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W eighted locally convex 
spaces of measurable functions

J o h n s o n  O .  O l a l e r u *

U n i v e r s i t y  o f  L a g o s ,  N i g e r i a
A b s t r a c t . In this paper, we make a study of weighted locally convex spaces of 
measurable functions parallel to the studies of weighted locally convex spaces of 
continuous functions which has been a subject of intense research for decades. 
W ith L p, 1 <  p  < oo, spaces as our motivation, the completeness and inductive 
limits of those spaces are studied including their relationship with the weighted 
spaces of continuous functions leading to new results and generalizations of 
results true for L p spaces.
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1. Prelim inaries
IP  spaces are some of the most important spaces studied in Mathematics 
because of its abundant usefulness and applications that run across all the 
branches of Mathematics. It is a ready source of examples and counter-examples 
for many mathematical theories. The study of Orlicz spaces, for example, is 
borne out of an attempt to generalize the results of LP spaces. This study is 
also an attempt to generalize the study of Lp spaces with the tool of weighted 
spaces parallel to that of locally convex spaces of continuous functions (see [6] 
and [9]), leading us to new results and new proofs of known results.

2. N otation  and definitions
Throughout this paper (except otherwise stated), X  would denote:

(i) a locally compact Hausdorff space and
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(ii) a measure space, with positive Radon measure //, on a cr-algebra M 
such that M contains all Borel sets in X.

We adopt the notations of [6] and [9] for weighted spaces of continuous functions 
on X. A real-valued non-negative upper semicontinuous function (u.s.c.) v on 
X is called a weight on X. Let V be a non-empty system of weights such that 
given vi,v 2 in V and a > 0, there is a v G V  such that av¡ < v, i =  1,2 
(pointwise on X); if in addition, for each t G X  there is v G V  with v(t) > 0, 
then V is called a Nachbin family on X.

An Np family V p on X, 1 < p < oo, is defined as a set of non-negative 
measurable functions v : X  —» [0, oo) on X  satisfying the following condition: 
if u and v G Vp and A > 0, there is a w G Vp such that Au, Xv <w (pointwise 
on X).

Members of V p are also called weights. It should be noted that upper- 
semicontinuous (u.s.c.) functions on X  are measurable. So the Nachbin family
V on X and the Np family Vp on X are comparable. It should be observed that 
p appears redundant in the notation of Np family V p. However, its relevance 
will be clear in the next section.

Let E be a real (resp.complex) locally convex Hausdorff space, M(X,  E) 
is the space of all measurable functions from X  into E  and C(X,E)  is the 
vector subspace of M ( X , E )  consisting of the continuous functions /  from X  
into E.  Also B(X,  E ) is the space of all bounded functions /  from X  into E. 
B 0 (X,E)  is the subspace of B ( X , E ) consisting of all bounded functions from 
X  into E  that vanish at infinity, i.e., those bounded functions /  from X  into 
E,  such that, given any continuous seminorm (cs(E)) q on E and any e >  0, 
there is a compact subset K  of X  such that q(f(x)) <  e for every x  G X  
outside of K. M(X,  E)  n  B{X,  E)  is denoted by Mb(X, E); C(X,  E)  n  B(X,  E) 
is denoted by Cb(X, E)  and Ca(X, E)  denotes C(X,  E)  n  B 0 (X, E ). Mm(X, E) 
will denote the subspace of M (X , E)  consisting of those functions on X  that 
are identically zero outside some set of finite measure. For example, constant 
non zero functions from X  into E  are measurable but are not in Alm(X,E)  
if p(X)  =  oo. Cc( X,E)  shall denote the subspace of C( X, E)  consisting of 
those functions that are identically zero outside some compact subset of X.  It 
is clear that Cc(X, E)  C Mm(X,E) .  When E  = R  or C, the corresponding 
function spaces on X  are written omitting E.  Thus B +(X)  is the cone of B(X)  
consisting of bounded positive valued functions on X , while B+(X)  is the cone 
of B 0 (X)  consisting of positive valued functions on X  that vanish at infinity. 
We can now introduce the following two spaces:

CV0 (X, E) =  { /  G C(X,  E)  : v.q(f) vanishes at
infinity on X  for all v G V, q G cs(E)},

M V P(X, E) = { f  G M{X,  E)  : v.q(f) G Lp for all v G Vp, q G cs{E)}.
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The weighted topology wy  on CV0 (X, E) is defined by the family of seminorms

Pv,q(f) =  sup(v(x)q(f(x)) : x  G X)  for  v G V and q G cs(E)
If CV0 ( X , E)  is endowed with the weighted topology wy,  it is called a weighted 
locally convex space of continuous functions. It has a basis of closed absolutely 
convex neighbourhoods of origin of the form

Vv,q =  { / G CVa(X, E)  : pvJ f )  < 1}.
Much has been done on those spaces. See for example [1], [3], [6] and [9]. 
Similarly, if M V P(X, E) is endowed with the weighted topology w yP generated 
by the family of continuous seminorms

Pv,qU) = ( f (V-q{f))Pd(J,)v Jx
as v ranges over V p and q G cs(E), then it is called a weighted locally con
vex space of measurable functions. It has a basis of closed absolutely convex 
neighbourhoods of the origin of the form

Vv,q = { /  € E) : pv,q(f)  < 1)
We shall assume that M V P(X)  is endowed with this topology wy P henceforth. 
We shall also assume that M V P(X, E)  is Hausdorff. This is true if there is a 
v G Vp such that v > 0 a.e. on X. Finally, if U(resp.Up) and V(resp.Vp) are 
two Nachbin(Np) families on X, and for every u G U(UP) there i s a v G  V( VP) 
such that u < u(pointwise on X), then we write U(UP) < V(VP). In the case 
V( Vp) < U{Up) and U(UP) < V( VP) we write U{UP) ~  V( VP).

Examples. Denote K +( X ) as the set of all positive constant functions on 
X.  If Vp =  K +(X),  then M V P(X,E)  =  CP(X, E) both topologically and 
algebraically. If almost equal functions are identified we have LP(X,E)  spaces. 
Also if X  is the set of natural numbers and n is the counting measure, then 
M V P( X ) =  £p both topologically and algebraically.

By following the proofs for 0 < p < 1 in [4], the following result can be easily 
checked for 1 < p < oo: If Vp < B(X) ,  then

(i) Cc(X)  is wyP dense in M m(X).
(ii) Mm(X)  is wyP dense in M V P(X).

For let /  G M V P(X),  f  > 0, then by [ 8, Theorem 1.17 ], there are simple 
measurable functions sn on X such that 0 < si < s2 < • • • < /  and sn(x) —> 
f (x)  as n —> oo. Clearly each sn G M m( X ) C M V P(X)  and |/  — s„|p < f p. 
The dominated convergence Theorem shows that for v G V, pv{f  — sn) —> 0 as 
n —»■ oo. /  — sn G VVji\ for some n; and since each sn G Mm(X)  then /  is in 
the wy P closure of Mm(X).  The general case ( /  complex) follows from this. 

Combining (i) and (ii), we have the following:
(iii) Cc(X)  is wyP dense in M V P(X).

Thus, specifically Cc(X)  is Lp(/i) dense in £P(X).  This is well known.
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3. C om pleteness o f w eighted spaces
Let Up and Vp be Np families on X  and 0 : X  —> X  be a continuous mapping 
such that Up < Vp o  0, then the mapping /  —> /  o </> is a continuous linear 
mapping from MVP(X, E) into MUP(X,E).  For if /  E M V P(X,E)  and u E 
Up, we can choose v € V such that u < vo(j). Hence, for any continuous 
seminorm q on E , we have

P u M  Q(t > ) <  °  °  (f)) ) Pd lJ^  ^  P v , q { f )

Since v.q(f) E Lp for all v E Vp and q E cs(E), it is clear that u.q(f o 0) e Lp. 
Hence, since w is arbitrary, then /  o 0  e  MUp(X, E). We have just shown the 
following result which is an analogue of [6, Propositions 1 and 2].

Proposition 3.1. Let Up and Vp be Np families on X  and <fi : X  —> X  be a 
continuous mapping such that Up < Vp o 0, then the mapping f  —> f  o (fi is a 
continuous linear mapping from M V P(X,E) into MUP(X,E).

If (f) is taken to be the identity map on X,  then the first part of the following 
result follows immediately from Proposition 3.1.

Proposition 3.2. Let Up and Vp be Np families on X with Up < Vp, then
(1) M V p{X) C MUP(X)
(2) the topology induced on M V P(X) by wup is weaker than wyp- 

Conversely, if (1) and (2) hold and fi is a probability measure such that Vp < 
B(X), then Up < V P.

To prove the converse, we use an argument supplied by the referee which 
is inspired by Summers’ one [9,Theorem 3.3]. It should be observed that the 
assumptions (1) and (2) imply that for any u E Up there is v E Vp such that 
Vv C Uu f l  M VP(X). We will show that if A =  { x  E X  : (u — v)(x) > 0 }, 
then fi(A) = 0. Indeed, suppose f i(A) >  0. For every integer n > 2, let 
Bn =  {x E X  : u{x) >  ^y«(x)}; then B2 C B3 ■ • • C Bn C Bn+1 C • • • and 
A = U ^r2 Bn- Then 0 < 11(A) =  lim ^oo ¡i(Bn) implies that there is nQ > 2 
such that fi(Bno) > 0. Let

Then /  E Vv, since

but

( f  (v.\S\)pd̂ i) ' = ----- -----r (  f  ( - ^ - ) pdnY < = 1



Now, for all x E B Uo, u(x) 4- v(x) < (1 + implies

(  /  (u.\f\)pdlA i  >  ^  >  1
JX ' (fl(Bno))p no no

so, /  ^ Uu fl M V p(x), a contradiction.

Corollary 3.3. Let Up and Vp be Np families on X  such that Up ~  Vp < 
B(X). If /i is a probability measure, then M VP{X) =  MUP(X ) as topological 
vector spaces.

The relationship between CV0{X,E)  and M VP(X, E) is set forth in the 
following result, the proof of which can be easily checked.

Proposition 3.4. Let V(VP) be a Nachbin(resp.Np) family on X  such that 
Vp < V < B{X). If is a finite measure, then CVa(X ) C M V P(X).

Remark. Unlike Proposition 3.2(2), when [i is a finite measure the topology 
induced on CV0(X) by wyp is weaker than wy- If K +(X ) =  Vp and V =  
B+(X),  where B^(X)  is the set of all upper semicontinuous bounded positive 
functions on X, wy  is the supremum norm topology ||.|| (see ([3], [9])) and 
wyp is the Lp topology. Also, CV0(X) =  C0(X) algebraically whenever V =  
B+(X).  Since the topology induced on CVQ(X) by wyP is weaker than wy  
when Vp < V , then in particular, on Ca(X ), the Lp topology is weaker than 
the supremum norm topology. The following example supplied by the referee 
shows that these two topologies do not coincide. For consider X  = (0, 1) with 
the usual topology, fi =  the Lebesgue measure, and for n > 3,

f0  if  z e ( 0 , i - £ ] U [ §  + £ , l ) ,
f n { x )  =  < 1 if X  =

[linear on -  i ,  and on [¿, \  +  £].

Then f n —*■ 0 in Lp(pt), 1 < p < oo, but ||/n || =  sup|/„| =  1, Vn > 3.
For the remaining part of this section, we define

Xc(X) =  {Ax k \ A > 0 and K  a compact subset of X}.

Theorem 3.5. Let VP(V) be an Np(Nachbin) family on X  and ¡i be a proba
bility measure. Then wy and wyp coincide on the following identities:

(1) CVo(X) =  M V p{X) n  C{X) i f v p ~ v  = Xc{X)

(2) CVa{X) =  M V p(X)  n  Cb{X) i f v p ~ v ~  B+(X)

(3) CVo(X) =  M V p(X)  n  Co(X) i f V p ~ V ~  B+(X)

(4) CVo(X) = M V p(X)  fl Cc(X) i f V p ~ V  = C+{X)

WEIGHTED LOCALLY CONVEX SPACES OF MEASURABLE FUNCTIONS 11
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X  is a compact and wy is, respectively, the compact open (c-op) topology; strict 
(/?0) topology; the topology of uniform convergence (||.||) and ind.lim.top. on 
{Ck  — f  £ Cc{X) : suppf  C K}  where each Ck  is endowed with the topology 
of uniform convergence on X  as K  varies over compact subsets of X  (e.g. see 
[2, P50]).

Proof. We first prove the algebraic equalities (1) Let /  G CVQ(X),  then f v  
vanishes at infinity for all v G V  and thus f v  G Lp V v G Vp since V  ~  V p 
and fi is a probability measure. Thus CV0 (X)  C M V P(X)  D C(X).  Also let 
/  G M V P(X)  fl C(X).  Since V = XcPO, and /  G C(X),  then f v  vanishes 
at infinity for all v G V  and so /  G CV0 (X).  Thus the algebraic equality 
of (1) is proved. The remaining three algebraic equalities can similarly be 
verified. The topological equalities of the four identities follow immediately 
from Corollary 3.3. The proof is complete since it is well known that wy  
is respectively the compact open topology, the strict topology, the topology 
of uniform convergence and the ind.lim.topology on CVQ(X ) whenever V  is 
equivalent (~) to Xc(X), B+(X),  B+(X),  C +( X ) respectively (see [1], [6],
[9]). Gi

We are now in a position to consider the completeness of M V P(X, E ).

T heorem  3.6. Let V p be an Np family on X  such that 0 < Vp < B +(X).  If  
E is complete, then M V P(X, E) is complete.

Proof. Let (j> be a Cauchy filter in M V P(X, E ) and U be a closed neighbourhood 
of the origin in LP( X , E).  Then we can find a set H in cf> such that v. ( f  — g) G 

U ^  f ,  g G H  and v G Vp. Clearly (f).Vp =  {vH : H  G 0, v G Vp}, where vH  
=  { v f  : f  G H},  is a Cauchy filter in LP( X , E).  Since each v is bounded, it is 
clear that 0 is a Cauchy filter in LP(X, E)  and thus converges to f Q G LP( X , E) 
by the completeness of LP(X,E) .  Thus v.q(fQ) G Lp for all v in V, q G cs(E), 
(since each v is bounded). Therefore f Q G M V P( X , E ) and it is the limit of (ft 
in the space M V P(X, E).  Ei

If V( VP) is a Nachbin(Np) family on X such that CV0 (X , E) is contained in 
M V P(X, E)  and V p < B +( X ), then in the light of Theorem 3.6, CVQ(X , E) is 
complete if and only if CVQ (X, E) is closed in M V P(X, E).  Suppose f i(X) < oo 
and V p < V , then CVQ(X, E) is contained in M V P(X,E) .  If E is complete 
and Xc(X) < V-, then CV0 ( X , E ) is complete [6, Theorem 3] and thus from 
Theorem 3.6, we have the following result.

P roposition  3.7. Suppose V p and V be respectively Np and Nachbin families 
on X  such that Xc{X) < V,  Vp < B+(X)  and V p < V. I f  fi(X) < oo and E is 
complete, then CV0 (X,E)  is wyp closed in M V P(X,E) .

C orollary 3.8. I f  E is complete and X  is such that /i(X) < oo, then Ca( X , E)  
is Lp closed in LP(X,E) .
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Proof. Set V = B+(X)  and Vp = K +(X),  then the result follows immediately 
from Proposition 3.7. 0Zi

4. Inductive lim its
Let {Vp, n G N}  be a sequence of Np families on X such that V%+ 1 < V p for 
each n 6 N.  We shall denote ind M V P(X)  by VPM(X) .  We want to describe 
the weighted inductive limit V PM ( X ), analogous to the case of weighted spaces 
of continuous functions, in terms of an associated Np family on X. Let vn G Vp 
and an > 0 for each n; if we put v(x) = i n f { anvn(x),n G N},  x  G X,  then 
v(x) is clearly a weight on X. Scalar multiples of all those weights on X form 
an Np family on X which we will denote VP. Clearly V P contains every Np 
family Vp on X that satisfies Vp < V P for each n G N.

We first state the following results:

Lem m a 4.1. Let V p be an Np family on a a-compact space X  and p a probabil
ity measure, then M V P(X) and V PM( X)  induce the same topology on M m(X).

Proof. We follow the proof of the analogous result in the weighted spaces of 
continuous functions (see [2,pll4,Lemma 4]) with some modifications. Since 
the canonical injection of V PM( X )  into M V P(X)  is continuous, we can fix an 
arbitrary neighbourhood U of zero in V PM( X )  and then have to prove that the 
intersection of Mm(X)  with some zero neighbourhood in M V P(.X) is contained 
in U. By the description of a basis of zero neighbourhoods in an inductive limit, 
we may assume without loss of generality that U is an absolutely convex hull 
of the form T(|Jn B n), where

B„ =  { f S  M V * ( X ) : pVn(\f\) < Pn, vn € V„}
and pn is positive for each n G N . Put v =  inf limne^ J^vn £ V**' It re~ 
mains to show that { /  E Mm(X) : Pv( \ f \ )  < 1} C U. Fix /  G Mm(X) 
with Pv( \ f \ )  <  1- For each n, let Fn denote the measurable subset {x £ X  : 
j - v n(x)\f(x)\ >  1} of X.  We observe that f ]Fn is empty because, for any 
x G C\Fn , ^ v n{x)\f(x)\ >  1 holds for each n, whereby Pv{\ f \ )  > 1 contra
dicting Pv{\ f \ )  < 1- If Un =  X \ F n, then Un is measurable for each n. Hence 
by [8, Theorem 2.17a], there is an open set Vn such that Un C Vn for each 
n. Clearly (Vn,n G N)  is an open covering of X.  Let (4>n)n C Cc( X ) be a 
continuous partition of unity on supp f  which is subordinate to (Vn)n. We 
then take gn = 2ni})nf  G Mm(X) C MVP(X) for each n and estimate Pv{\gn\) 
= \ipn2n\pVn(\f\) =  \Pn'ipn \̂Pvn(\f\) < pn- Thus each gn G Bn, and hence f =  
Yhi’nf  is an element of r((Jn Bn) =  U and the proof is complete. IZi

The following result will also be needed.

Lem m a 4.2. [1, Lemma 1.2] Given a locally convex space (Ei,ei),  let E 2 

denote a linear subspace and e2 a locally convex topology on E 2 which is finer
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than the topology induced by I f  e\ and e2 induce the same topology on some 
dense linear subspace D of (£ 2 , 6 2 ), then €2 =  t i /E^.

We now have the following result which is an analogue of [2, Theorem 1.3].

Theorem 4.3. Let X  be a a-compact space and /z a probability measure.
(1) I f {Vp, n G N}  is a sequence of Np families on X  such that V^ + 1 < 

V p for each n G N , then the canonical injection from VPM( X)  into 
M V P(X) is a topological isomorphism.

(2) Suppose Vfi < B +( X ) for each n G N , then MV^( X)  is the completion 
of V PM(X) .

Proof. (1) If (£i,ei ) =  M V P{X),  (E 2 ,e2 ) =  VPM{X)  and D=Mm{X)  in 
Lemma 4.2, then the proof follows clearly from Lemma 4.1. (2) Since M V 9 (X) 
is complete by Theorem 3.6, and the fact that Mm(X)  is dense in V PM(X) ,  
an application of (1) completes the proof.
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