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1. Introduction
Let Fq be the finite field with q =  pn elements and let C be an affine plane 
algebraic curve (over the finite field ¥ q). We will denote by C(F9) the set of 
Fg-rational points of C and by g(C) its genus.

For many years the question on how many rational points a curve of genus 
g over a finite field with q elements can have, has attracted the attention of 
mathematicians. In 1940 A. Weil proved the Riemann hypothesis for curves 
over finite fields. As an immediate corollary he obtained an upper bound for 
the number of rational points on a geometrically irreducible nonsingular curve 
C of genus g over a finite field of cardinality q, namely

#C(Fg) < q  +  1 +  2gyfq.
This bound was proved for elliptic curves (i.e, g =  1) by H. Hasse in 1933. 
However, the question of finding the maximum number Nq(g) of rational points 
on an irreducible nonsingular curve of genus g over a finite field Fq did not 
attract the attention of the mathematicians until Goppa introduced geometric 
codes in 1980 (see [7]).
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The aim of this work is the construction of curves over finite fields with many 
rational points. The method used is motivated by [4] and can be described as 
follows:

To each two polynomials f(x)  and £(x) in F9[x] such that deg(f(x)) > 
deg(£(x)), we consider curves C over Fq defined by the affine equation

where TZe{f{x) is the remainder of the Euclidean division of f(x)  by £(x) and 
r a divisor of q — 1. Then, the number of F9-rational points on this curve 
satisfies the inequality #C(Fg) > Ar, where A =  # { a  6 F9 such that £(a) =
0 and f ( a ) ^  0}. Therefore we have to construct appropriate polynomials f(x) 
and £(x) to guarantee the existence of many rational points.

In this work the expression ‘good curve C over ¥ q means that the number 
of rational points #C(Fg) satisfies a =  aq(g) < #C(F9) < bq(g) =  b, where as 
in [5] the meaning of the interval [a9(^), &9(<7)] is: we know that there exists a 
curve over F9 with genus g and with at least a =  b/y/ 2  rational points and the 
upper bound 6 is equal to the best upper bound known by Hasse-Weil, Serre, 
Ihara, Oesterle and others.

The paper is organized as follows: In section 2 we give the details of our 
method for the construction of good curves over finite fields. In section 3 we 
construct polynomials £(x) as a sum of certain symmetric polynomials in m 
variables over ¥q and obtain good curves over Fg3. In Section 4 we compute 
explicitly the polynomial He(f(x)) when f(x)  =  (xq — x)r and £(x) =  xq — x. 
In Section 5 we construct fiber products of Kummer covers defined by equation 
of the type described above, and we obtain three new records.

Let p be a prime number, Fq be a finite field with q =  pn elements and let 
F9 be an algebraic closure of Fg. The purpose of this section is to introduce 
polynomials TZe(f(x)) associated to the polynomials £(x) and f (x)  € Fg[x]. 
Then we will construct curves C over F9 with many rational points which are 
Kummer covers of the projective line P 1^ )  of the type

yr =  fi(x) := fix) or yr =  v(x) := n e(f(x)r)

2. C ertain K um m er coverings

(1)

Notation. Given f(x)  and £(x) polynomials, we will denote by 7Zi{f(x)) 
the remainder of the Euclidean division of f(x)  by £{x). This way, we have 
(essentially)
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This property leads us to hope that some curves defined by (1) have many 
rational points over Fg when the polynomial £(x) has many roots in Fq

The really important thing here is that the number of distinct roots in the 
product f(x)1Ze(f(x)) should be small in order that the curve given by (1) has 
low genus (see Proposition 2.1). So in general the inseparability of this product 
is desirable.

Remark 2.1. The following properties of the polynomial TZe{f(x)) are easy 
consequences of the definition:

(a) If £i(x) | £ 2 { x )  and deg(7^2(/(x))) < deg(ii(x)), then lZt l (f{x)) =  
ft/a (/(*))•

(b) Let Vt =  {a £ Fg;^(a) =  0}, and f(x) £ Fq[x]. The polynomial 
7Ze(f(x)) satisfies:

(i) Va £ V*, /(a )  = 0  if and only if 7Ze(f{x))(a) =  0.
(ii) Va £ Vt such that /(a )  ^ 0,

/(*)
7l e(f(x)) (a) =  1 .

(iii) If we write f (x)r =  i(x)h(x) +  7Zt(f(x)r), then Va £ V* fl Fg 
such that /(a )  ^ 0, we have /(a )r =  7Ze(f(x)r)(a). Therefore, 
7Ze{f(x)r)(a) and

Ke(nx)r+k) . )
«<(/(*)*) K 1

are r-th powers in Fq.

Proposition 2.1. The curve C over the finite field Fq given by the Kummer 
equation

= u(x) .= W  
V K  ’ ' «<(/(*)) ’

where r divides q — 1 and the rational function fi(x) is not the d-th power of 
an element v(x) £ F9(x) for any divisor d of r with d > 1 , has the following 
properties:

(i) If (fi) =  5Z”=1 diP* is the divisor of fx with distinct Pi £ P 1(Fg) and 
there exists i such that gcd(r, | di |) =  1 , then the genus g(C) of C is 
given by

.  n

2g{C) -  2 =  r(n -  2) -  ^  gcd(r, | d{ j).
i=i

(ii) The set o f¥q-rational points satisfies #C(Fq) > rX where

X =  # { a  £ViC\ F9; /(a )  ^  0}.
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Proof. The formula for the genus follows from [10] Theo III.4.12 and III.7.3. By 
Remark 2.1, for each point a  G Vi f)Fg with f (a)  ^  0, we have that ¡i{a) =  1, 
and hence, there lie r points on C with a  as first coordinate and these points 
are rational . Therefore the set of F^-rational points satisfies #C(F9) > rX 
where A =  # { a  G Ve D Fg; f (a)  ^  0}.

Remark 2.2. (i) Observe that in the proof of Proposition 2.1 we only counted 
the rational points coming from the roots of the polynomial £(x) in F9. We 
can obtain other rational points coming from the ramification points and also 
from the rational solutions of the equation

T  = „(*) (2)
outside of Vt, i.e., with the first coordinate distinct from the roots of the poly­
nomial £{x) . We will denote the number of these first coordinates by k.

Observe that the solutions x =  a of Equation (2) such that £(a)h(a) ^  0 
where f(x) =  £(x)h(x) +7Ze(f(x)) correspond to the elements a G F ,  such that 
fi(a) is a r-th power in F9 distinct from 1 .

We always have that
« > #{<* G Vh H F9 such that f(a)£(a) ^  0},

and we have equality above if r =  q — 1 . Of course each first coordinate x — a 
gives rise to exactly r rational points over Fg having that first coordinate. We 
some times carried out a computer science to determinate the value k.
(ii) By Remark 2.1, it) if the curve C in Proposition 2.1 is defined by an equa­
tions of the type

yr =  n e(f(x)r) or yr =  y j > y K e(f(x)k)

we obtain similar lower bounds for the number of F9-rational points.

In accordance with the previous proposition, it will be convenient to consider 
polynomials £(x) with many roots in Fq. This property will allow us to obtain 
a substantial number of rational points. In the next sections, we will construct 
some of those polynomials £(x) and f (x)  leading to curves with many points.

We end this section with the following proposition which justifies the cons­
truction of curves defined by equations of kind (1). Before this, observe that 
since our interest is the construction of curves with many rational points it is 
reasonable to suppose that there exist at most one element a  G Fq such that 
/¿(a) is a r-th power in ¥q i.e., the rational points in the curve C not only 
coming from of the ramification points.

Proposition 2 .2 . Let C be a curve over the finite field F9 given by the Kummer 
equation

, . a(x) . , . . .  . yr =  fi(x) := 77—- , with r a divisor of q — 1 , 
b[x)



EUCLIDEAN ALGORITHM AND KUMMER COVERS WITH MANY POINTS 41

and assume that the rational function /z(x) is not the d-th power of an element 
of Fq(x) for any divisor d of r with d > 1. Then there exists an absolutely irre­
ducible curve C over Fq defined by an equation of type (1), for some polynomials 
f(x) and £(x) in F9[x], such that the curve C is isomorphic to C.

Proof. First of all we can suppose that deg(a(x)) > deg(b(x)). In fact just 
notice that the equation for yi = y~l is

b{x)
Vi = a(x)  ’

If deg(a(x)) > deg(6(x)) then the polynomials /(x ) := a(x) and £(x) := a(x) — 
6(x) satisfy a(x) =  £(x) +  b(x) with deg(6(x)) < deg(£(x)). If deg(a(x)) =  
deg(6(x)) then, let 6 be an element of the set

T =  {a 6 F? such that p,(a) is an r-th power in F*},

and consider the curve C defined by the equation

_r (x — 0) ra ( x )

Z "  6(x) •

In this case we have that deg((x — 6)r a(x) )  > deg(b(x))  and hence we are in 
the above case. Now, the application (x, y) i—> (x, (x — 6)y) gives the desired 
isomorphism. Ei

3. Certain sym m etric polynom ials and Kum m er curves
In this section we introduce the polynomials smj(x ) (see [2]) and we use them 
to construct curves over the finite field F9m with many rational points, using 
the method of section 2.

For integers m > 1 and j  =  1,. . .  m we define (see [2])) a polynomial 
sm>j ( x ) € Fg[x] as follows

*= Sj(x, X̂ , . . . , X̂  ),

where s_,(xi,. . .  ,xm) is the j-th elementary symmetric polynomial in m vari­
ables over F9. We agree to define sm>o(x) := 1 and smj(x)  := 0 for m < j  <  0.

Lemma 3.1. For all j  G Z and m >  2 the following holds 
0) STnj ( x ' )  =  Sm —l , j ( x ) ^  *f- X S m —\ yj —\  (x)^.

(ii) Smj(x)  =  X ^ ^ S m - l j - l f c )  +  Sm- i j (x ) .
(Hi) Smd(x)q -  Sm,j(x) =  (Xgm ~ X)sm- l , j - l (x )q-
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Proof. Let Amj  be a subset of NJ consisting of a := ( a i , . . . ,  otj) with 0 < a* < 
m — 1 and a\  < a 2 <  • • • < ocj. Let A ^ j  = { a e  Amj  ; a i > 0}. Clearly we 
have a bijection

Am,j <— > {Monomials of sm)j(x)}

The polynomial srnj(x)  is the sum of (™) monomials corresponding to the 
distinct elements of Am>j .

Now, looking at a  € Amj  with e*i =  0, we see that smj  (x ) contains all mono­
mials of the form xg(x) where g(x) =  xq01 • • • xq03~l with / ? = ( / ? ! , . . . , €  
K i , j - 1- Hence g(x) =  (xqPl 1 • • • x9̂ -1 1)q with ¡3 -  1 := (fa -  1 , . .  -
1) € Am_i)3_i.

The remaining monomials of smj(x)  are of the form x 9“1 where
a  =  ( a i , . . . ,  ctj) € A£jj  i.e., they are of the form (x 9° 1 1 • • • xqai )q with a —1 =  
(ai — 1, . . . ,  aj  — 1) € Am_i j .  This proves item (i).

The second item is proven in a similar way. Now by item (ii) we have
sm,j(x ')<1 =  ^m—l,j—l(x)q 4* Sm—ij(x )q,

and combining this equality with (i) we obtain (iii).

Remark 3.1. The item (iii) in Lemma 3.1 gives two interesting facts: firstly 
the polynomial function smj  sends Fqm to Fq for j  =  0, . . . ,  m (moreover, 
it is not hard to see that the polynomial function smj  is either constant or 
surjective); secondly, the roots of the polynomial smj(x)  belong to (J F9t

1 <t<m
(see [2], Theorem 3.2).

Lemma 3.2. The polynomial rm (x ) :=  Sm,j(x) is separable, it has
deg(Tm) =  tm := gm-1 H------ 1-q  and its roots belong to Fqm
Proof. First, observe that rm (x ) =  J2]Lo sm,j(x) -  smiTn(x). By Lemma 3.1, 
item (i) we have

m /m— 1 \  9 (  m \  ^
^  y Sfn,j (x ) I ^   ̂ Sm_ i j ( x )  J + X  I 'y ' 'Sfn—i j —l(x)  J
j =0 \ j = 0  J \ j = 1 J

(m- 1 \ q
=  (x +  1) i ^  ̂sm— l,j(x) I .

Also, s mjTn(x ) =  x s m_ i )Tn_ 1(x )9 and therefore
m —1

rm (x ) =  x r m_ i ( x ) 9 +  s m_ i , i ( x )9 .
j =o
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It follow s that T'm(x) =  Tm_ i(x)q and hence
m —1 m —1

gcd(rm(x), T'm(x ) )  =  g c d (J ^  S m - i^ x ) 9 , ^  Sm - l , j { x ) q -  Sm- l,m- l ( x ) 9)
j = 0 j = 0  

m —1
=  gcd( 'y ' Sm—ij^X^ , Sm—l,m—

3 =  0
=  1 .

Now, it is clear that the degree of rm(x) is the degree of smim_i(x) which is 
tm. The last assertion that the roots of rm(x) belong to Fqm follows from the 
separability (see [2], Theorem 3.6). Ei

Now we are going to use the polynomials rm(x) to construct curves with 
many rational points. For this we need the next result:

Lemma 3.3. I f  £(x) =  rm (x ) and f (x )  = smjm(x +  1), then

R e { f ( x )) =  ~ X (X +  l ) rm - I i x ) q =  - { x S m , m { X +  l ) ~  (X  +

Proof. The equality
x (x  “I" l)Tm —i(x )^  — XSfntrfi(x 1) (x  "I- l)s^jj)jn(x)

follows easily form the equality
1~m—1 ( x )  =  S m —1 ,171— 1 (¿E ~l~ 1) l ,m —1 (x )

Now we compute the polynomial TZe(f(x)).
From the proof of the Lemma 3.2 we have

m — 1
Tm (x ) -  XTm_ i ( x ) 9 =  Sm_ i ( i(x )9.

j =0

Also, it is easy to prove that
m

(x + = ] T s mJx).
3=0

On the other hand, again by the proof of the Lemma 3.2,
m  m —1

y  y Sm,j jx) =  (x +  1) y   ̂Sm- i ij(x)q. 
j=0 j =o

Therefore
m

+ 1) = (* + l)»’"',+“+«+1 = amJ(x)
3 = 0

=  (X +  l ) ( r m (x ) -  XTm - l ( x ) q )

=  (x +  l)rm(x) -  x(x +  l)rm_ i(x )9. Ei
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The important features of taking £(x) and / (x) as in Lemma 3.3 are:
(i) The polynomial £(x) is separable and its roots belong to F9m.

(ii) Both polynomials f (x)  and 7Ze(f(x)) are highly inseparable.
We now give a result that explores those two features:

Theorem 3.1. Let m > 2, £(x) =  rm(x) and f(x) =  sm,m(£ -f 1). The non- 
singular complete geometrically irreducible curve C over Fqm defined by the 
Kummer equation

r _________s m,Tn(x -f~ l )  __________________s m ,m(x  1)____________  i m __ ^
x(x +  l)rm_!(x)9 xsm>m(x +  1) -  (x +  l)sm>m(x)’ r 9 

has genus given by

(tm- i  +  l)(r -  1) -  {u +.u) +  2
9(C) 2

where im_i is defined as in Lemma 3.2, u — gcd(£m_i +  1, r), v =  gcd(q -  1, r) 
and the set of ¥qm-rational points on C satisfies #C(F q m  ) > r t m +  1 .

Proof. The point corresponding to x =  0 is totally ramified, and this guarantees 
that the curve is indeed geometrically irreducible (see [10], III-7-4).

The points on C corresponding to i  =  —1 and x =  oo have ramification 
indices e =   ̂ and e =  ^, respectively. To see this assertion for the points with 
x =  —1 , one can prove by induction that rm(—1) =  (—l)m+1.

Notice also that gcd{tm,r) =  gcd(£m_i +  l,r). Moreover we have u points 
on C with x =  — 1 and v points with x =  oo.

Besides x =  0, since rm_ i(x) is separable, we have im_i =  deg (rm_i) other 
points that are totally ramified, and hence the genus formula and the estimate 
for number of rational points over Fgm follows from Proposition 2.1. [Zi

Remark 3.2. If m =  2 in the above Theorem, we obtain a curve over F92
( x + 1)9defined by the equation yr = -------------, r\q — 1 , which is a maximal curve;x

to see this observe that the substitution x  i— ► —(1/w)  leads to obtain the 
equation

= ^  <3>
Now by [3] Example 6.3, the curve given by the equation

zm =  t(t +  l )q~ \  m \ q 2 - l ,  (4)

is maximal. But making the substitutions t =  and z =   ̂ in (4), we obtain 
the Equation (3).

The following examples are applications of Theorem 3.1 in the case m =  3.
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Example 3.1. Let q =  2. Then £(x) =  x6 +  x5 +  x4 + x3 +  x2 + x +  1 and we 
have the curve C over Fg defined by the equation

(x + l )6
x(x2 +  X  + l )2 ’

This curve has genus g(C) =  9.
The points corresponding to x =  0, x =  1 and x =  oo are rational; therefore 

the number of Fg-rational points isC(Fg) =  7 x 6 +  3 = 45. We do not know 
any curve over Fg of genus 9 having more than 45 rational points (see table in
[5]).
Example 3.2. For q — 3, we have that t(x) =  x 12 +  a:10 +  x9 + x4 +  x3 + x +1. 
Consider the curve C over F27 given by the equation

(x +  1 )~x — with r a divisor of 26.
x(x3 +  x +  l )3 ’

For r = 2 we obtain a curve C with genus g(C) = 1, and #C(F27) =  2 x (12 +  
6) +  1 +  1 =  38; this curve attains the Serre’s bound.

For r =  26, the curve has genus g(C) =  49. Equation (2) does not have 
solution outside of Ve (see Remark 2.3). The points corresponding to x =  — 1 
and x =  00 are not rational; then we have #C(F 2 7 ) = 26 x 12 +  1 +  1 =  314. 
We do not know any curve over F27 of genus 49 having more than 314 rational 
points (see table in [5]).

Example 3.3. In this example we will construct two curves C\ and C2 over 
F125 with genus g{C\) =  2 and <7(C2) =  7 respectively; the number of rational 
points of these curves provides a new entries in table (see [11]).

For q =  5, we have £(x) =  x30 +  x26 +  x25 +  x6 +  x5 + x +1; we then consider 
the curve C over F125 defined by the equation

(x +  l )30yr = ---- ~z-------— rr-, with r a divisor of 124.
y x{x +  x +  l )5

For r =  2 the genus is g(C) =  2. The number of rational points is given by 
#C(F125) =  2 x (30 +  43) +  5 =  151.

For r =  4 we obtain, g(C) — 7, the Equation (2) has k =  24 solutions, 
therefore #C(Fi25) =  4 x (30 +  24) +  5 =  221.

4. C onstructions based on certain products o f irreducible
polynom ials

To construct some of those polynomials £(x) which are certain products of irre­
ducible polynomials, observe that the number Np(n) of irreducible polynomials
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of degree n over Fp is given by the formula

Np(n) = ~22v(d)P*
d\n

where ¿¿(-) is the Moebius function (see [9], Theorem 3.25). Then taking prod­
ucts £(x)  of j  irreducible polynomials of degree rc, we see that there exist at 
least (Npj n)) polynomials £(x)  of degree j n  with all their roots in with 
q =  p n . In particular, if we suppose that f ( x )  is another polynomial such that
1 =  gcd( f ( x ) , £ ( x ) )  then the number of rational points of the curve C over F9 
given by the equation (1) or

y r = 1 l e ( r ( x ) )  (5)
with r a divisor of q — 1, satisfies #C(Fq) > r j n .  This gives already many 
rational points.

The next Theorem provides curves over F92 with the same properties (genus 
and number of rational points) as those obtained in [1] Example 4.1; the equa­
tions defining these curves are of the type (5), where £(x)  =  x q — x.  Before 
stating it we will prove the following result:

Lemma 4.1. Let  £(x)  = x q2 —x  and r  be a d iv isor o f q 2 — 1 such th a t r  > q — 1 . 
Then

re,«*« -  x)r) = ( - i ) n(*« -  x)‘ ,
where r  =  (q — 1  )n  +  t  w ith  0 <  t  <  (q — 1 ).

Proof. If v(x)  = x q — x,  then v ( x ) r =  v (x )n '̂q~ 1̂ +t =  v ( x ) nqv ( x ) t~ n . Now, 
since v ( x ) q = x q — x q = £(x)  — ■u(x), we have

(*’’ = ¿ ( - 1  )''-i ( f je (x)iv ( x r - i 
1=0 ' '

= ( ( - l  r v ( x r + ¿ ( - i  r - i (^)e(z)iv(*r~i).

Therefore

v ( x f  =  ( h i r v i x f  + £ ( x ) p ( - i r - i ( ^ ) l ( x ) i- iv (x F - i)v(x)t- n

= *(*) ■ ( ¿ ( - l ) n_i (" ) + ( - l ) nv(x)‘.

The lemma follows after observing that the expression

is a polynomial. [Zi
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Remark 4.1. We have seen in the Lemma above that

(xq -  x)r =  {xq2 -  x)h(x) +  (~ l )n(xq -  x )1,

for some polynomial h(x). This equality shows that for x =  a e F72 \  F9 we 
have that (—l)n(a9 — aY is a nonzero r-th power in Fq2. This will be used for 
the determination of the number of rational points in the next theorem.

Theorem 4.1. Let r =  (q — l)n +  t be as in the Lemma 4.1 and let d =  
gcd(r, t). Then the non-singular complete geometrically irreducible curve C 
over ¥ q2 deñned by the affine Kummer equation

y7l — u>(xq — x ) 71 With U)d =  ( — l ) n,

has genus g(C) =  (q — l K ^ f )  and its number of rational points sat is fíes 
#C(Fqi) =  (q2 — q)^ +  q +  1; i-e., C is a maximal curve over Fq2.

5. Fiber Products o f K um m er Covers
In this section we will consider algebraic function fields of the type E =  

2/ i , 2/2), where for ¿ =  1,2

V? =  Pifa) = 1Ze(f{x)ri) e  K(x)

with fi(x) and £i(x) polynomials and a divisor of q — 1. Also we suppose 
that ¡ii(x) is not the rf-th power of an element 9(x) € F9(x) with d a divisor of 
q — 1 and Hi(x) ^

Our next theorem gives a formula to compute the genus is this type of 
extensions. Before stating it, we need to establish some notation:

Let E =  K(x,  2/1, y 2) the constant field extension of E / K  with K.  For a  € K  
(resp. a  € K), Pa is the zero of x — a  in K(x)  (resp. in K(x)),  and Poo the 
pole of x in K (x ) (resp. in K(x)).

If {^i) — Eae/fUoo aa^a is the divisor of Hi(x) with distinct Pa G P 1(ii'). 
For each i =  1,2, let

Ti =  { a e K  U {00}; Pa E supp (pi) ; g c d « ,r ¿) =  1}

U i  =  { a e  K  U { 00}; Pa £  supp ( f i i )  ; g c d « ,r {) =  r¿}
and

Vi =  {a e K  U {00}; PQ e  supp (/¿i) ; gcd(a^, r*) = d withl < d < r j

We will assume that [E : K(x)\ =  r \r2 (for example, this is the case if T\ 7̂  T2) 
and we will also assume that the sets Vi and V2 are empty; i.e., that we have 
only totally ramified places for both extensions E\/K(x)  and E2/K(x).  Now, 
if we denote by := # 2¿, then we have 2gi =  (rt — 2)(r¿ — 1) for ¿ =  1 ,2.



48 ALVARO GARZÓN

g(E/K)  =  (n  -  1 )(r2 -  1) +  r2g\ +  rxg2 -  -  (rir2 -  ri -  r2 +  <5)

where gi is the genus of K{x ,y i) /K ,  t  =  # (X i  DT2) and 5 =  g c d (r i,r2). 
Particularly i fr i  =  r2 — r then g(E/K) =  (r — l )2 — |r (r  — 1) +  r(gi 4- g2).

Proof. For a  G Ti\(Ti fl T2) the place Pa is totally ramified in the extension 
/?(x, yi)/K(x).  By [10] III-8-9, the ramification index e(Pa) in the compositum 
E/K(x)  is n, since the ramification is tame. For a G (Ti flT2) the ramification 
index e(Pa) in the compositum E/K(x)  is e(Pa) =

Then we have r, — r points with ramification index and e(Pa) =  for i =  1,2 
and r points with ramification index and e(Pa) = D^2-.

Since the Different V(E/K(x))  has degree

(n  -  r )(n  -  l)r2 +  (r2 -  r)(r2 -  l)ri +  r(rir2 -  <5),

the formula for the genus follows from Hurwitz formula. (Zi

Remark 5.1. Suppose that £i(x),£2(x) e  F9[x], and (for i =  1,2) E{ := 
K(x,yi) is given by the equation

y? = n ii{fi {x)ri),

with r{ a divisor of q — 1 and fi(x) G Fq[x]. Then, if the degree of the com­
positum E satisfies [E : K(x)] = r \r2 and we denote by C the algebraic curve 
having E as its field of rational functions, the set of Fq-rational points satisfies:

#C(Fq) > n r 2A

where, A := # { a  G Vd C\Fq-,fi(a) ^  0} with d(x) =  gcd(^i(x), i 2(x)).

Example 5.1. Let C be the curve over F27 which is the fibre product of the 
curves C1 and C2 given by

V2 = + % + $ "+!  and V2 = x(x + 1)2(:c2 + 1)(a;2 “ x ~ 1,3
This curve satisfies g(C) =  5 and #C(F27) =  72; the former best known value 
was 68 rational points.

Observe that the curve C\ is defined by an equation of the type yr =
by taking f(x) =  (x3 — x ) 8 and £i(x) =  (see W’ Example 4.8). On the
other hand, for the equation defining C2 we took f(x) =  (x4 — x3 — l )3 and 
£2(x) =  x 12 — x 11 +  x10 +  x9 — x8 — x6 +  x5 — x2 — x — 1 , then 7£/2(/(x )2) =  
x(x +  l ) 2(x2 +  l)(x2 — x — l)3. In this case we have r =  4, and this gives g =  5. 
For the rational points observe that we have that the degree of gcd(^i(x), £2(&)) 
is exactly 18, therefore #C(F27) =  2 x 2 x 18 =  72.

Theorem  5.1. The genus of E / K  is
7“
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Example 5.2. Consider the Kummer cover Ei over F27 given by the equation
y 2 =  (x 3 — x ) ( x 4 +  x 3 — 1 )

which have genus g(C) =  3 and 52 rational points over F 2 7 ,  (here we took 
l\  (x)  =  x 9 — x 6 — x 5 + x4 +  x 3 +  x 2 — 1 , and /(x ) =  x5) and consider also the 
cover E2 of genus 3 and 51 rational points over F27 defined by

y \  -  A*2 =  ~ ( z 3 -  x) { x 4 - x 3 -  1 ).

We obtain E 2 by taking i 2 ( x) =  x 9 +  x 6 — x 5 — x 4 +  x 3 — x 2 + 1 and / 2(x) =  x 5.
In this case we have r =  4 and therefore the genus g of the compositum 

E =  E1E2 is 1 +  2 x 6  — 4 = 9.
For the rational points, observe that the point x  = 00 is not rational in E2, 

and the points corresponding to x  = 0, x  =  1 and x  = — 1 are totally ramified 
and rational in E. In This example again /x2(cO is a square in F27 for all a

27
root of the polynomial ~xs_ * ; this gives 4 x 24 +  3 = 99 rational points and 
therefore a new record in the table [5].

Example 5.3. We are going to construct here a curve C over F 2 7  with g(C) =
11 and 100 rational points. This provides a new record in the table [5]. This 
curve is the fiber product over the x-line of the curves C\ and C2 which corre­
spond to two Kummer covers of F27(x). Let E\ the function field defined at the 
example 5.2 above, ¿2(2) =  x8—x7—x4+ x 3+ x 2 —x+1 and / 2(x) =  x5+ x 4 — 1. 
Then we have that 'R-e2{f2{x)2) =  x(x6 +  x5 +  x3 +  x +  1).

We consider the Kummer covers E\ := F27(x,yi) and E2 := F27(x, 7/ 2 ),  
where y 2 =  A*2(x) =  x(x6 +  x5 +  x3 +  x +  1). Here r =  2, gi =  3, = 3 and 
6 =  2. Therefore the function field E := E 1.E2 has genus 1 +  2 x 6  — 2 =  11 as 
follows from Theorem 5.1.

For the rational places, observe first that the places corresponding to Qi and 
£  are not rational; in fact these roots belong to Fgi and F729 \F 27 respectively.

The places corresponding to x =  0 and x =  00 are totally ramified in E 
and therefore are rational, and the place corresponding to x =  — 1 is totally 
ramified in Ei and splitting completely in E2 this gives two more rational 
places. Finally observe that , /¿i(a) and /i2(a) are squares in F27 for all a  root 
of the polynomial • Hence, we have #C(F27) =  2 x 2 x  24 +  2 +  2 =  100.
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