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LOS ESPACIOS 'C
(UNA CLASE DE ESPACIOS CONFORMES-EUCIDEOS)
Y SU MODELACION EN ESPACIOS EUCLIDEOS

por

José Ricardo Arteaga Bejarano

RESUMEN. Este artfculo trata de una clase de espacios conforme-eucli-
deos de dimensién n y codimensién 1, donde se define el factor conforme
como resultado de una exigencia de tipo geométrico. Para este propdsito
se defini6é una relaci6n entre rectas del plano proyectivo de dimensién
n + 1 y los factores conformes. Luego se cstablecen los siguientes resulta-
dos: Existe una relacién entre las superficies de nivel del factor conforme
y las superficies de Ricci. Estas superficies relacionadas son de la misma
clase, es decir, tiecnen la misma curvatura y las mismas caracteristicas geo-
métricas. Para que las superficies de nivel asociadas al factor conforme
sean ombilicas es necesario y suficienie que satisfagan una condicion muy
especial en el espacio proyectivo. Se encuentran los grupos fundamentales
para algunos representantes de esta clase.

§1. Espacios conformes

1.1. Espacios conformes pseudoeuclideos de dimensiéon n y
codimensiéon uno, como son los que vamos a tratar, son espacios
pseudoeuclideos a los cuales se les ha agregado puntos o rectas o
planos o espacios de dimension n - 1 al infinito, denominados
también impropios; en este articulo los llamaremos complemen-
tarios. Los elementos geométricos fundamentales son las esferas.
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Por ejemplo, para n = 3, una circunferencia es el corte o linea de
interseccion de dos esferas, una recta es una circunferencia que
pasa por un punto impropio del plano complementario, un plano
es una esfera que contiene un punto impropio y un punto puede
considerarse como una esfera de radio nulo, es decir, un cono
isotrépico. En otras palabras un espacio conforme y un espacio
proyectivo guardan una estrecha relacion.

1.2. La relacién existente entre los espacios proyectivos y los
espacios conformes fue establecida por F. Klein [4], cuando
mostré que el grupo fundamental de la geometria conforme es
isomorfo a un subgrupo del grupo fundamental de la geometria

proyectiva.

1.3. Escogiendo coordenadas conformes (cartesianas) en un
espacio conforme euclideo de dimension n y codimensién 1, 1Cp,
el elemento lineal (cuadrado de la distancia) se puede escribir
asi:

ds? =92 {éij dxidx (1)
ds? =e2¢ gij dxidx (2)
donde
a) 8 es una funcion de X(x!, x2, x3, ..., x1), la cual se llama el factor

conforme, al igual que y, del espacio 1C,,.

b) fg’i,- es el tensor métrico del espacio pseudoeuclideo 1C,,.

NOTA. En todo el articulo a no ser que se especifique lo contrario
los indices latinos varian entre 1 y n.

§2. Relacion entre el tensor de curvatura del espacio
1C, y las superficies de segundo orden del espacio
de Lobatchevski Ly.;

2.1. El tensor de curvatura de un espacio !C, tiene la siguiente
estructura:
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Rijki =48 vk Suvil (3)

donde g;; es el tensor métrico del espacio !C,. Los corchetes [ ]
significan la operacién alternacién: ay; = (1/2)(a; - a;;) y las ba-
rras significan que lo que estd en su interior permanece fijo
cuando actda la alternacion. Ademas S; es un tensor simétrico de-
finido por:

0 9
Sij=- (nji-win) - LA p gij, (4)
. . 0 fee 0
w;,i es la derivada covariante V; p; respecto a la métrica g j,

0
Arn es el parametro diferencial de Beltrami de primer orden:

0 .
An= g9 pip;. (5)

2.2. Observacion. En un espacio de Riemann, si el tensor de
curvatura satisface (3) para algin tensor S;;, que tiene la estruc-
tura (4), para poder hallar las componentes de S;;, es necesario
resolver el sistema de ecuaciones diferenciales (4). Para el caso
de n = 3, los tensores R y S tienen s6lo seis componentes repre-
sentativas y considerando (3) como un sistema de seis ecuaciones
lineales con seis incégnitas, es 16gico esperar que tal tensor S;;
siempre se puede encontrar. Estas componentes necesariamente
satisfacen:

Sij= 'Rij+%gij (6)

en donde R; es el tensor de Ricci y R es la curvatura escalar. Por
esta razén para n = 3 fuera de la condicién (3), para que el espa-
cio sea conforme, se debe agregar la condiciéon de integrabilidad
de (4): '

ViiSjik= 0. (7)

Para n > 3 la condicién (3) es suficiente y necesaria para que el
espacio sea conforme, ya que la condicién (7) es consecuencia de

(3, [7]. :
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2.3. En adelante n toma sélo los valores de 3 y 4. Mostraremos
que el estudio del tensor de curvatura del espacio !C, esta
estrechamente relacionado con el estudio de todos los tipos de
superficies de segundo orden (o curvas en el caso n = 3) del
espacio de Lobatchevski L,.,. El espacio tangente Ty(1C,) del
espacio 1C, en el punto X(x!, xZ, x3, ..., x") no es otra cosa que la
proyectivizacion del espacio de Lobatchevski L, en el cual se ha
tomado como absoluto la cuadratica:

gijdx'ddi= 0 (8)
y dxise consideran las coordenadas homogéneas del modelo pro-
yectivo de L.
2.4. DEFINICION. El tensor de modelacién conforme del
espacio 1C, se define segun la férmula:
Mij= (n-2) [nij-winj. (9)
En T(!C,) = Ln-! definimos ademas las siguientes superficies:
Rijdxidx)=0, la superficie de Ricci,
Mijdxidx)=0, la superficie de la modelacién conforme, (10)
Sijdx'dxi=0, la S-superficie,

donde:
a) Rj; es el tensor de Ricci, que en coordenadas cartesianas se ex-

presa asi:
0 0 0
Rij=(n-2) [nji-pipd+[Az2n +(n-2) A1 ¢} gy, (11)

0
A2 p es el parametro diferencial de Beltrami de segundo orden,
definido segun la férmula:

0 ..
Azn=gYn. (12)

b) Mj; es el tensor de modelacion conforme, que satisface junto
con el tensor de Ricci la siguiente relacion:

0 0 0
Mij=Rij-[An+(n-2) A, plgi (13)
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Por lo tanto, el estudio del tensor de curvatura esta estrecha-
mente ligado con el estudio de todos los tipos de superficies (o
curvas para n = 3) del espacio de Lobatchevski, las cuales perte-
necen a un haz absoluto definido por los tensores g; y Si;: -

a gjj + B Sij'

2.5. El tensor de modelacién conforme sélo se puede calcular
una vez se haya establecido tanto el factor conforme, como el
tensor métrico del espacio pseudoeuclideo. Por este motivo, a
diferencia de los tensores de Ry y Sj; los cuales expresan la
naturaleza interna del espacio !C,, el tensor M;; esta relacionado
s6lo con la posibilidad de modelar el espacio !C, en el espacio !E,,.
Por ejemplo, y esto se mejorara mas adelante, para n = 3, en la
interpretaciéon conforme de Poincaré, el tensor de modelacién
conforme de todo espacio conforme con curvatura constante es
nulo, en el caso que el absoluto sea un plano, pero es proporcio-
nal al métrico, si el absoluto es una esfera.

Es cierto, que el tensor de modelacidon conforme no refleja todos
los detalles de la posibilidad de modelacién; por ejemplo, tratando
de diferenciar la clase de modelos conformes de espacios de
curvatura constante, cuando el absoluto es un plano, de la clase
de los modelos de estos espacios cuando el absoluto es una esfera,
el tensor M; no lo permite, pues no permite inmediatamente
diferenciar en cual de estas clases esta el modelo de los espacios
de curvatura nula. Sin embargo para este propdsito se pueden
utilizar, con buen éxito, los tensores R;; o S;.

Si el tensor métrico g; se expresa en coordenadas cartesianas (1),
entonces el tensor M;; se expresa asi: |

Mij = (- 1/8) 8ij; (14)

los tensores R;; y Sj; se relacionan:

Sij=- 1 Rij+ R gij- (15)
n-2 2(n-2)(n-1)
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§3. Los espacios 'Cp

3.1. La relacién existente entre los espacios conformes y los
espacios proyectivos, los cuales se construyen con base en los
espacios euclideos, la encontr6 F. Klein [4]. De manera analoga
utilizaremos este principio para modelar los espacios conformes
1C,.

Consideremos el espacio proyectivo P,,; la hipercuadrica Q con
ecuacion:

aupEYE = g EE + ™) % - (872) 2 =0. (16)

Observacién. Los indices latinos toman valores de 1 a n,
mientras que los griegos de 1 a n + 2. Esta regla se mantendra
hasta el final del trabajo, si no se especifica otra cosa.

3.1.1. La aplicacién F: P — 1C, se define de la siguiente
manera:
a) Por medio de la proyeccién estereografica con centro en el
punto N(0:0: ... :0:1:1), llamado polo norte, establecemos una co-
rrespondencia entre puntos & de Q y puntos X pertenecientes al
hiperplano g**! = 0, el cual se considera como un espacio pseudo-
euclideo, que es donde modelaremos el espacio conforme !C,. Al
punto N sobre Q le hacemos corresponder un punto complemen-
tario de 1C,,.
b) A cada punto A(al; aZ; ... ; an*2) € P, |, que esté fuera de Q le co-
rresponde una polar (hiperplano) con relacién a Q. Esta polar
intersecta la hipercuadrica Q en una hiperesfera la cual se
proyecta por medio de la proyeccién estereografica F en una es-
fera del hiperplano gnt! = 0. En adelante diremos simplemente 1C,,
en lugar del hiperplano g"+! = O y esferas en lugar de hiperesfe-
ras.
De esta forma la aplicacién F establece una relacién biunivoca
entre puntos de P,,; que estan sobre Q o fuera de ella y esferas de
1C,. En particular, los puntos de !C,, se pueden considerar como
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esferas de radio cero o conos isotrépicos.

3.2. Veamos en coordenadas lo expresado en 3.1.
F establece una relacion entre las coordenadas homogéneas &* de
un punto sobre Q y las no homogéneas x! del espacio !C,, que se
puede expresar asi:

gl 2k
ghtl=s-1 (17)
M ?=x+1
donde:
2=§i; x'x),

A las coordenadas & les llamaremos policiclicas del punto X € 1C,,.
Esta es una generalizacion de las coordenadas tetraciclicas y
pentaciclicas definidas en [4] y [2] respectivamente. A un punto

A(al; a; ... ; an*2) € Py, le corresponde una polar con relacion a Q
(16), la cual en coordenadas policiclicas tiene ecuacion:
a.t"=0 (18)
donde:
a.=awpal,

Reemplazando (17) en (18), obtenemos la ecuacién de la esfera
que es la proyeccion de la interseccion de la polar de A con Q.
Esta esfera de !C,, tiene ecuacién:

(@n+1+an+2) T +2aix + (Qn+2 - an+1) =0. (19)

De esta forma cada punto A(al; aZ; ... ; a™?) € P,,,, le corresponde
una esfera en I1C,, '

Observaciones: .
a) Si el punto A € Q, entonces no vamos a encontrar la polar de
este punto, simplemente lo proyectamos a !C, mediante F, imagen
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que sera una esfera de radio cero.

b) Si el punto A estd en el hiperplano tangente al polo norte N, es
decir, si ap,1 - ap4z = 0, entonces su imagen mediante F serda una
esfera que pasa por un punto complementario.

3.3. Mostremos ahora, como se puede obtener un espacio de
curvatura constante cuyo elemento lineal es:

2 gnddd (20)
(=-1)?

ds

Normalicemos la hipercuadrica Q por el método Norden [7].
Como normal I (de primer género) tomamos la recta que pasa por
el punto & € Q y por el vértice ideal del poliedro absoluto (marco
proyectivo) e,,1(0; ...;0 ; 1; 0), es decir, la normal I pasa por un
punto cualquiera de la hipercuadrica Q y por el polo del hi-
perplano gr*! = 0. Denotemos este iltimo vértice ep,1(0; ...;0 ; 1; 0)
con la letra E. Aqui se excluyen los puntos de interseccion del
hiperplano !C, con Q. Como normal II (de segundo género) to-
mamos la interseccion del hiperplano tangente en el punto & con
el hiperplano IC,.
Consideremos ahora las rectas en el espacio tangente T\('C,) = Ly,
en el punto &, que pasen por el punto & y que tengan direcciones
&E = 9t/ 9x!, es decir, las rectas tangentes a las lineas coordenadas
en el punto £ € Q. Estas rectas intersectan la normal II de se-
gundo género en los puntos:

ni=9ik - Lj, ai§=§- (21)

ax!

donde L; son las coordenadas del normalizador (bajo las transfor-
madas de las coordenadas curvilineas, ellos se transforman segin
las leyes tensoriales).
Por lo tanto tenemos el marco proyectivo {g, n;, £}, y cualquier
punto del espacio proyectivo P,,; se puede expresar como una
combinacién lineal en términos de los puntos de este marco. Des-
componiendo las derivadas de estos nuevos puntos &, n;, =, en
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términos de ellos mismos, obtenemos las ecuaciones diferenciales
fundamentales de la hipercuadrica Q.

dE = LiE +1; (22)
Vini = Linj+=i55+ bjj=E (23)
HE =y ne+yjE- LiE (24)

La formula (23) se puede escribir asi:
('ij=r{(jnk+Linj+nij§+bij3. (25)

Diferenciando cada una de las coordenadas &¢, definidas en (17) y
utilizando (21), se encuentran las coordenadas n;. Luego exi-
giendo que n; pertenezca a !'C,, encontramos:

0
L,=_28ip X" (26)
1-3

Diferenciando las coordenadas de los puntos n; y comparandolas
con la féormula (25) encontramos las componentes de la conexion:

3 “- P ”. P . _ 0‘. S
rij=28in X o5, 28in X0 4y, ~28ii X (27)
1-2 1-2 1-=
Lilamando:
p‘._Zgipxp
== 7
1-z

encontramos que las componentes de la conexiéon de la superficie
normalizada segin el método de Norden se pueden expresar asi:

. " . (0 . (. .
Fii=nidf +pjoi- n*gij; (1¥=gPpp) (28)

es decir, son iguales a las componentes de la conexién de Rie-
mann del espacio (20) ([3] §8).

3.4. DEFINICION. Supongamos que el punto A(a'; a?; ... ; an+2)
€ P,., se mueve sobre una recta, entonces la esfera (19) se
mueve describiendo un haz de esferas o familia de esferas.
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Llamaremos haz fundamental a un haz de esferas asociado a una
recta en el espacio Pp.;. Los espacios 'C, los definimos como
espacios 1C, (1), para los cuales las superficies de nivel del factor
conforme 6, 8 = constante, coinciden con un haz fundamental.

3.5. TEOREMA 1. Un haz fundamental del espacio 'Cy es un
haz de superficies ombilicas si y solamente si, la recta asociada al
haz fundamental pasa por el punto N (centro de la proyeccion
estereogrdfica).

Demostracién. Antes que todo, hallemos una expresion para
la diferencial absoluta del vector normal (ortonormal) en cada
uno de los puntos de la esfera que es una superficie de nivel del
espacio 'Cy.

La funcién p de la férmula:

_ gij=e gy
la consideraremos como una funcién de la otra funcion f, es de-
cir,
n = u(f), donde f = f(x1). (32)
Consideremos ahora las superficies de nivel del espacio lc:., f=

constante. Con estos supuestos el vector normal (orto) en el
punto x = (xi), tiene como componentes:
. - 0.
ni=_€L_girf, (33)

0
Aif

0
donde fj=4f y A.f es el parametro diferencial de Beltrami de
primer orden:

0 .
A f=glfif;. (34)

Sea E un vector tangente unitario en el punto x = (x') de la su-
perficie de nivel f = constante, encontramos las componentes de
la forma de conexion:

(Dji=p.jti'uitj (35)
donde,
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0 i T
=gyt y ni=g'u. (36)
El diferencial absoluto del vector 0 en la direccién de E se define
asi:

sn'(1) =dni(t) + wk(t) ns (37)
En nuestro caso, los sumandos de la derecha de (37) tienen la si-

guiente expresion:
wi (D) nS=VAf pe rt (38)

] 372
iy ( 0 -0 9im0rs k

dni(t) ={aif] e *gMmg[fefsfmk-fmfrfsk]t. (39)

Ahora si demostraremos el teorema.
Haremos la demostracion para n = 3, pero todos los calculos pue-
den ser generalizados para n = 4.

Suficiencia. Sea L una recta en P, que pasa por los puntos:
A(al: aZ a3: a:*a%) y B(bl: b% b3 b* bd) . E punto genérico de esta
recta es C = A + tB y tiene como coordenadas:

ci=al+tb (40)
A este punto segun (19) le corresponde la esfera:
[(a4+a5)+t(b4+bs)]>:+2(ai+tbi)x‘+[(a5-a4)+t(b5-b4)]=0. (41)
Es decir,
_ (a4 +as)T+2aix'+(as - a4)

(42)
(b4 + bs)z + 2bixi+ (bs - ba)

t

donde a° = a, a°, definido en (16) para n = 3.
Subiendo indices en (42), obtenemos la ecuacién del haz de esfe-
ras:

(a“ - a5)>: +2al x!'+a?x? - ad3x3 - (a" + as)

- (43)
(b* - b°)z + 2b' x' +b?x? - b¥x3 - (b* + b°)

=
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Si la recta L pasa por el'punto N(O: 0: O: 1: 1), queda completa-
mente determinada definiendo las coordenadas del segundo
punto, por ejemplo: A(al: aZ: a3: at: 0). Reemplazando las coorde-
nadas de N y A en (43) obtenemos la ecuacion de la familia de es-
feras:

a*t-2t=(aY)z+2alx! +a?x?-a’xd. (44)
Llamando f = a* - 2t, la ecuacién (44) la podemos escribir asi:
f= a4z +2aix’. - (45)

De la definicion de espacios 'C, se deduce entonces que la fun-
cién factor conforme p = - In® debe tener la estructura:

i =pu(f) (46)

donde f esta definida en (45).
En la féormula (46), para a; = 0, cambiando las coordenadas

2ai
a4

xi=x-

obtenemos:
w=pn(Z). (47)

Y en el caso en que a,; = 0, entonces:
n=p(aix’). (48)

En el caso (47) salculando la diferencial absoluta del vector n en
la direccién de t y utilizando (37), (38) y (39), obtenemos:

sn'(t) =Knt' (49)
donde:
Kn=282(1+2n'3). (50)
TE

Y en el caso (48), también la diferencial absoluta tiene la misma
estructura (49), pero con curvatura normal:
Kn=-e*", (51)

Las féormulas obtenidas (49), (50) y (51), muestran que la familia
de esferas asociada a la recta L, que pasa por el punto N (centro
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de la proyeccion estereografica), es una familia de superficies
ombilicas con curvatura normal constante,

Observacién. La curvatura normal en general es diferente
para superficies diferentes.

Necesidad. Si la recta L en el espacio proyectivo P4 no pasa
por el punto N, mediante ayuda de movimientos (transformacio-
nes de P4 en si mismo que dejan invariante la hipercuadrica Q),
podemos siempre obtener una de las siguientes situaciones:

i) La recta L no tiene puntos comunes con Q y se encuentra
fuera de ella. Para este caso podemos elegir los puntos A y B como
los vértices ideales e; y e; del tetraedro absoluto. Entonces utili-
zando (43), u tiene la siguiente estructura:
" =u(-’%—)- © o (52)
X

Calculando el diferencial absoluto (37), encontramos:

sni(t) = Knt' (53)
donde:
1+ &L)
)
Kn=e-"pl (54)
%2

ii) La recta L no tiene puntos comunes con  y se encuentra

dentro de ella. Para este caso podemos elegir los puntos A = e3, B =

es y obtenemos entonces: “
n= u[

Calculando la diferencial absoluta (37), obtenemos una expresion
equivalente a (53), pero con curvatura normal:

X3
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. 0
Kn= eu' (-;3-+p‘A1f). (55)
Va. £ \X
Aqui:
0 i
A1f=“ 1 4+ 2——+1 .
(x3)2 . X3 )

iii) La recta L y la hipercuadrica Q se cortan en dos puntos. Para
este caso podemos elegir los puntos A = e; +e3,B=¢, +e3y
obtenemos entonces:

: (o1 3
po=p| XX 5 + X
x% +x3
Calculando la diferencial absoluta (37), obtenemos una expresion
equivalente a (53), pero con curvatura normal:

Kn= HZf “'e’l‘

x2

2 4+ x3
donde

foxltx? (56)
x? + x3

iv) La recta L y la hipercuadrica Q son tangente. Para este caso

podemos elegir los puntos A = e; - e, B = e}, y obtenemos enton-

ces:
n=pn =
xl

Calculando la diferencial absoluta (37), obtenemos una expresion
equivalente a (53), pero con curvatura normal:

Kn=e“'(—2-'2——-u'-3—l). (57)
(xh’z X

v) La recta L es una recta generatriz de la hipercuadrica Q. Para
este caso podemos elegir los puntos A = es-e;, B=¢; + €3,y
obtenemos entonces:
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n=p - (58)

l_x.

X

En los casos i) al iv) las férmulas de la (53) a la (57), muestran
que la curvatura normal no es una cantidad constante para todos
los puntos de una misma superficie de nivel f = constante, pero la
superficie en cada punto es ombilica.

Observacion: Aunque todo punto de la superficie de nivel f =
constante es ombilico, es decir, cualquier direccién es principal,
la curvatura normal puede cambiar de punto en punto en una
misma superficie.

En el caso v) no tiene sentido hablar de la curvatura normal de la
superficie, ya que en este caso, cuando la recta L es una recta
generatriz, la polar de cada punto en la recta es un hiperplano
tangente a Q y la superficie de nivel es un cono isotrépico, y su
vector normal no representa algo en este cono. H

Mostraremos ahora que las superficies de Ricci (0 curvas en el
caso n = 3 se pueden utilizar para dividir el espacio conforme
euclideo en regiones con diferentes caracteristicas geométricas.

3.6. TEOREMA 2. Si el espacio C, tiene el factor conforme
asociado a una recta que pase por el punto N(0:0:0:1:1), entonces
la curva de Ricci (o superficie df.' Ricci, para el cason = 4) en el
plano tangente del espacio ICn, es una curva de curvatura
constante con centro en algun punto.

Demostracion. Sea el espacio 1Cn (n = 3), con tensor métrico
(1). La curva de Ricci en el espacio tangente de este espacio en el
punto X esta definida por:

Rijdxidxi=0 (59)
donde el tensor de Ricci Rj;, se expresa segun:

Rij=”('{%~)9ii+}~£ii, Bij=0i;0. (60)
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Aqui:

(61)

0
x=2(.__A19)-
82

0
Az0
92

\

0 0
donde A16 y A20 son parametros diferenciales de Beltrami de
primer y segundo orden en (6) y (12) respectivamente.

Llamando 6 = 6(f) donde f = f(x!, x2, x3), entonces el tensor de
Ricci se expresa asi: '

Ry 00 L g, (©2)
donde:
"2 " '
xz(i(_e_)_-ﬂ_)xlf-ﬂ_xzf (63)
(.)2 6 8

Hacemos aqui un analisis similar al que se hizo para demostrar la
suficiencia del teorema 3.1.

Primer caso. Sea f = 2, es decir el factor conforme 8 = §(=), donde
T o= (x1)2 + (x2)2 - (x3)2.

Utilizando las coordenadas covariantes x; = %ijxi el tensor de Ricci
se expresa asi:

R~-=(x +i) ”--+(__4"")x-x-
ij P gu 0 iXj
donde: .
\] Z " \J
ool = o).
] v} ]
Sea el tensor:

LANY]
aij = Rij - (K +%) 8ij»

entonces la curva a;dxidx) = O pertenece al haz absoluto definido
por los tensores métrico y de Ricci. Si 8" = O entonces la curva
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a;;dxidx = O se puede expresar como:
xiXjdx'dxi=0

es decir, como un par de rectas dobles, con polo, respecto al abso-
luto

(dx!) % + (dx2) % - (dx3) % =0.

Existen entonces tres posibilidades:

a) Si el punto X esta fuera del absoluto, entonces la curva de Ricci
es una linea equidistante, es decir una circunferencia con
centro en el punto X.

b) Si el punto X esta dentro del absoluto, entonces la curva de
Ricci es una circunferencia con centro en el punto X.

c) Si el punto X esta sobre el absoluto, entonces la curva de Ricci
es un orificio, es decir una circunferencia con centro en el
punto X.

De esta forma el espacio 'C,, con factor conforme (47) y absoluto
cono isotrépico, se divide en tres partes, cada una de las cuales
tiene propiedades geométricas diferentes.

Observacion. Si 8" = 0, entonces el espacio lc;, con factor
conforme (47) es un espacio de curvatura constante y ademas la
curva de Ricci coincide con el absoluto del plano de Lobat-
chevski, es decir, es un espacio de Einstein con curvatura cons-
tante. '

Segundo Caso. Si f(ax!), es decir, si el factor conforme es igual a:
8 = 0(a;x! + a;x? + azx3), entonces , el tensor de Ricci es igual a:

Rij=7~[g]ij"9—e"—aiaj (66)
donde:

"2 "
A =(2(8)" o [a%+a%-a§].
R ,
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0 o
Llamando aij=Rij - A g ij, tenemos que la curva a;dx'dx) = O, cuando
0" = 0 es:

ajajdx'dxi=0. (67)

Estudiemos por separado el caso cuando a? +a} -a%=0, es decir
cuando la recta L es una recta generatriz de la hipercuadrica Q.
En este caso la curva a;jdx!dx'=0 y la curva de Ricci coinciden y
si ademas 6" = 0, entonces ellas son un par de rectas que son
tangentes al absoluto (dx!)2 + (dx2)Z - (dx3)2 = 0, del plano de
Lobatchevski.

En los casos donde (al)?2 + (a?)2 - (a3)2# 0y 0" # 0, la curva de

Ricci es una circunferencia o una linea equidistante, dependien-
do si (al)2 + (a2)? - (a®)2 es mayor o menor que cero respectiva-
mente.

Observacion. Si 6" = O entonces el espacio IC , es un espacio
de curvatura constante, que es en este caso un espacio de
Einstein con curvatura constante. l

3.7. EJEMPLO 1. En calidad de ejemplo, tomemos ahora el caso
cuando la recta L no pase por el punto N y mostraremos que asi es
posible obtener otros tipos de curvas de Ricci, cuya curvatura no
es constante. Supongamos que la recta L pase por los puntos A =
e, B = e; - e3, entonces el factor conforme es:

6 = X
x! +x3

A+ A B A
B A B
\ A B A-A

y el tensor de Ricci:

(R u) =

!

donde:

Ac._20x2 __8"(x})’
o(x! +x3)? a(x'+x3?
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B= [\ R (_)nxz
o(x! +x3)?% a(x!+x3)°

S A

A

Entonces la curva de Ricci (59) tiene ecuacion:
A((dx!) 2 + (dx?)? - (dx3) ) + (dx ! + dx3) [A (dx! + dx?) + 2Bdx?]=0

es decir, la ecuacion de una parabola osculadora. &

3.8. EJEMPLO 2. Veamos ahora el espacio Ic ,, con factor
conforme (58), doude 6" = 0. Para este caso tenemos que el tensor

de Ricci es:

!

A+rAAL -AA -2A?
(Rij)= -AA 22 rA
| - A? AA AAZ-A
donde:
A =-20] 1
0 |x!-x3
Ao_ X%
xl_x3

La Curva de Ricci (59) en el punto X(x!, xZ, ..., x") es una parabola
osculadora con ecuacién:

A((dx1)? + (dx2)? - (dx®)2) +a(dx? - dx?) [A (dx! - dx?) + 2dx2]=o0.
=

3.9. Conclusiones .
a) Las hiperesferas que componen el haz absoluto del espacio ol
para n = 3, o, n = 4, aunque son superficies ombilicas no nece-
sariamente tienen curvatura normal constante. Esta propiedad
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so6lo se cumple cuando el factor conforme tiene la forma:
9=B(an+1 gux‘x’+2aix‘) (68)

donde a,.; y a; son cantidades constantes.

b) Ademas la§ superficies (curvas para n = 3) de Ricci para los
espacios lC|1 (68) son superficies con curvatura constante.

c) Siel factox; conforme satisface la condicién 6" = 0, entonces el
espacio 'C, (68) es un espacio simétrico.

*

§4. El grupo de movimientos de algunos espacios ICh

4.1. Para la clasificacién de espacios IC:, segin el grupo de
movimientos debemos definir para cada espacio, un subgrupo del
grupo G, de transformaciones conformes del espacio pseudo-
euclideo !E, dondem =10 paran=3ym=15paran=4.

El grupo de transformaciones conformes G de !E, tiene los si-
guientes operadores [1]:
a) Paran = 3:

X1=01 X2=4d2 X3 =293

X4 =x181 +x%32 + x333 Xs=x29; - x192  Xe=x391 - x93
X7 =x332 - x%93

Xg=[— (x1)? +(x2)? - (X3)2]61 - 2x1x%32 - 2x!x383

Xo = - 2x1x23y +[(x1) 2 - (x?)2 - (x3) ]o2 - 2x2x3 a3
X10=2x1x301 +2x2x39; +[(x1)2 + (x4 (x3)2]a3.

b) Paran = 4:

X1=d1 X2=92 X3=93 X4 =04

Xs =x191 + x292 + x393 + x%4

Xe =x%31 - x1a2 X7=x391 - xla3 Xs =x%1 +x194
Xo =x392 - x%33 X10 =x*32 + x%a4 X1 =x%33 +x304

Xiz=[- ()% + % + (3)2 - (x) o1 -2x'x2a; - 2x'x303 - 2x x%4
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Xq3 = -2x' %241 +[(X1)2 - (x4 (x3)% - (x“)z]az - 2x2x3a3 - 2xx*94
X1 =-2x'x33; -2x%%302 +[(x‘)2 + (x4 - (x3)?- (x4)2]03 -2x3x%94
Xis = 2x x%a1 + 2x%x%a72 + 2x°x%93 +[(x1)2 +(x) e (x3)?+ (xY 2]84
Si llamamos & a la siguiente combinacion lineal:

E=MX1 +22X2 oo A AmXm=E'i

y suponiendo que :

Xa=98 5, (69)
A

a

dondea=1,..,10sin=3,y,a=1,...,, 15 si n = 4; entonces paran = 3
obtenemos:

gl =y +x’x4+xzxs+x3xb+[- (x1)? +(2)? - (3) 2])\3- 2x!'x2 a9 +2x1 x3 010
g2 =0 +x2ha- xMhs + 3307 +2x x2hg +[(x1 )2 - (x2)% - (x3) 2]M+2x2x3km
) =hs + 33 hs4 X hot X2A7 - 2% xhg+2x x3ho +[(xl ) +(x2)° +(x3) Z]M()

yparan =4:

gl=n +x1x5+xzk(,+x-*k7+x4xg+[- (x' ) +(x2)? +(3) %= (x*) Z]M'z
- 2xIx2a3- 2x 3 g+ 2x Xt

B2 =0 +x2hs- x o +x3ho+x A 10- 2x1 X2 012
+[(x] ) - (x2)F +(x3) 2 () Z]7\.13- 2x4x3 h +2x2 x5

§3 =03 +XA5- xIA7- x2hg+x N - 2x1x3n12- 2x2x3 013
+[(xl )+ ) - () - (x) Z]MJ, +2x3x% s

Bt g +x s+ X Ag +x2h10+x30 11 - 2x X A2 - 22X X 3- 23 XA
+[(x‘ ) +(x2) +(x3) P+ (x) 2])»15 .
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4.2,Los operadores Xa = (9t!/0)4) 9 del grupo de movimientos
G;, Que es un subgrupo (grupo de Lie) del grupo G, de
transformaciones conformes del espacio pseudoeuclideo 'E,, (m =
10, paran = 3 ym = 15, para n = 4), se determinan encontrando los
g que satisfagan la ecuacién de Killing [26],

Ewp=0

donde el subindice i;j representa la derivada covariante y los pa-
réntesis representan la operacion simetrizacion agj = 3(aij + aji).
Es decir, desarrollando tenemos:

g axgij + gikdE" + gjkaig* =0. (70)
Lo anterior es equivalente a encontrar los valores de A; en las

formulas para & que satisfagan la ecuaciéon (70).

. 4.3. A continuacién siguiendo el método expresado en 4.2
damos algunos ejemplos de espacios 'C,, expresando su grupo de
movimientos. -

43.1.n=3:
Recta L | Elemento Lineal Curva de | Operadores
en P, ds? =... (8" = 0) Ricci del grupo de
que pasa G, movimientos
por:

(dx!) 2 +(dx?) Z (dx3) 2| Circunfe-

ey es 6[(x1)2+(x2)2—(x3)2] rencia con Xs: Xe; X7
centro en X

Linea
e es+ey | (dx!)?+(dx?)%- (dx3)? | Equidistante Xy
2
o[(x))]
Par de rectas
e - e3; ey | (dx!) *+(dx?) *- (dx3)? |coincidentes,| X, X, -X;
. 2 tangentes al
+e 8
’ o [(xl * xs)] absoluto
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43.2.n=4:

Factor conforme 0

Operadores
del grupo de
movimientos

Gr

a) El espacio
es ...
En 1E4 ob-
tenemos un
modelo del
espacio con
absoluto ...
La superfi-
cie de Ricci
es ...

b)

c)

Xe X75 X33 Xo;

a) de curvatura

Xyo; X113 constante,
0[(X1)2+(X2)2+(X3)2-(X4) 2]_ 1 (1/0)X+Xy3; b) una esfera
o = constante > 0 (1/0)X+X13; con radio
(1/0)X35+X14; real,
(1/0)X4+X;s | c) coincide con
el absoluto.
X6 X7; Xg; Xo; | @) de curvatura
Xi0; X113 constante,
0[(X1) 2r(x) e (x3) - (x) 2]+1 X;2-(1/0)X;; | b) una esfera
o = constante > 0 Xi3-(170)Xy; con radio
XH -(1/0)X3; imaginario,

X]S "( 1/0’)X4

c) coincide con
el absoluto.

(x1) 2+ (x2) 2 (x3) 2 (xh) 2

Xe; X7; Xg; Xo;
Xi05 X115 X123
X135 X145 Xis

a) plano (flat),

b) un cono iso-
tropico,

¢) coincide con
el absoluto.
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Xi; Xz X35 Xs;
X6 X7; X3 X123
Xi3; X14

a) de curvatura
constante,

b) el plano
x*=0,

¢) coincide con
el absoluto.

X3 X3; X4; Xs;
Xo; X10; X115
X35 X145 X15

a) de curvatura
constante,
b) el plano
x1 =0,
¢) coincide con
el absoluto.

x! + x4

X; X3; Xs; Xo;
X;3;5 X145 X1 - X45
X10Xe X11 - X7;

X13- X14

a) de curvatura
constante,
b) plano isotré-
pico

X1 +X%=0,

¢) coincide con
el absoluto.

0 =0(x4)
0" =0

X5 X2; X35 X6
X7; Xo

a) de curvatura
no constante,

b) el plano
x4 =
constante,

¢) una esfera.

0= 9[x4;(x1)2+(x2)2+(x3) 2]

Xe; X7; Xo

a) de curvatura
no constante,

b) depende de 8,

c) una esfera.

(1+a)(x)2+(x2) 2+(x3) 2+

(a - 1)(x*) % +2ax1x*
a = contante = 0

Xi0 - Xo5
Xi1 - X7

a) de curvatura
no constante,

b) un cono no
isotrépico,

c) una oriesfera.
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a) de curvatura
no constante,

(x1) 24+(x2) 2en(x3) 2-(xH 2 b) un cono no

A=1 Xo Xg; Xio isotropico,
c) una superfi-
cie equidis-

tante.
Xy Xs; Xe; X7; | a) de curvatura
N(x) L +(x2) HH(x3) Xg; Xi5 constante,
b) un cono
imaginario.
X3 Xs; Xo: X105 | @) de curvatura
N(x) 2+ (x2) 2= (x*)? X1 Xis no constante,

b) un cono real.

(1]

(2]

(3]
[4]
(5]

6l
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