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R esum en. Se desarrolla un algoritmo para construir invariantes algebraicos 
para hiper-matrices. A continuación se construyen hiper-determinantes y 
se muestra una generalización del teorema de Cayley-Hamilton para hiper- 
matrices.

1. I n tr o d u c t io n

Hyper-matrices appear in several contexts in mathematics [22, 23, 24] and in 
applications such as in the quantum mechanics of entangled states [1, 5, 7,13], 
and image processing [2, 3]. Important mathematical problems associated to 
hyper-matrices are the construction of algebraic invariants and the determi
nation of the minimal number of algebraically independent invariants. In this 
work we address these problems.

For ordinary matrices the algebraic invariants associated to a matrix a 
can be obtained as traces of powers of the given matrix. According to the 
Cayley-Hamilton theorem only a finite number of powers of a matrix a  are 
linearly independent and therefore there is a finite number of algebraically 
independent invariants. A different set of invariants are the discriminants, 
which are suitable combinations of traces. The advantage of discriminants 
is that only the first d ones are non trivial while the rest is identically zero.
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Then, the Cayley-Hamilton theorem is easily written in terms of discriminants. 
A different method is to consider alternating products with a second matrix 
b. Generalized discriminants can then be defined and the Cayley-Hamilton 
theorem takes a simpler form.

In view of further developments we construct algebraic invariants (discri
minants) by considering all possible products among a matrix a  and a second 
matrix b. These products are in a one-to-one correspondence with semi-magic 
squares of rank 2 (a semi-magic square is a square array of numbers such that 
the sum of the elements in each row and each column gives the same result). 
The discriminants can be obtained in terms of semi-magic squares by a counting 
procedure which we explain in detail. Furthermore, for practical purposes, the 
discriminants can be constructed using a graphical algorithm in terms of grids 
which we develop and explain here.

We then proceed to the construction of a Cayley-Hamilton for hyper
matrices. We restrict our considerations to the fourth-rank case. Ordinary 
matrix multiplication is not defined for hyper-matrices. Therefore, we use the 
equivalent formalism based on semi-magis squares. We obtain the correspond
ing discriminants, the determinant and the Cayley-Hamilton theorem.

2.1. Index  no ta tion . For the purposes of dealing with higher-rank matrices 
(or hyper-matrices from now on) we introduce an adequate notation. We 
have found that an index notation similar to that of tensor analysis is more 
convenient. In this case it is necessary to distinguish between covariant and 
contravariant indices. According to this scheme, a matrix a  is a second-rank 
matrix. We can represent the matrix a  by a second-rank covariant matrix with 
components a^-; by a second-rank contravariant matrix with components atJ ; 
or, by a matrix of mixed covariance with components alj.

For two matrices a  and b of mixed covariance the matrix multiplication is 
defined by the resulting matrix c =  a  • b with components cxj  given by

From now on the summation convention over repeated indices is assumed. 
This means that we simply write

2 . M a tr ix  c a lc u lu s

d

(1)
Ar=l

(2)

The unit element e for the matrix multiplication has components e*- given
by

t _ ri _ f i  — j J
i  ~  i \  0, otherwise, K )
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which is known as the Kronecker delta. The inverse matrix a  1 is a matrix 
with components (a-1 )*̂  satisfying

ia~l yk  ~  a*fc (a-1)*,- =  5j • (4)

The product of a matrix a  with itself, a2, is the matrix with components

Higher powers of a  are defined in a similar way. Then it is direct to construct 
discriminants and the Cayley-Hamilton theorem. The similarity transforma
tions are now constructed in terms of a matrix u of mixed covariance with 
components uxj  and the inverse matrix u - 1  with components (it-1 )*.. Then,

However, for matrices with a  different covariance the scheme above does 
not work anymore. If a  and b are covariant matrices with components aÿ 
and bij, then the Cartesian product is defined by the resulting matrix c with 
components

With these conventions we can reproduce all the standard definitions and 
results. At this point an observation is necessary. We may define the product

same results. The only reason to choose I as in (7) is that generalizes the 
Cartesian product. In the next section we consider this general case.
2.2. A lterna ting  p roducts  and  discrim inants. In order to compute the 
inverse matrix of a matrix a  all what we need is to compute its determinant, 
Cd(a) =  det(a). The determinant is the discriminant of order d. There is, 
however, a second manner for constructing the determinant. Let us consider 
the Levi-Civita symbol en "'ld defined by

(5)

the discriminants are invariant under this similarity transformations.

Cij — dik I  bij . (6)

where I  is a second-rank contravariant matrix with components

(7)

with an arbitrary matrix I, not given by (7) and we will obtain formally the

1 , if • • • id is an even permutation of 1  • • • d\
—1 , if ¿i • • • id is an odd permutation of 1 • • • d; (8)
0, otherwise.

Then, the determinant of a matrix a  with components ay is given by

det(a) =  i  e*1“'*** eJ1’"Jd ahjl • • • aidjd . (9)
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This is the usual definition of the determinant in matrix calculus. Let us 
denote the determinant of a  simply by a, that is, a =  det(a). If a ^  0, then we 
have

a_1 =  ^ '  (10> 
In terms of components we have

( a =  (11)
a ociij

Now the notation (a-1 )u is redundant; therefore, we simply write a^  for 
the components of the inverse matrix. Explicitly we have

1 1 ......................alJ = - __ -__ fJJ i-u  a ....................... a . (-in)
a (d — 1 )! 31 • v1-6;

It is easy to verify that
a*kakj =  5) .  ( 1 3 )

Analogously we can define a covariant Levi-Civita symbol by

{1 , if ¿i • • • id. is an even permutation of 1 • • • d;
—1, if ¿i • • • id is an odd permutation of 1 • • • d; (14)

0, otherwise.

Then, the determinant of a matrix b  with components 6tJ is given by

b = det(b) =  ^  c*,—sa eh ...jd bhjl • • • bidjd . (15)

Its inverse matrix b - 1  with components bij is given by

b%j =  b ^  _  i)i €<il"•*<* b'131 • • * . (16) 

For a matrix b  with components we can define the following symbols

gii3i-is3s (b) = p. bhji ... biaja = b\[hjx . . . b isj.) I j (17)

where Pj denotes the sum over all permutations with respect to the indices 
jf’s; |[---]| denotes complete antisymmetry with respect to the indices f s  or, 
equivalently, with respect to the indices ¿’s. Due to the antisymmetry the 
symbols q  are non trivial only for s < d. For the first values of s, q  is given by

t f ( b )  =  6 « ,  

qhh hi, (b) = i  (¡,¡1 h tfu2 _ y 1A ¡,«1) (
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qhjli232i3h _ 1 #232 #333 (#\j\ 2̂J3 &i3ja
O;

_|_ 1̂J3 #232 #331 £*lja ¿*2.71 5*3J3^

+ (ftili2 ¿»aJS #3jl + ¿ilj3 ¿¿2J1 ^3J2 )]
(18)

Let us observe that

■̂■■uh-- u^h\ =  _L ... bidu )I =  det(b) 1 en -id gii-id . (19)
a! a!

Then, we define the b-discriminants for a matrix a  by

(a ) =  qll jl '"iBjB(b) ailh  • • • aiajs. (20)

For the first values of d we have

<£(a) =  § [(b *a)2 — <(b * a)2)] ,

ca(a) =  ^  [ (b -a )3 - 3 ( b - a ) ( ( b - a ) 2) +  2 ( (b -a )3)] ,

c i(a ) =  [ (b - a ) 4 - 6 ( b -a ) 2 ( (b -a )2)

+8 (b  • a) ((b • a)3)

+3 ((b • a)2)2 — 6 ((b • a)4)j ,

Cs(a) =  ^  [ (b -a ) 5 - 10 ( b - a ) 3 ((b -a )2)

+ 1 5  (b • a) ((b • a)2) 2

+20 (b • a )2 <(b - a)3) -  20 ((b • a)2) ((b • a)3) 

- 3 0  (b • a) ((b • a)4) +  24 <(b • a)5) ] , (21)

Using (19), we obtain

c$(a) =  det(b) ^  ell’"td en "'3d ahjl • • • aidjd. (22)

Therefore
cd(a ) =  det(b) det(a). (23)

Let us denote (a) simply by aj,; then a*, =  a • b. If a ^  0 and 6 ^  0, we obtain

I d&b_ 1  ̂ da (24)
ab da. a da

Therefore
, 1 da  1 dah tnr, s
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This is the new expression of the Cayley-Hamilton theorem. In fact, for 
the first values of d we have

a • b • a — Cj (a) a + c%(a) b - 1  =  0 , 
a • b • a • b • a — Cj (a )a • b • a +C2 (a)a -  Ca(a)b- 1  = 0 , 

a • b • a • b • a • b • a — Ci (a) a • b • a • b • a
+C2 ( a )a -b-a  — 0 3 (a) a + 0 4 (a) b - 1  =  0 . (26)

There are two particularly interesting instances of these relations. The 
first case is b = I. In the second case we would like to have an expression 
concomitant of the matrix a alone. To this purpose we choose b = a-1 . In 
that case all collapses to a useless identity. However, in our generalization to 
fourth-rank matrices the first case is excluded while the second one is allowed 
and gives the fourth-rank version of the Cayley-Hamilton theorem.

3. S e m i-m a g ic  sq u a r e s  a n d  g r a p h ic a l  
c o n s tr u c t io n  o f  in v a r ia n ts

For hyper-matrices the expressions (21) are nor adequate. Therefore we need 
a new algorithm for hyper-matrices. We have developed an algorithm based 
on the use of semi-magic squares which allow to characterize all invariants and 
furthermore we have developed a graphical algorithm to construct the semi
magic squares. We now introduce both these algorithms and exemplify them 
with the second-rank case.

3.1. Semi—m agic squares. In order to construct algebraic invariants we 
consider products of a ’s, with components a,ij and b ’s, with components 6iJ. 
In order for the result to be an invariant all indices must be contracted. This 
means that we must consider an equal number n of a ’s and b ’s. Since both a  and 
b  have two indices each, a  can be contracted at most with 2 indices belonging 
to b ’s and the same is true for b ’s. The way in which the n a ’s are contracted 
with the n b ’s can be represented by an n  x n square array of numbers s, 
where the components s u  denote the number of contractions between the Jth  
a  and the J th  b. Monomial algebraic invariants are characterized by the way 
in which the indices of a  are contracted with the indices of b. This contraction 
scheme can be represented by a semi-magic square. Graphically

bi •• • bn
ai /  Sll • • * Sin \  

s =  I j j
y Sni • • •  S n n J

(27)

If the 7th a  is contracted once with the J th  b, then s / j  =  1 ; if the 7th 
a  is contracted twice with the J th  b, then s / j  =  2; if there is no contraction
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between the 7th a  and the J th  b, then s / j  =  0. Since all indices must be 
contracted the sum of the elements of each row and each column must be equal 
to 2, that is,

n

Y  s i j  ~  2,
7=1

5 3  SlJ =  2 • (28)
J = 1

Arrays with this property are known as semi-magic squares [17]. Therefore, 
the number of possible algebraic invariants is determined by the number Hn(2) 
of semi-magic squares s. Semi-magic squares of rank r  are defined by the 
relations

n

S u  = r . (29)
j~  l

The number of different possible semi-magic squares Hn(r) is given by [14, 16, 
17]

Hi(r) =  1 ,
H2{r) =  r  +  1 ,

H ,(r) =  e +  i s ^ ^ + u f - ^ + u ^ - ^ + s ^ ; 1 )

=  I  (r4 +  6 r 3 +  1 5 r 2 +  18 r  +  8)
8

= i f l ( f l  + l),

Hi(r)  =  2 4  +  2 5 8  + 1 4 6 8  ( r “  ^ + 4 9 4 5  

+ 1 0 5 3 2  ( r ~ M  + 1 4 6 2 0  ^ r “ 1 j  + 1 3 2 3 2  

+ 7 5 4 4  ( ’ ’ y  1 )  + 2 4 6 4  ( r “ 1 ) + 3 5 2  ( ’ ' g 1 )  - (30)

where R =  (r + l)(r  +  2)/2.
For r  =  2 the result is: Hn(2) =  {1,3,21,282, • • •}.
For n  =  1 and n =  2 the corresponding semi-magic squares are given by

«2,1 =  { ( 2 ) } »
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s 2,2 ■{(
2 0
0 2

0 2 
2 0)■(! 0Í (31)

Since each column and each row represents the same matrix, semi-magic 
squares which are related by the permutation of rows and/or columns represent

the same algebraic invariant. For example, for n =  2,

are the same invariant. Therefore, semi-magic squares can be classifed into 
equivalence classes related by permutations of rows and/or columns. Then, 
we need to take care only of the representatives sr>n =  {sj,i =  1 , • • • ,pr (n)} 
for each equivalence class, where pr(n) is the number of equivalence classes 
for rank r and order n. For r =  2 the number of equivalence classes P2{n) 
is given by the number of integer partitions of n, that is, p(n). Therefore, 
P2(n) =  {1,2,3,5, • • •}. For the first values of n  the representatives of each 
equivalence class are

«2,1 =  {(2)},

S  2,2 ■{G:).(! ;)}•
«2,3 =

«2,4

f f2 0 0 °\ Í2 0 0 (2 0 0 °\j 0 2 0 0 0 2 0 0 0 0 1 1\ 0 0 2 0 > 0 0 1 1 5 0 1 0 1
Ko 0 0 2/ Vo 0 1 l) \0 1 1 0/
/! 1 0 Z1 1 0 0\1 1 0 0 0 1 1 0
0 0 1 1 J 0 0 1 1 ► *

Vo 0 1 l ) \1 0 0 1J!
(32)

The algebraic invariants to which each semi-magic square corresponds are 
given by

(2) =  ( b a ) ,

(o 2) = <ba>2’

(1 1) = <(b a )2>-
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/2  0 0 0 '
0 2 0 0
0 0 2 0

\ 0  0 0 2 .

/ 2  0 0 0 \

= (ba)2 ((ba)2),

=  (b a)((b a)3) ,

= ((ba)2)2 ,

= ((ba)4). (33)

\ 1  0 0

Let us observe that block semi-magic squares can be decomposed in terms 
of lower order semi-magic squares as
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/2  0 0 O'
0 2 0 0
0 0 2

\0  0 0

2 
0
0 0 

,0 0

2 0 0 0\
0 0 1 1
0 1 0

.0 1

1 1
1 1
0 0

Vo o

= (2) 0 O’
=  (2)4 ,

=  (2): c  ;)•

(34)

3.2. G raphical construction  o f invariants. Each semi-magic square de
termines an algebraic invariant. On the other hand, semi-magic squares are 
obtained by considering all possible permutations of indices. However, for large 
values of n this algorithm becomes unpractical. In order to avoid this difficulty 
we now develop a graphical algorithm for the construction and characterization 
of algebraic invariants which allows to simplify this task. Let us represent the 
matrix a  by a vertical grid with two boxes, namely

(35)

The product of n matrices is represented by

| [ | | | | (36)
1 2  n

Each algebraic invariant is characterized by the way in which indices are con
tracted. We can always choose to keep fix the indices of the first row and look 
at how the indices in the second row are contracted with the indices in the first 
row. A void grid indicates that no permutation has been performed

(37)
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A permutation of the indices ith and j th  is indicated by

(38)

i J
A double permutation is indicated by

o- -o o- -o (39)

A cyclic permutation is indicated by

In this case, however, it is necessary to take into account the sense in which 
the permutation is performed. There are 2 possibilities

CM-o* -oo- K> ►O
(41)

When the sense of the permutation is irrelevant we use the right-oriented grid. 
The next possibility is

(42)

In this case there are 6 possibles senses for the permutation, namely,

Cx
a. -Q

(43)

As in the previous case, when the sense of the permutation is irrelevant we use 
only the right-oriented grid.

The semi-magic square corresponding to a given grid is obtained as follows. 
The number of empty boxes in each column corresponds to the diagonal entries 
in the semi-magic square. The lines correspond to the ofF-diagonal terms. For 
example

/ 2 0 0\
~  0 1 1 . (44)

\ 0  1 V

o- -o
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The multiplicity is the number of possible ways in which the given permutation 
can be performed over the n  boxes (indices). The parity is given by the number 
of lines for the permutation. For example

o- -o =  - 3 (45)

Let us perform the explicit construction of the semi-magic squares and 
discriminants for the first values of n. For n  =  2 the result is

(46)

For n =  3 the result is

o- -o

o- >o- ►O

=  - 3

2

For n = 4 the result is

O- -O =  - 6

( 2  0 0 0 \ 

0 2 0 0
0 0 2 0

VO 0 0 2 /
^2 0 0 0^ 

0 2 0 0
0 0 1 1

VO 0 1 1 /  
1 0  0

O- -o o- -o

o- ►o-►o

=  3

=  8

(47)
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o- ►O-►O (48)

The number of semi-magic squares depends on the number of possible per
mutations. For large values of n and r this counting becomes quite involved. 
Therefore, it is advisable to have an easy recipe to obtain the correct counting.

For each order we have a different number of possible permutations Pn. We 
can represent them as

P2 = 0 - 1 ,
P3 =  0 - 3 1 4 - 2 - 2 ,
P4 = 0 —6- 1 +  3 - 12 4- 8 - 2 - 6 - 3 ,
P5 = 0 -  10 • 1  +  15 • l 2 +  20 • 2 -  20 • (2 1 ) -  30 • 3 +  24 • 4,
PQ = 0 -  15 • 1  +  45 • I 2 -  15 • l 3 +  40 • 2 -  120 • (2 1 )

+40 • 22 -  90 • 3 4- 90 • (31) +  144 • 4 -  120 • 5 . (49)

The number of terms involving some given permutations is given by the coeffi
cients in (49). This can be easily verified in the graphical construction above.

4. Hyper-matrices. The fourth-rank case
There is not a natural multiplication operation for hyper-matrices in the sense 
that the product of two hyper-matrices be again a hyper-matrix of the same 
rank. Therefore, the construction of algebraic invariants must be performed 
using the semi-magic square technique developed above. This algorithm can 
be easily extended to hyper-matrices of any arbitrary even-rank r.

Our construction is based on alternating products. To this purpose let us 
consider a fourth-rank matrix A  with components Aijki and a fourth-rank 
matrix B with components B ^ kl. The discriminants are represented by semi
magic squares of rank 4. They are constructed using the graphical algorithm 
of the section above.
4.1. A lterna ting  p roducts  and  discrim inants. In analogy with (9), for a 
fourth-rank matrix A  with componentes Aijki we can define

det(A) =  ^  ell'"td • • • eh " ld A iljlklh  - • • Aidjdkdid . (50)

Let us denote A  =  det(A). In analogy with (10) we define

A - i . I M
A 9 A  '

(51)
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In term of components

Then
^ - 3 s £ r -  <52>

A i j M  = __J__ 3. ^«vi(d-i) .. -ZZi-Z(d-i)
[ d - \ ) \ A
X A i 1j l k l i l  -^*(d-i)i(d-i)fc(d-i)i(d-i) • (5 3)

This hyper-matrix satisfies

A ik' k' k>Ajklk2k3= 5 ). (54)

The definitions (50) and (52-54) were used in previous works [18, 19, 20, 21] 
concerning the applications of fourth-rank geometry to the formulation of an 
alternative theory for the gravitational field.

As an example of the relation above let us consider the simple case d =  2. 
The determinant (50) is then given by

A  =  A im  ^2222 — 4 A m ?  A\222 *f 3 ̂ 1122 • (55)

The components of the hyper-matrix A iikl are given by

A1111 = ^ 2 2 2 2  ,

A1112 = — ̂  ^1222 >

A 1122 = ~7 A\i22 • A (56)

and similar expressions for the other components. In order to check the validity 
of eq. (56) let us consider the cases 11 and 12. We can then verify that

AuikAujk = 1,
A u * A 2ijk = 0 , (57)

and similar relations for the other indices.
The determinant for a fourth-rank matrix B with components B ^ kl is given

by
det(B) =  ^  B iljlkltl • • • B idjdkdld . (58)

Let us now consider a fourth-rank matrix B with components B ijkl. In a 
way similar to (17) we define
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For the first values of s we obtain 

Q\jkl( B) =  B ijk l,
\  Jjgtiiifciii *̂272^2 2̂ _^ g h j i k i h

2
_ ^ g i i j i k 2 h  g i 2 j 2 k i h  _|_ g h h k - L h  g h j i k i h  

_j_^t2jifciii Q i \ j 2 k 2 h ^  ^ Q h j i k 2 h  f f i i h k i h  

^ . Q i i j i k i h  g i a j i f a h  Q i 2 j i k i h  g i i j i k a l i ĵ ^

etc. Let us observe that

Q i i j i k i l i - - - i d j d k d l d ( j g ' j  _  . . .  f i i d j d k d l d ]  | ^02)

= de t{B )]:e il"’id ••• eh "ld . a!

Then, the B-discriminants of A are defined by

Cf(A)  =  Q ¥ ' k'l'- -i‘i ‘k",-(ri )Ahhkih - A i . i M , .  (62)

For s =  2 we obtain

C f(A ) =  i [ ( B i3'‘ '4 y « )2 - 4 B « H ^ HmBm"'>M np,i (63)

+ 3 B i i k , A k ,  m n  B  Pq A p q i j  j .

For s >  3 the corresponding expressions are too long to be exhibited here. 
Instead we will determine the B-discriminants with semi-magic squares.

In analogy with (23) we obtain

C f  (A =  det(B) det(A ). (64)

Let us denote C f( A) simply as A b \ then A b  = A- B. If A ^  0 and B  ^  0, we 
obtain

1 8Ab  1 dA . .
A ; - d A = A d A ■ (65)

Therefore
! 1 dA 1 8Ab 

A  = A d A  =  I J a A -  (66)
This is the statement of the Cayley-Hamilton theorem for hyper-matrices. For 
s =  2 we have

(B tjkl Aijkl) Aabcd ~  4A(a\ijk B ljkl Ai\bcd) 
+ 3 A w iJB i1a A u ic d ) - C ? ( A ) ( B - 1)atcd =  0. (67)
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If we now choose B =  A 1, that is B 1 =  A, the above expression reduces to 

A A kiwd) -  |  A A mpq) A"■»«) Aaicd =  0. (68)

4.2. Sem i-m agic squares. The algebraic invariants which can be con
structed in this case are given by the semi-magic squares of rank 4. Their 
number is Hn(4) =  {1,5,120,7558, • • •}. As for the second-rank case we must 
take care only of the representatives for each equivalence class. The number of 
equivalence classes p4(n) is given by the generating function

OO OO -
P M  X" =  I I  ' (®9)

n=0 n = l '  '

For the first values of n p4(n) is given by

p4(n) = { 1 ,1 ,3 ,9 ,3 6 ,* ..} .' (70)

4.3. C onstruction  of d iscrim inants. Each semi-magic square determines 
an algebraic invariant. However, in this case, the corresponding invariant can 
no longer be represented by mean of traces, as was done for ordinary matrices. 
The semi-magic squares of order 1 and 2 correspond to the following invariants

(4) =  B ‘ih‘ A m ,

( o  2 )  “
(1 3 ) =  Bhi,kl‘' Ah M > Bi‘j M 2 Ahi,j tk l ,

( 2 2 ) = B " 3 l k l ‘ l ■ (71)
It is obvious from the expressions above that semi-magic squares are more 
practical for representing algebraic invariants.

The corresponding discriminants are linear combinations of the monomial 
algebraic invariants (semi-magic squares) of the same order. In order to deter
mine the coefficients of this linear combination we proceed in a way similar to 
that for ordinary matrices. The hyper-matrices can be contracted according to 
the allowed number of possible permutations. The possible permutations are 
the same as described in Section 3.2. However, this time there are three addi
tions involved. It is obvious that the number of terms which must be computed 
growth very fast, as (n!)r_1. Therefore, even when this algorithm provides a 
direct answer, a more practical way to evaluate the coefficients is necessary. 
Then we must consider the graphical algorithm developed in Section 3.2.



P olynom ial  id e n t it ie s  fo r  h y p e r - m a tr ic es 53

4.4. T he C ayley-H am ilton  theo rem . Let us write the Cayley-Hamilton 
theorem in terms of almost-magic rectangles. For the first values of d we obtain

(o 4 ) —4 (1 s ) +3 (2 -  »■

1
2

-  4 

+  6 

-1 2  

■+• 6
\ l  1 2 )  \ 0  2 2 )

- C f iA J B " 1 =  0. (72)

The above is the Cayley-Hamilton theorem for fourth-rank matrices.

5 . C o n c lu d in g  r em a rk s

We have developed an algorithm to construct algebraic invariants for hyper
matrices. We constructed hyper-determinants and exhibit an extension of the 
Cayley-Hamilton theorem to hyper-matrices.

These algebraic invariants were considered by Cayley [6]; see [8, 9] for an 
updated account.

Higher-rank tensors look similar to hyper-matrices and the results pre
sented here are a first step for the construction of algebraic invariants for 
higher-rank tensors. Higher-rank tensors appear in several contexts such as in 
Finsler geometry [4, 15], fourth-rank gravity [18, 19, 20, 21], dual models for 
higher spin gauge fields [10 , 1 1 , 12].
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