 en si mismo que dejan invariante la hipercuádrica Q), 
podemos siempre obtener una de las siguientes situaciones:
i) La recta L no tiene puntos comunes con Q y se encuentra 
fuera de ella. Para este caso podemos elegir los puntos A y  B como 
los vértices ideales ej y  e2 del tetraedro absoluto. Entonces utili­
zando (43), n tiene la siguiente estructura:

ii) La recta L no tiene puntos comunes con Q y  se encuentra 
dentro de ella. Para este caso podemos elegir los puntos A = e3, B = 
e5 y  obtenemos entonces:

Calculando la diferencial absoluta (37), obtenemos una expresión 
equivalente a (53), pero con curvatura normal:

(52)

Calculando el diferencial absoluto (37), encontramos:

ó n i(t) = Knt i (53)

donde:

2
(54)

x
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Kn=-S - 1* (55)

Aquí:
o
A , f  =

( x 3)3 \ 2
4 + Í2 + l \

x
iii) La recta L y la hipercuádrica Q se cortan en dos puntos. Para 
este caso podem os elegir los puntos A = ei + e3, B = e2 + e3 y  
obtenemos entonces:

x 1 +  x 3
x 2 +  x 3

Calculando la diferencial absoluta (37), obtenemos una expresión 
equivalente a (53), pero con curvatura normal:

_  f 2 f

donde

Kn-----Lál— n' e"'*2 3 X¿ + XJ

f -  X 1 +  X 3 

X 2 +  X 3
(56)

iv) La recta L y  la hipercuádrica Q son tangente. Para este caso 
podemos elegir los puntos A = e5 - e4, B = e i, y  obtenemos enton­
ces:

Calculando la diferencial absoluta (37), obtenemos una expresión 
equivalente a (53), pero con curvatura normal:

Kn =e- ---- - v '  —
( x 1) 2 !  X 1

(57)

v) La recta L es una recta generatriz de la hipercuádrica Q. Para 
este caso podemos elegir los puntos A = e5 - e4, B = ei + e3, y  
obtenemos entonces:
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En los casos i) al iv) las fórmulas de la (53) a la (57), muestran 
que la curvatura normal no es una cantidad constante para todos 
los puntos de una misma superficie de nivel f  = constante, pero la 
superficie en cada punto es ombílica.

Observación: Aunque todo punto de la superficie de nivel f  = 
constante es ombílico, es decir, cualquier dirección es principal, 
la curvatura normal puede cambiar de punto en punto en una 
misma superficie.

En el caso v) no tiene sentido hablar de la curvatura normal de la 
superficie, ya que en este caso, cuando la recta L es una recta 
generatriz, la polar de cada punto en la recta es un hiperplano 
tangente a fi y  la superficie de nivel es un cono isotrópico, y su 
vector normal no representa algo en este cono. ■

Mostraremos ahora que las superficies de Ricci (o curvas en el 
caso n = 3 se pueden utilizar para dividir el espacio conforme 
euclídeo en regiones con diferentes características geométricas.

i *
3 . 6. T E O R E M A  2 . Si el espacio Cn tiene el factor conforme

asociado a una recta que pase por el punto N(0:0:0:1:1), entonces
la curva de Ricci (o superficie de Ricci, para el caso n = 4) en el

i *plano tangente del espacio Cn, es una curva de curvatura 
constante con centro en algún punto.

D em ostración. Sea el espacio !Cn (n = 3), con tensor métrico
(1). La curva de Ricci en el espacio tangente de este espacio en el 
punto X está definida por:

R¡jdxidxj = 0 (59)

donde el tensor de Ricci R¡j, se expresa según:
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Aquí:

/ °
X. = 2 - á Ü (61)

o ow w
donde A i 0 y A 2 0 son parámetros diferenciales de Beltrami de 
primer y segundo orden en (6 ) y  ( 1 2 ) respectivamente.

Llamando 0 = 0(f) donde f  = f(x!, x2, x3), entonces el tensor de 
Ricci se expresa así:

Hacemos aquí un análisis similar al que se hizo para demostrar la 
suficiencia del teorema 3.1.

Primer caso. Sea f  = 2 , es decir el factor conforme 0 = 0(2 ), donde
2  = ( x 1)2 + (x 2)2 - (x3)2.
Utilizando las coordenadas covariantes x¡ = gijxj el tensor de Ricci 
se expresa así:

entonces la curva ajjdxklxi = 0  pertenece al haz absoluto definido 
por los tensores métrico y  de Ricci. Si 0" * 0 entonces la curva

(62)

donde:

(63)

donde:

X = 8

Sea el tensor:

a¡j =  R¡j -
o
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aijdxkixi = 0 se puede expresar como:

x ix jd x ‘d x j = 0

es decir, como un par de rectas dobles, con polo, respecto al abso­
luto

(dx1 ) 2 + (dx2) 2 - (dx3) 2 = 0 .

Existen entonces tres posibilidades:
a) Si el punto X está fuera del absoluto, entonces la curva de Ricci 

es una línea equidistante, es decir una circunferencia con 
centro en el punto X.

b) Si el punto X está dentro del absoluto, entonces la curva de 
Ricci es una circunferencia con centro en el punto X.

c) Si el punto X está sobre el absoluto, entonces la curva de Ricci 
es un orificio, es decir una circunferencia con centro en el 
punto X.

De esta forma el espacio ^n, con factor conforme (47) y absoluto 
cono isotrópico, se divide en tres partes, cada una de las cuales 
tiene propiedades geométricas diferentes.

i *O bservación . Si 0" = 0, entonces el espacio Cn, con factor 
conforme (47) es un espacio de curvatura constante y además la 
curva de Ricci coincide con el absoluto del plano de Lobat- 
chevski, es decir, es un espacio de Einstein con curvatura cons­
tante.

Segundo Caso. Si f(ajX‘), es decir, si el factor conforme es igual a:
0 = ©(ajx1 + a¿x2 + a3X3), entonces , el tensor de Ricci es igual a:

Rij =X gij - £ l a ¡ a j  (66)
0

donde:
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Llamando a¡j = R¡j - X g vh tenemos que la curva ajjdx’dxi = 0, cuando 
0" * 0  es:

aiajdx^dx^O. (67)

Estudiemos por separado el caso cuando a? + al - a 2 =0, es decir 
cuando la recta L es una recta generatriz de la hipercuádrica Q. 
En este caso la curva aijdx‘dxj=0 y la curva de Ricci coinciden y 
si además 0" * 0 , entonces ellas son un par de rectas que son 
tangentes al absoluto (dx1)2 + (dx2)2 - (dx3)2 = 0 , del plano de 
Lobatchevski.
En los casos donde (a 1)2 + (a2)2 - (a3)2 * 0 y 0" * 0 , la curva de 
Ricci es una circunferencia o una línea equidistante, dependien­
do si (a 1)2 + (a2)2 - (a3)2 es mayór o menor que cero respectiva­
mente.

* 1 *Observación. Si 0" = 0 entonces el espacio C n es un espacio 
de curvatura constante, que es en este caso un espacio de 
Einstein con curvatura constante. ■

3.7. EJEMPLO 1. En calidad de ejemplo, tomemos ahora el caso 
cuando la recta L no pase por el punto N y mostraremos que así es 
posible obtener otros tipos de curvas de Ricci, cuya curvatura no 
es constante. Supongamos que la recta L pase por los puntos A = 
e i, B = ei - e3, entonces el factor conforme es:

, 2
0 =  0

X 1 +  X3

y  el tensor de Ricci:

(r u)=
X + A B A '

B X B
A B A -X

donde:

A = - 2 0 ' x» v 2 0" (x 2) 2

0 ( x L+ x 3) 2 ñ ( x l + x 3) 4
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B = 0' 0M x 2
0 (x L+ x 3) 2 © ( x ^ x 3) 3

x =
«2 0 1

Entonces la curva de Ricci (59) tiene ecuación:

^((dx1 ) 2 + (dx2) 2 - (dx3) 2) + (d x 1 + d x 3) [A ídx 1 + dx3) + 2Bdx2] = 0 

es decir, la ecuación de una parábola osculadora. ■

3.8. EJEMPLO 2. Veamos ahora el espacio *C n con factor 
conforme (58), donde 0" = 0. Para este caso tenemos que el tensor 
de Ricci es:

M -

donde:

X + X A 2 - XA
2

- XA

- X A 2 X X A

- X A 2 X A X A 2 - X

X = - 2 & - 1
0 x 1 - X3

A - X 2

x 1 - x 3

La Curva de Ricci (59) en el punto X(x*, x2, x n) es una parábola 
osculadora con ecuación:

xfídx 1 ) 2 + (dx2) 2 - (dx3) 2) + M d x 1 - d x3) ¡A ídx 1 - dx3) + 2 dx2] = 0 .

3 .9 . C onclusiones
1 *a) Las hiperesferas que componen el haz absoluto del espacio C n, 

para n = 3, o, n = 4, aunque son superficies ombílicas no nece­
sariamente tienen curvatura normal constante. Esta propiedad
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sólo se cumple cuando el factor conforme tiene la forma:

e = e(an+i g i j x ix j + 2 a i x i) (68)

donde an+i y  ai son cantidades constantes.
b) Además las superficies (curvas para n = 3) de Ricci para los 

espacios (68) son superficies con curvatura constante.
c) Si el factor conforme satisface la condición e" = 0, entonces el 

espacio (68) es ün espacio simétrico.

.  *

§4. El grupo de m ovim ientos de algunos espacios C n

i *4.1. Para la clasificación de espacios Cn según el grupo de 
movimientos debemos definir para cada espacio, un subgrupo del 
grupo Gm de transformaciones conformes del espacio pseudo- 
euclídeo !En donde m = 10 para n = 3 y m = 15 para n = 4.
El grupo de transformaciones conformes Gm de !En tiene los si­
guientes operadores [1 ]:
a) Para n = 3:

Xi =  d 1 X2 =¿>2 X3 =d 3
X4 = x 13 i + X 2d2 +  X3d3 Xs =±X2di -  X 1d2 X e = X 3d i ~ X 1d3 
X 7  = X 302 -  X 2d 3

x 8 = [- ( x , )2 + (x2) 2 - (x3) 2]s i  - 2x 1x 2d2 - 2x ‘x 3d3 

X9 =  - 2 x > x 2 3i + [ ( x >)2 - (x2) 2 - (x3) 2]a2 - 2x 2x 3a3 

X10 = 2x 'x 3fll +  2 x 2x 3d2 + [ ( x ' ) 2 + (x2) 2 + (X3) 2]d3 .

b) Para n = 4:
Xi =  61 X2 =  62 X3 =  d3 X4 =3 4

X5 =  X 13 i +  X 2d2  +  X3d3 +  X4d4

X6=X23 l - X 132 X7=X33 i - X 103 X8=X4a i + X 104

X9 = X3#2 “ X2d3 XlO = X 4d2 +  X2d4 Xll = X433 +  X3d4 

X12 =[- (x1) 2 + (x2) 2 + (x3) 2 - (x4) 2]a 1 - 2 x 1x 232 - 2x 1x 303 - 2 x 1x 4a4
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X13 = - 2 x \ Zr)i +£(X 1) 2 - (X2) 2 + (X3) 2 - (X4) 2]52 - 2 x 2x 3fl3 “ 2 x 2x 4 d4 

Xl4 = - 2 x 1x 33l - 2 x 2x 3fl2 -í- [ ( X 1) 2 +  ( x 2) 2 - ( x 3) 2 “ ( x 4) 2]¿»3 - 2 x 3x 4<H

Xis = 2x1x 43i + 2x2x4 2̂ + 2x3x 4«?3 + [ ( x *) 2 + (x2) 2 + (x3) 2 + (x4) 2]d4 

Si llamamos  ̂ a la siguiente combinación lineal:

 ̂ = X i X i + X2X2 + ... +XmXm = 1;' di 

y suponiendo que :

Xa=ÍSl,?¡ (69)
dXa

donde a = 1 , 1 0  si n = 3, y , a = 1 , 1 5  si n = 4; entonces para n = 3 
obtenemos:

^  =Xi + x , X4 + x 2Xs + x 3X6 + [ - ( x 1 )2 + ( x 2 )2 - (x3 ) 2] x 8 - 2 x 1x 2X‘> + 2 x 1 X3Xl()

£2 =X2 +X2X4 - x ’ Xs + x 3X 7 + 2 x 1 X 2Xs + [ ( x ! )2 - (x 2 )2 - (x3 ) 2] x 9 + 2 x 2x 3Xio

^  = X i  + x 3X4+x i X(,+ x 2X7 - 2x 1x 3X s + 2 x 2x 3X 9 + [ ( x ! )2 + ( x 2 )2 + ( x 3 ) 2]xi() 

y para n = 4:

^  =Xi + X 1X5 +  X2Xf,+X3X7+X4X8+[-  ( x 1 )2 + ( x 2 )2 + ( x 3 ) 2- ( x 4 ) 2] x i 2

- 2 x l x 2Xi3 - 2 x ] x 3 X i 4 + 2 x J x 4 X is

^2=X2 + X 2Xs- X 1Xc,+X3X9+X4Xio-  2 x ’ x 2Xl2

+ [ (x 1 )2 - ( x 2 )2 + ( x 3 ) 2- ( x 4 ) 2] x i 3 - 2 x 2x 3X i 4 + 2 x 2x 4Xi5 

^ = X ^ + X 3X.S- X1X7 - X 2X9 +X4X l l -  2 x l x 3X i 2 - 2x2x3Xi3 

+ [ ( x ! )2 + ( x 2 )2 - (x3 ) 2- (x4 ) 2]x i4  + 2 x 3x 4Xis 

=X4 + x 4X5 + x 1 X8 + x 2X 1 0+ x 3X 11 -  2X1 x 4 X 12 -  2x 2x 4 X 13 - 2 x 3 x4 X 14 

+ [ ( x ] )2 + ( x 2 ) 2 + ( x 3 ) 2 + (X4 ) 2]x i5  •
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4.2.Los operadores Xa = (a^'/aka) a¡ del grupo de movimientos 
Gr, que es un subgrupo (grupo de Lie) del grupo Gm de 
transformaciones conformes del espacio pseudoeuclídeo ^n, (m = 
10, para n = 3 y m  = 15, para n = 4), se determinan encontrando los 
íj* que satisfagan la ecuación de Killing [26],

ü(i;i) = 0

donde el subíndice i;j representa la derivada covariante y  los pa­
réntesis representan la operación simetrización a(ij) = Kaij + aji>). 
Es decir, desarrollando tenemos:

Í ktfkgij + gikaj£k + gjkaiik = 0. (70)

Lo anterior es equivalente a encontrar los valores de en las 
fórmulas para | l que satisfagan la ecuación (70).

. 4.3. A continuación siguiendo el m étodo expresado en 4.2 
damos algunos ejemplos de espacios ^ n , expresando su grupo de 
movimientos.

4.3.1. n = 3:
Recta L 

en P4 
que pasa  

p o r :

E lem ento Lineal 
d s2 = ... (e" * 0 )

Curva de  
R ic c i  

Gr

O p erad ores  
del grupo de  
m o v im ie n to s

e*;e5
(dx1) 2+(dx2) 2- (dx3) 2 C ircunfe­

rencia con  
centro en X

X g l X f i j X y0 [(x 1) 2+(x 2) 2 - ( x3) 2]

eb 65 + 64
Línea 

(dx1) 2+(dx2) 2- (dx3) 2 Equidistante X 4

©[(x1 )]2

ei - e 3;e 4 
+ e5

(dx1) 2+(dx2) 2- (dx3) 2
Par de rectas 
coincidentes, 
tangentes al 

absoluto

X 2 ; X j - X 3

0 [(x 1 + X3)]
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4 . 3 .2 .  n  =  4 :

Factor conform e 0
O perad ores  

del grupo de 
m o v im ie n to s  

Gr

a) El espacio  
e s ...

b) En 2E4 ob­
tenem os un  
m odelo del 
esp acio  con  
absoluto ...

c) La superfi­
cie de Ricci 
es ...

o [ ( x 1) 2 + ( x 2) 2 + ( x 3) 2- ( x 4) 2] - 1 
o = constante > 0

X6;X7;X8;X9;
Xio; Xn; 

(l/o )X 1+X12; 
(l/o)X 2+X13; 
(l/o)X 3+X14; 
(l/a)X 4+X15

a) de curvatura 
constante,

b) una esfera 
con radio 
real,

c) coincide con 
el absoluto.

o [(x 1) 2+(x2) 2+(x3) 1 - (x4) 2]+ l  
o = constante > 0

X̂ j X7; Xg; X9,
X10I Xn; 

X12-(l/o )X i; 
X13-(l/a )X 2; 
X14-(l/o)X 3; 
X15-(l/a )X 4

a) de curvatura 
constante,

b) una esfera 
con radio 
im aginario,

c) coincide con 
el absoluto.

( x ' ) 2+(x2) 2+(x3) 2- ( x 4) 2
XfijXyjXrfXqí 
Xio; Xn; Xi2; 
X13; X14; X15

a) plano (fíat),
b) un cono iso- 

trópico,
c) coincide con 

el absoluto.
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X4
Xi; X2; X3; X5; 

Xe;X7;Xg; Xi2; 
X13 ;X14

a) de curvatura 
constante,

b) el piano 
x4 = 0 ,

c) coincide con 
el absoluto.

X1

X2; X3; X4; X5; 
X9; Xi0; XnJ 

X13; X14; X15

a) de curvatura 
constante,
b) el piano 

x1 = 0 ,
c) coincide con 

el absoluto.

X1 + X4 .

X2; X3; X5; X9; 
X ^ X ^ X j-X ^  
Xio-XtfXn-Xy.;

Xl3" X14

a) de curvatura 
constante,

b) plano isotró- 
pico

Xi + X4 = 0,
c) coincide con 

el absoluto.

0 = 0(x4) 
0" * 0

Xi; X2; X3; X¿;
x7; x 9

a) de curvatura 
no constante,

b) el piano
X4 =
constante,

c) una esfera.
0 = o[x4;(x1) 2+ (x 2) 2+(x3) 2] Xe; X7; X9 a) de curvatura 

no constante,
b) depende de 0,
c) una esfera.

(1  + a ) ( x 1 ) 2+(x2) 2+(x3) 2+ 
(a - l ) ( x 4) 2+2a x 1x 4 

a = contante * 0

Xio-Xe;
X u-X 7

a) de curvatura 
no constante,

b) un cono no 
isotrópico,

c) una oriesfera.
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(x 1) 2+(x2) 2+X(x3) 2-(x 4) 2 
k*  1 Xg;X8; x 10

a) de curvatura 
no constante,b) un cono no 
isotrópico,

c) una superfi­
cie equidis­
tante.

V (x , ) 2+(x2) 2 + (x 3) 2
X4;X5;X6;X7;

Xc);X15
a) de curvatura 

constante,b) un cono 
im aginario.

V (x 1 ) 2+(x2) 2- ( x 4) 2
X;-*; X5; X<,; Xjo;x„;X15 a) de curvatura 

no constante,b) un cono real.
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