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1. Introduction
In differential geometry the curves and surfaces in R3 are usually studied em
ploying the vector formalism. In the case of a differentiable curve, at each point 
a triad of mutually orthogonal unit vectors (called tangent, normal and binor
mal) is constructed and the rates of change of these vectors along the curve 
define the curvature and torsion of the curve. These two functions characterize 
the curve completely except for its position and orientation in space. In a sim
ilar manner, at each point of a smooth surface a triad of mutually orthogonal 
unit vectors can be defined in such a way that one of these vectors is normal to 
the surface. Then the rate of variation of the normal unit vector to the surface 
along the directions of the other two vectors determines the curvature of the 
surface.

Given the importance of the triads of mutually orthogonal unit vectors in 
differential geometry, it is of interest that each such triad can be expressed in 
terms of a single vector with two complex components, called a spinor [1-3]. 
The aim of this paper is to show that the basic equations of the differential 
geometry of curves (the Frenet equations) can be expressed in a compact and
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useful way making use o f spinors. In Section 2 the basic elements about spinors 
are briefly presented (a more complete elementary treatment can be found in 
[1,3]); in Section 3 the spinor equivalent of the Frenet equations for a curve is 
obtained and in Sec. 4 some examples of its application are given.

2. Orthonorm al bases and spinors
The group of rotations about the origin in R3 (denoted as SO(3)) is known 
to be homomorphic to the group of unitary complex 2 x 2 matrices with unit 
determinant (denoted as SU(2)). In fact, there is a two-to-one homomorphism 
of SU(2) onto SO(3). Whereas the elements of SO(3) act on points of K3 (that 
is, vectors with three real components), the elements of SU(2) act on vectors 
with two complex components which are called spinors (see also, for example,
[4,5]).

An explicit way of exhibiting this homomorphism consists in noticing that 
each spinor

* - ( £ )  <■>
defines three vectors a, b, c G K3 by means of

a  +  ib  =  ip* crip, c =  — ip^crip, (2)

where a  is a vector whose Cartesian components are the complex symmetric 
2 x 2 matrices

cti= ( o - ? ) ’ f f 2 = ( o  ¿ ) -  a 3 = ( - i  - ; ) ■  (3)

the superscript t denotes transposition and ip is the mate [3] (or conjugate [1])

M - ;  ; ) * - ( - !  s ) ( ! ) - ( f ) -  w
where the bar denotes complex conjugation. Thus, the vectors a, b, and c are 
explicitly given by

a-M b =  (ipj ~  ipl,i(ip\ +  - 2^ i ^ 2),
c =  (ip2ipi + ^ 1^ 2, # 2^1 - # 1^ 2, \ipi |2 -  |V>212)

and by means of an explicit computation one finds that a, b, and c are mutually 
orthogonal and |a| =  |b| =  |c| =  ip* ip. Furthermore a  x b • c > 0.

It may be pointed out that ip transforms under the SU(2) transformations 
in exactly the same way as ip does, that is, Uip = Uip, for any U € SU(2).

Conversely, given three mutually orthogonal vectors of the same magnitude, 
a, b, c € R3, such that a  x b • c > 0, there exists a spinor, defined up to sign, 
such that (2) holds.
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For any U 6 SU(2), the spinor ip' =  Uip satisfies ip^ip' =  iptip-, therefore, 
the magnitudes of the three vectors a', b', c' defined by ip’ are equal to those 
of the three vectors a, b, c corresponding to ip. Hence, each element of SU(2) 
induces a transformation that sends the right-handed orthogonal basis {a, b, c} 
of R3 into the right-handed orthogonal basis {a ',b ',c '} , that is, an element of 
SO(3). This correspondence between elements of SU(2) and elements of SO(3) 
is two to one since JJ and — U yield the same element of SO (3).

Making use of the foregoing definitions it can be shown that if (p  and i p  are 
two arbitrary spinors

ftcrip =  —(ptcrip, (5)
and for any pair of complex numbers, a, b ,

(ia(f> +  b i p y  =  a ( f )  +  b i p .  (6)

Furthermore,

=  - i p -  (7)
Making use of these properties it can be readily seen that the vector c, given 
by (2), is real.

The correspondence between spinors and orthogonal bases given by (2) is 
two to one; the spinors i p  and — i p  correspond to the same ordered orthonormal 
basis {a, b, c}, with |a| =  |b| =  |c| and a x b • c > 0. It is important to notice 
that the ordered triads {a, b,c}, {b,c, a} and {c,a, b} correspond to different 
spinors.

The symmetry of the matrices (3) amounts to f t  crip = ip'acp for any pair of

spinors (p  and i p .  (The matrices (3) are the products of the matrix

by the Pauli matrices employed in physics [2,3].) With the conventions chosen 
in (2)—(4), taking i p  =  (1,0)* one finds that i p  = (0, l )1 and the triad {a, b, c} 
is the canonical basis of R3. ^

If i p  is a spinor different from zero, the set { i p ,  i p }  is linearly independent 
(using the complex numbers as scalars), which follows from the fact that the 
determinant of the matrix formed by the components of i p  and i p  is

I p l  ~ 1 p 2  
1 p 2  I p l

and this sum is equal to zero if and only if ip\ and ip2 are simultaneously equal 
to zero.

3. F re n e t  e q u a tio n s

For any curve a : I  —► R3 such that da(t)/dt ^  0, there exists a function 
s =  s(t), called the arclength, such that if the curve is parametrized by s , 
\da/ds\ =  1. Then, T  = da/ds is a unit vector, called the tangent of a  and if 
dT/ds ^  0, the curvature of a , k, is defined by k = \dT/ds\\ thus, dT/ds  =  kN , 
where N  is some unit vector, called normal of a, and T  and N  are orthogonal to

=  l^ ip  +  h/^l2

0 1 
- 1  0
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each other. The binormal vector, B,  is defined by B  =  T  x N.  The derivative 
dB/ds  is also proportional to N  and therefore dB/ds  =  —t N,  where r  is some 
real-valued function called torsion. Using that { T , N , B}  is an orthonormal 
set, from the foregoing relations one deduces that dN/ds = —kT  +  t B.  The 
formulas

dT  
ds 

dN  
ds 
dB 
ds

that express the derivatives of T, N  and B  in terms of the same vectors con
stitute the Frenet equations (see, for example, [6,7]).

According to the results presented in the preceding section, there exists a 
spinor, ip, defined up to sign, such that

N  + iB  =  ip1 crip, T  =  —̂ a ip  (8)

with ip* ip =  1. Hence, the spinor ip represents the triad {iV, i?, T} and the 
variations of this triad along the curve, given by the Frenet equations, must 
correspond to some expression for dip/ds.

Differentiating the first equation (8) with respect to s and using the Frenet 
equations one finds

—kT  +  t B  — irN  = [dip/ ds)* crip + ,iptcr{d'ip/ds). (9)

Since {ip, V>} is a basis for the two-component spinors, there exist two (possibly 
complex-valued) functions, /  and g, such that

d'tp ^
=  f^P +  9 ^

and substituting this relation into (9), using again (8), we have

- kT  -  i r ( N  +  iB) = f ( N  +  iB) -  gT  +  f ( N  +  iB) -  gT

which amounts to /  =  — ir/2 , g =  k/ 2. The second equation in (8) does not 
give additional relations. Thus, we have proved the following

P roposition  1. I f  the two-component spinor rp represents the triad { N , B , T }  
of a curve parametrized by its arclength s, according to (8), the Frenet equations 
are equivalent to the single spinor equation

+  (10) 

where r  and k denote the torsion and curvature of the curve, respectively.

= kN,

= —kT  + tB ,  

=  - t N ,
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4. A pplications
A basic theorem of differential geometry establishes that if two curves in M3 
have the same curvature and torsion functions then, after translating and ro
tating appropriately one of them, the two curves coincide at all their points. 
In order to prove this theorem we shall consider two spinors (p and i p  such that 
f t c p  = 1 and ip *  i p  =  1 , then

( i p  ±  ( p Y ( i p  ± 0 )  =  2 ±  ^ ( p  ±  $  i p  = 2 ±  ^ c p  ±  ^ ( p  = 2 ± 2 Re ( i p 1 ^i>).

Assuming that the spinors (p  and i p  correspond to two curves with the same 
functions k  and r , from (10) it follows that

which is pure imaginary, and therefore ( i p  ±  ( p Y ( i p  ±  ( p )  is a constant. Hence, if 
the triads { N , B , T}  corresponding to the two curves coincide for some value 
of s (which is achieved by appropriately translating and rotating one of them), 
at that point 4> coincides with i p  or with — i p  and this coincidence is maintained 
for all s. This implies that the tangent vectors to the two curves coincide for 
all s and, since for a curve a, T  = da/ds, the two curves can only differ by 
a constant vector, but the previously mentioned translation makes the curves 
coincide for some value of s, and therefore they coincide for all s, thus proving 
the theorem.

Another application of the spinor form of the Frenet equations, (10), can 
be given in the case where the quotient t / k  is some constant. There exists 
a constant angle 6 (0 < 9 < 7r) such that t / k  = cot 9. Then, from (10) we 
have that dip/ds =  — [ I k / ( 2 sin9)](cos9 ip + i s m 9ip) or, equivalently, dip/ds = 
[ I k / ( 2 sin0)](cos9 ip +  ism9ip).  By combining these equations one finds that

d_
ds ^cos(0/ 2) ip + i sin(0/ 2) ip^

2 sin 9
^cos(0/ 2) ip +  i sin(0/ 2) ip'j

which leads to

cos(0/ 2) ip +  i sin(0/ 2) ip =  exp

where (p is some spinor independent of s, with (pl(p =  1. Hence,

cos(0/ 2) ip + i sin(0/ 2) ip =  exp
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which implies that 

if) = exp J  cos(0/ 2)0

~ Z' eXP (ifsinfl J  K{s')ds'^j sin(0/ 2) $  (12 )

and, therefore,

ip = — ¿exp — r—-  J  n(s/)dsfS'j sm(0/ 2) (p

+  exp J —  J  K(s')ds'^ cos(0/ 2) $, (13)

then, according to (8), denoting by {a, b, c} the triad of constant unit vectors 
corresponding to the spinor (p (i.e., a  +  ib  =  0*ar(p, c =  — ftcrcp),

T  — cos 0 c + sin i sin Sill I¿ e  I K(s,)* '

— COS I —~ ~ r  f  K(s')ds'
\sin  6 J

This last equation proves the validity of the following

. (14)

P roposition  2. The tangent vector of a curve with t / k  constant forms a 
constant angle (6) with a constant vector (c).

Recalling that T =  da/ds , integrating (14) with respect to s one obtains the 
expression for any curve of this class (called cylindrical helices [6,7]).

The preceding equations are also valid when r  =  0, making 6 =  7r /2; equa
tion (14) reduces then to

T  =  sin ( /  « (s^d s^  a  — cos ^ J  K(s')dsr̂ j b, (15)

which shows explicitly that the curve lies on a plane (normal to c) and allows 
us to find the parametric form of any plane curve given its curvature (cf. [7], p. 
38). For instance, in the simple case where k is constant, equation (15) gives

T  =  sin(/cs) a  — cos( k s )  b

and integrating this expression with respect to s one finds that

a(s) =  — (— cos ( k s )  a  — sin(«:s) b) +  d,AC
where d is a constant vector, thus showing that the curve is a circle of radius 
1/k .
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As pointed out in Sec. 2, there is a two-to-one homomorphism of the group 
SU(2) onto the rotation group in three dimensions SO(3). Assuming that 
ifiip =  1, as in (8) and (10), the 2 x 2  matrix

f )\  ^2 V>2 j

belongs to SU(2) and corresponds to the rotation that carries the canonical 
basis into the orthonormal basis {N,B,T} .  Making use of (G), (7), and (10), 
we find that the Frenet equations take the form

with * ( . )  s (16)

There are two cases in which the integration of (16) is relatively simple; the 
first one corresponds to the trivial case where H  does not depend on s (and 
the solution of (16) is given by Q(s) =  Q(0) exp(sH)) and the second one 
corresponds to the case where H(s)  commutes with H(s') for all s' . This last 
condition amounts to t (s) / k (s) =  t (s' ) /k(s') and the solution of (16) can be 
expressed as

Q(s) =

which is equivalent to the solution given by (12) and (13).

5. Final remarks
The fact that the Frenet equations reduce to a single spinor equation [equation
(10)], equivalent to the three usual vector equations, is a consequence of the 
relationship between spinors and orthogonal triads of vectors and to the use 
of complex quantities. It may be noticed that the derivations presented in the 
preceding section are not a “word by word” translation of the corresponding 
ones in the vector formalism but there exist an independent procedure in the 
spinor formalism which is very useful as shown by the result given in (14).

It may also be noticed that it has not been necessary to have an explicit 
expression for the spinor corresponding to the triad {N, B , T}  of a given curve.
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