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R e s u m e n . Sea p  > 2 un primo y A =  ZP[[X]] el anillo de series de potencias con 
coeficientes enteros p -adíeos. El grupo lineal de matrices especial SL(2, A) es 
equipado con varias proyecciones naturales. En particular, n x : SL(2, A) — ► 
SL(2,ZP) es la proyección natural que envia X  b-+ 0. Suponga que G es un 
subgrupo de SL(2, A) tal que la proyección H =  ttx{G) es conocida. En este 
artículo se establecen diferentes criterios que garantizan que el subgrupo G de 
SL(2, A) es “tan grande como es posible” ; esto es, G es la imagen inversa total 
de H. Criterios de esta naturaleza tienen importantes aplicaciones a la teoría 
de representaciones de Galois.

1. In trod u ction

Let p >  2 be a prime number and let A =  ZP[[X]] be the ring of power series 
with p-adic integer coefficients. The special linear group of matrices SL(2, A) 
is equipped with several natural projections. In particular, there is a natural
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7TX : SL(2,ZP[[X]]) — ► SL(2,ZP),

induced by the natural ring homomorphism A —> Zp which sends X  to 0 and 
Zp is fixed. Suppose that G  is a subgroup of SL(2, A) such that the projection 
H =  nx (G) is known. In this note we are interested in finding different criteria 
which guarantee that the subgroup G of SL(2, ZP[[X]]) is “as large as possible” ,
i.e. G is the full inverse image of H , or equivalently, ttx{G) =  H  and G contains 
the kernel of ttx ■ See Theorem 2.3, Corollary 4.2 and Proposition 5.1 for the 
precise statements.

Criteria of this sort have interesting applications in the theory of Galois rep
resentations (and this was the motivation for this work, [4]). Representations 
of the p-adic type:

p0 : Gal(Q/Q) — ► SL(2, Zp) 
pi : Gal(Q/Q) — ► SL(2, A ),

appear in several natural ways. For example, the representations associated to: 
the Tate module of an elliptic curve (or abelian varieties in general); modular 
forms; certain cohomology groups of algebraic varieties, are all of type po (see
[9], 1-3, for more details on examples). The image of these representations 
is understood in general (see [10] for the elliptic curve case). More recently, 
representations of type pi have also been found ([2], [3], [6]). Notice that by 
composing pi with itx  one obtains a representation of type po. Therefore, 
any previous knowledge of po and appropriate criteria about the subgroups of 
SL(2, A), may yield information about the image of pi (see [5], [7], [4]).

2 . Statem en t o f results

In [9], IV-23, J.-P. Serre proves the following result:

Lemma 2 .1. L etp  > 5  be a prime and let X  be a closed subgroup of SL(2,ZP) 
whose image in SL(2,FP) is the full group SL(2,FP). Then X  =  SL(2,ZP).

Nigel Boston ([1], Prop. 2) generalized Serre’s result to the following state
ment. From now on, M  =  (p ,X )  denotes the maximal ideal of A =  ZP[[X]].

Proposition 2.2. Let H be a closed subgroup o/SL(2, A) whose projection into 
SL(2,K /M 2) is the full group. Then H  =  SL(2, A).

In this note, we intend to prove a generalization of Boston’s result. Let p  ^  2 
be a prime number. We define maps:

7TX : SL(2,A) — > SL(2,ZP), I h O
TTx : SL(2,A/ M 1) — > SL(2,Z/piZ), X  0 mod p i ,

projection onto SL(2,ZP):
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and projections:

t*x  : SL(2, A) — ♦ SL(2, A/ M {) 
t * : SL(2, Zp) —+ SL(2, ZfpiZ ).

For closed subgroups H  <  SL(2, A), G <  SL(2,ZP) we write:

Hi =  t'x (H) <  SL(2, A/ M {), Gi =  t *(G)  < SL(2,Z/piZ ) .

The main theorem is the following:

Theorem 2.3. Let <5 be a closed subgroup of SL(2, Zp), and let Sj be a closed 
subgroup of SL(2,A) satisfying:

(1) 7rx(fi) = (3 .
(2) The subgroup f a  is the full inverse image of (&2 by the map ir2x , i.e.

S 2 =  (7rx)_ 1(<S2).

Then is the full inverse image of (5 by the map n x , this is, fj =  (7rx)- 1 (®)-

We present two different proofs of Theorem 2.3, which shed light on different 
interesting aspects. In section 3 we follow Boston’s concise proof of Proposi
tion 2.2, which makes use of Burnside’s basis theorem. In section 4 we offer an 
alternative (longer) proof which explicitly describes the kernel of 7rx- More
over, several corollaries can be deduced from the description of the kernel (see 
Corollary 4.2). The last section is devoted to an improvement of Proposition
2.2 (see Prop. 5.1).

We end this section with the following remark. In order to prove a theorem 
like 2.3 one may just consider PSL instead of SL. We make this precise in the 
form of a lemma.

Lemma 2.4. Let P%p: SL(2, Zp) —► PSL(2, Zp) be the natural projection and 
define similarly Pa '- SL(2,A) —> PSL(2,A). Let C be a closed subgroup of 
PSL(2, Zp), and let C' be the full inverse image of C in SL(2, Zp). Let X be the 
full inverse image of C  in PSL(2, A), and let Y  be a closed subgroup of SL(2, A) 
such that Pa (Y) =  X and ttx(Y) =  C '. Then Y  is the full inverse image of C' 
in SL(2, A).

S L ( 2 , A ) > y  C’ <  SL(2,ZP)

pA
PSL(2, A) > X  -------► C  <  PSL(2,Zp)

P nx

Proof. It suffices to show that —I  belongs to Y. By hypothesis, Y  contains an 
element of the form g =  — I  +  X  - A  with some 2 x 2  matrix A  over A. Since
Y  is closed, Y  also contains lim «-^ pp" =  —I  which finishes the proof of the 
lemma. Ei
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3. P ro o f using Frattin i quotients

In order to prove Theorem 2.3, we follow an argument due to N. Boston ([1], 
p. 262, Proposition 2) which makes use of the following well known theorem.

Theorem 3 .1  (Burnside’s basis theorem). Let K  be a pro-p group and let K  be 
its Frattini quotient, i.e. K  =  K / K PK ' where K p is the subgroup ofpth powers 
and K ' is the subgroup of commutators (g, h) =  ghg~l h~l , for all g ,h €  K . If 
J  is a closed subgroup of K  and if the image of J  in K  is swrjective, then J  =  K .

A proof of the theorem for p-groups can be found in [8], p. 274. Use an 
inverse limit argument to obtain the one stated here. In our case we let K  be 
the kernel of irx  (which is a pro-p group) and let J  be the intersection of K  
with the subgroup Sj <  SL(2, A). Before we can apply Burnside’s theorem, we 
study the Frattini quotient of K .  For every n >  2 we define groups K n and K  
via the following exact sequences of groups:

1 — > K n — * SL(2, A /{X n)) — * SL(2,ZP) — > 1

1 — ♦ K  — » SL(2, A /M 2) — ► SL(2,Zp/(p 2)) — ► 1 .

Lemma 3.2. The kernel of the canonical surjection 7rn : K n+\ -» K n lies in 
K'n+1, the commutator subgroup of K n+1 - Thus, the induced homomorphism 
between the Frattini quotients K n+1 and K n is an isomorphism.

Proof. One easily computes the following congruence for a commutator:

(1 +  X A  +  X nB, 1  +  X n- xC  +  X nD) =  1 +  X n(AC -  CA) mod X n+l,

for arbitrary A, B , C, D  €  M ^Zp), where denotes the set of all 2 x 2 trace 
zero matrices. Moreover, any element in M®(Zp) can be written as a finite sum 
of commutators A C  — CA  using elementary matrices. Since the kernel of 7rn is 
isomorphic to (1 +  X nM $(Zp)), the previous argument shows that the kernel 
of 7rn lies in K'n+1. The isomorphism between the Frattini quotients follows 
immediately. ' Ei

Corollary 3.3. The Frattini quotient of K , the kernel of ttx, is isomorphic to 
K .

Proof. Notice that K 2 =  (1 +  X M 20(ZP)) =  Zp, therefore its Frattini quotient, 
K 2 , is isomorphic to Fp. On the other hand, K  =  ( 1+ X M 2°(FP)) =  F H e n c e ,  
by Lemma 3.2, K n =  K  for all n >  2. The corollary follows from the fact that 
K  is the inverse limit of the K n. Ei

Finally, we are ready to prove the theorem.
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Proof of Theorem 2.3. By Burnside basis theorem and Corollary 3.3, it suffices 
to show that if Sj satisfies hypotheses (1) and (2) then the subgroup Sj2 of 
SL(2, A/ M 2) contains J = J2 = K.  By hypothesis (2), 9)2 is the inverse image 
of ® 2  by it'x • Thus, j}2 contains the kernel of 71̂ ,  which is J ,  by definition. Ef

' 1 uX  ' ■ 1 0 ■ 1 +  w X  0
0 1 , t 2 =

v x  1 > ^3 = 0 (1 + w X ) - 1 _

4. E xp lic it p roof

In this section we offer an alternative proof of Theorem 2.3 by analizing, K , 
the kernel of ttx- Note that K  =  { 7  G SL(2, A) : 7  =  Id mod X } .  The 
following lemma is an easy exercise in linear algebra, which proves that K  is 
topologically generated by three elements.

Lemma 4 .1. Let u ,v ,w  G Zp[pT]]x be fixed. Let K  be the closed subgroup 
generated by the three matrices:

Ti =

Then K  =  K .

Proof. In order to prove the lemma, one checks that the projection of the 
matrices Ti,i =  1 ,2 ,3 in SL(2, k / M 2) generate the whole group. Then, an 
induction argument finishes the proof. Ei

Theorem 2.3 is an immediate consequence of the previous lemma.

Second proof of Theorem 2.3. Let 0  be a closed subgroup of SL(2, Zp), and let 
Sj be a closed subgroup of SL(2, A) satisfying:

(1) 7rx (i3) =  0 .
(2) The subgroup £2 is the full inverse image of ®2  by the map it2x , i.e. 

S 2 =  (ttx)- 1 ^ ) .
In order to prove that Sj is the full inverse image of 0  by the map 7tx, it suffices 
to show that K  < Sj, where K  =  Ker(SL(2, A) — ► SL(2,ZP)). Let us define 
K  =  K n S j. By hypothesis, Sj2 =  (7r̂ -)_ 1(02) which in particular implies that 
tt2x ( K )  =  7Tx(K)- Hence, there exist matrices Ti G K ,  i =  1 ,2 ,3  such that:

Ti =
' I X ' 1 o ' r l + x  0 1

0 1 , t 2 =
x  1

, T3 =

1 0 
■

H-i 1 1__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

mod (p ,X ):

Therefore, there exist u ,v ,w  G ZP[[X]], with u ,v ,w  =  1 mod (p ,X ) (in par
ticular u ,v ,w  G ZP[[X]]X) such that:

‘ 1  u X  ' 1 o ' ' 1 +  w X  0
0 1 , T2 =

v x  1
9 T3 = 0 ( 1 +  W X ) - 1T, =

The hypothesis of Lemma 4.1 are satisfied, hence K  =  K  < Sj, which concludes 
the proof of the theorem. Ei
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' 1 uX  ' ■ 1 O' 1 -(- w X  0
0 1 , t 2 =

v x  1 > = 0 1 - w X

The previous proof shows that we can prove the equivalent result:

Corollary 4.2. Let (5 be a closed subgroup of SL(2,ZP), and let ft be a closed 
subgroup of SL(2,A) satisfying:

(1) 7TX (Sj) =  0  .
(2) There exist matrices Ti G Sj, i =  1 ,2 ,3  such that:

T\ =

modulo (p ,X )2, for some u ,v ,w  G (Z/pZ)x .
Then Sj is the full inverse image of 0  by the map ttx , this is, ft =  (7rx)- 1 (0).

5. A  different im provem ent

In this final section, we come back to the case of the full group SL(2, A).

Proposition 5 .1 . Let p > 5 be a prime and let H  be a closed subgroup of 
SL(2,A). For i =  1 , 2, let Hi be the projection of H  into SL(2, A/A'i*). If 
H\ =  SL(2,FP) and there exist k G H  n Ker(7Tx) such that k ^  Id mod M 2 
butk =  ld  mod (p2,X ) , then H  =  SL(2, A).

Proof By Boston’s Proposition 2.2, it suffices to show that

H2 =  SL(2,A /M 2).
For simplicity, let us denote G =  SL(2, A /M 2), G2 =  SL(2,Z/p2Z) and G\ =  
SL(2,FP). Also, let A  =  (p2,X )  and define T(̂ 4.), T(A/i) to be the following 
kernels:

rM ) =  Ker(G -> G2), T (M ) =  Ker(G -> Gi).
In particular, r(*4) C  r(A^). We claim that r(A'i) is abelian. Indeed, if 
J~\, J~2 G r(7W), then there exist matrices F \,F 2 with coefficients in M /M .2 
such that T \  =  Id +jFi, T 2 =  Id +F 2. Thus: T \  • T 2 =  Id 4-Pi +  F2 =  T 2 - T \. 
Hence, r(A i) is an abelian normal subgroup of G, and so is T(.4). Furthermore 
the fact that H\ =  G\ implies by Lemma 2.1 that the subgroup H  surjects onto 
G2. Thus, G =  H2-T(A), and so, in order to prove the proposition, it is enough 
to show that r(^4) is included in H2.

Lemma 5.2. H2 n r(«4) is a non-trivial normal subgroup of G.

Proof The existence of an element A: as in the statement of the proposition 
ensures that H2 fl T(^4) is non-trivial. Let g G G and h G H2 (l T(^4). Since 
h G T(^4), ghg- 1  G T(^4) and G  =  H2 - T(^4) implies that g =  ho • 7  for some 
ho G H2 and 7 G r(.4). Thus:

ghg- 1  =  ho'yh'y~1hQ1 =  h0hho1 G H2 ,

and so ghg-1 G H2 fl r(.A). [Zi
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Since r(^ ) is normal in G and H2 < G, there is a well defined representation:

p : H2 —► Aut(r(-4)), h •-> -> hFhT1).
Moreover, H2 nr(A^) is included in the kernel of p (because r(A'i) is abelian). 
Thus, p factors through H2 /H 2 n r(.M) = SL(2,FP) = G\. The induced rep
resentation of SL(2,FP) into Aut(r(.4)) is the adjoint representation (because 
r(.4) =  (Fp), the set of zero trace matrices), which is irreducible. By- 
Lemma 5.2, H2 (1 T(A) is normal and abelian, thus it is an invariant subspace 
for p and therefore for the adjoint representation of SL(2, Fp). By the irre- 
ducibility of the latter and the fact that H2 D T(A) is non-trivial, we conclude 
that H 2 n r(*4) = r(*4), as desired. 2Í
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