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A b s t r a c t .  A triangulation A of S3 defines uniquely a number m < 4 , a sub
graph T of A and a representation u;(A) of 7ri(53\r) into £ m. It is shown that 
every (K,u), where K  is a knot or link in S3 and u> is transitive representation 
of 7Ti(S3\K )  in Em, 2 < m < 3, equals w(A), for some A. Prom this, a repre
sentation of closed, orientable 3-manifolds by triangulations of S3 is obtained. 
This is a theorem of Izmestiev and Joswig, but, in contrast with their proof, 
the methods in this paper are constructive. Some generalizations are given. 
The method involves a new representation of knots and links, which is called a 
butterfly representation.
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R e s u m e n .  Una triangulación A de S3 define un único número m <  4 , un 
subgrafo T de A y una representación w(A) de 7n(S3\r) en £ m. Se sabe que 
cada (K\oS), donde K  es un nudo o eslabón en S3 y u es una representación 
transitiva de 7ri (S3\K )  en £ m, 2 < m < 3, es igual a o»(A) para algún A. 
De esto se obtiene una representación de 3-variedades cerradas y orientables 
por triangulaciones de S3. Este es un teorema de Izmestiev y Joswig pero, en 
contraste con su prueba, el método en este artículo es constructivo. Este trae 
consigo una nueva representación de nudos y eslabones llamada representación 
mariposa. Se dan algunas generalizaciones.

63



64 H. M. HILDEN, J. M. MONTESINOS A., D. M. TEJADA J. & M. M. TORO V.

1 . In trod u ction

Recall that if a  is a simplex of a polyhedron, the star of cr, st(cr), is the set of 
simplexes of the polyhedron containing cr as a face, and the link of cr, lk(a), is 
the set of simplexes of st(a) not intersecting the face a.

Let M , or M n, be a closed, connected, orientable rc-manifold. Let A be a 
triangulation of M. If a is an (n — 2)-simplex, the star of cr can be thought of 
as a closed chain of v n-simplices, a i, - • • , crv such that each one shares with 
the next one precisely one (n — l)-face, and av shares precisely one (n — l)-face 
with c \. We call v the valence of cr and we denote this number by v (a). We 
will say that cr is even (resp. odd) if v is even (resp. odd).

Denote by Oa the set of (n — 2)-simplices of odd valence. Then A defines 
an integer 1 < m < n +  1 , and a, unique up to conjugation, representation 
lo (A) : 7Ti (M \O a ) —> Sm into the symmetric group of m  indices, such that no 
index is left fixed by all the elements of the image of u> (A) (so the action of 
the image is effective). See Section 2.

Of course, the representation ui (A) defines uniquely a branched cover of 
M, which is an n-pseudomanifold M  (A). We note that M  (A) might not be 
connected, if uj (A) is not transitive.

The aim of this paper is to prove the following theorem:
Theorem  6.1 Let (K,u)) be a knot or a link K  in S 3 together with a tran
sitive representation u; : 7Ti (S 3\ K ) —> £ m, 2 < m  < 3, sending meridians to 
transpositions (simple representation). Then there is a constructive procedure 
to obtain a triangulation A of S 3 such that:

i) O a = K .

ii) a; (A) =  uj.

From this we get, as a corollary, the following Theorem of Izmestiev and 
Joswig [6].
Corollary  7.1: Let M  be a closed, orientable 3-manifold. Then there exists a 
triangulation of S 3 such that M  is homeomorphic to M { A). Moreover, there 
is a simplicial 3-fold simple covering p : M  (A) —> A, branched over some knot 
(dependent on M ).

The method of the proof, which is constructive, involves two different ideas. 
The first idea is to represent each knot or link K  in S 3 as a butterfly. For this, 
we mean a polyhedral 3-ball, B k ,  with faces identified in pairs by reflections 
in some particular edges. The result of the identification will be S 3 and the 
image of the particular edges will be K . The details of such construction are 
described in Sections 3 and 4.

To obtain the wanted triangulation A of S 3 (such that a; (A) =  uj) we 
associate 4 colors to the vertices of some carefully constructed triangulation of 
8 B k ,  in such a way that this 4-coloration is compatible with u) (in a way to be 
specified in Definition 5.2).
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Next, we extend this 4-colored triangulation of 8B k  to B k  by using a con
structive theorem of Goodman and Onishi [2] we then claim that this triangu
lation is the wanted triangulation A. Indeed, for this triangulation Oa =  K  
and o j (A) =  o j.

We remark that some of the methods, used in our 4-coloration process, 
work as well for representations o j more general that the simple ones we are 
considering here (see Theorem 5.4).

We do not know if our Theorem 6.1 extends to the case m = 4. This is an 
open problem. We will work throughout in the PL category.

2. a;(A): A  representation associated  
to  the triangulation A

Let A be a triangulation of the n-manifold M n. If An-2 is the (n — 2)-skeleton 
of A then the group 7ri(M n\A n_2) is a free group.

If a is a fc-simplex in A (0 < k < n) we will denote by b(cr) its barycenter.
Let c =  {ao,- • • , ak} be a chain of n-simplices such that a\ fl cn+i, i = 

1, • • • ,k  — 1, is a common (n—l)-face. This chain defines a unique path starting 
in b(ao), and ending in b(<Tk), as follows: connect b(ai) with b(ai fl 1 ) and 
with 6(<Ji+i) with straight segments for i =  0, • • • , k — 1. The union of these 
segments, oriented by the chain c, defines, in a natural way, a unique linear 
path c : [0,1] —*■ M n\ A n~2. Now, if for the chain c we have ao =  then c is 
a loop in M n\ A n~2. In this case we call c a closed chain.

Since I  = [0,1] is compact, for any loop a : I  —> M \A n~2, based at b(cro), 
there is a unique closed chain of n-simplices ca =  {ao, • • • , Ok — 0o}i associated 
to cr, such that a  crosses the simplices in the chain consecutively. Of course the 
same definition applies when A triangulates a manifold with boundary.

It is not difficult to see that for any class a of homotopic loops (based at 
b(ao)) in M \A n~2, we can choose a class representative, such that the closed 
chain associated to it, has minimal number of simplices. Moreover, this closed 
chain is unique. In other words we have a one to one correspondence between 
closed chains (starting at ao) and loops based at b((To).

A closed chain c =  {oo, • • • ,<?k =  &o} defines, in a unique way, a bijection 
o/(A)(c) of the 0-skeleton (Tq of ao, i.e., an element of En+i> as follows:

Take the set {1 , • • • , n, n  +1} =  C. We think on C as a set of (n + 1 )-colors. 
We say that an n-simplex is colored if and only if every vertex has associated 
a color and all colors of C are used (one can think of C also as the 0-skeleton 
tfg of a 0).

If two n-simplices share a (n — l)-face and one of them is colored, the other 
can be colored in just one way.

Start now with a closed chain c =  {<7o,cri,-*- ,a k =  oo}- Color ao. Then 
we can color successively - , ak- i  in just one way. Then the color in 
&k- 1  induces a coloration of ao, which in general do not coincide with the 
original one but it is a permutation of the set {!,-•• ,n ,n  + 1} =  C  of colors.
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This permutation is by definition cu(A)(c). This process of coloring a chain of 
simplices starting from a fixed one ao will be referred to as propagation for 
shortness. The sequence of k + 1 vertices of c (one for each simplex of the chain 
c) with the same color i, is the i-orbit. Then the permutation u;(A)(c) is the 
map sending the first vertex of each orbit to its last. In Fig. 1 we see that if 
the color of v\ is ¿, the ¿-orbit is the sequence v i,v3,v3, v5, v5, v\.

Figure 1: The ¿-orbit.

P roposition  2.1. I f  M n is a closed, connected, orientable n-manifold with a 
triangulation A, ctq € A, there is a canonical representation u>(A) : 7Ti(M\An_2, 
b(cr0)) —> £ n+i associated to A, unique up to conjugation in En+1 .

Proof. Define uj(A)(a) = o;(A)(cf7), where a  is an element of 7ri(M \A n-2, 
b(iTo)) and ca is the chain uniquely associated to it • EÎ

Let a  be an (n — 2)-face of A. A meridian [fia] of a  is an element of 
7Ti(M \An“2,6(iTo)) having a representative fia of the following form. Note 
that st(a ) is a closed chain c, which has associated a closed path c. The rep
resentative of the meridian [fia] is the composition of 3 paths t o c o i -1 , where 
c is the loop associated to st(a ) and the path t (called the tail of fia) starts at 
b(ao) and ends at the barycenter of a simplex in st(a). The property given by 
the following proposition is then trivial (look at Figure 3).

P roposition  2 .2 . I f  ¡ia € 7ri(M \A n_2, 6(a0)) is a meridian of an (n-2 )-face
a, then u>(A)(fia) = id if and only if a  is even.

Figure 2: fia for a  even.
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Let Oa be the set of the (n — 2)-simplices of odd valence. Because of the last 
proposition and the Van Kampen Theorem, then w(A) defines a unique, up to 
conjugation, homomorphism, which we denote also by

u/(A) : 7Ti (M \O a ,&(0o)) -> £n+i =

Let S  be the complement in 0$ of the set of fixed-points of ctq under the 
action of the image of oj(A). Then a;(A) acts effectively in S  C <7g, and the 
image of cu(A) lies in Es, where Es C ECTo is induced by the inclusion S  C a$.

In this way a triangulation A of a manifold M n defines a number (the 
cardinal of S) m, 1 < m < n + 1 and a representation, unique up to conjugation 
uj(A) : 7ri(M\OA>6(co)) —*• Em, such that no index is left fixed by the image 
of cj( A).

We call the representation uj(A) : Tri{M\0&.,b(ao)) —* Em the canonical 
representation of A.

D efinition 2.3. We say that a triangulation of an n-manifold M n is (n -f 1)- 
colored if all simplices can be colored simultaneously with (n + 1 )-colors.

The following theorem follows from the definitions.

T heorem  2.4. I f  A is (n + 1)-colored then all (n — 2)-simplices of A  are even 
and a; (A) is trivial.

R em ark  2.1. In general, even if ui( A) is effective it does not need to be tran
sitive. But it will be transitive if the cardinal m  of the set S  is < 3.

3. K n o ts  a n d  b u tte r f l ie s

In this section, we study a special class of balls with faces which are identified by 
topological reflections. These balls are called butterflies since the identifications 
of each pair of faces recall how a butterfly closes its wings. Here are formal 
definitions.

Let F  be a connected, closed, orientable surface. A polygon (or n-gon, n > 1 ) 
in F  is a tame embedding of the 2-disk in F  together with a set of n > 1 points 
in its boundary which are called the vertices of the polygon. The closures of 
the connected components of the complement of the vertices in the boundary 
of a polygon are called the edges of the polygon. (An edge is an arc if n  >  2 or 
a circle if n  =  1.) A polygonization of F  is a decomposition of F  in a union of a 
finite number of polygons such that (i) the interiors of the distinct polygons of 
the decomposition are disjoint; and (ii) if two arbitrary polygons intersect, their 
intersection is at the same time a union of vertices and edges, and a connected 
0-, or 1-dimensional manifold. (Therefore they can intersect in just one vertex, 
or in an arc formed by various edges, or in a circle; and, in this case, F  must 
be S 2.) The union R  of the boundaries of the polygons of the decomposition



68 H. M. HILDEN, J. M. MONTESINOS A., D. M. TEJADA J. & M. M. TORO V.

is then a connected graph embedded in F, since it is a union of vertices and 
edges. We say that the graph R  polygonizes F.

Exam ple 3.1. Figures 3, 6a and 8 show different polygonalizations of S 2.

Let A  and B  be two polygons of a polygonization of S  intersecting in exactly 
one edge a  of R  and assume that A  and B  have the same number of edges. (This 
number might be one for the trivial polygonization of S.) Select a topological 
reflection a : A —> B  which is orientation reversing in S', fixes each point of a, 
and sends vertices (resp. edges) of R  fl A  into vertices (resp. edges) of R  fl B. 
The reflection along a  will be denoted by a  also, and we say that a : A —► B  
is an a-reflection.

D efinition 3.2. Given n € N, n > 1, an n-butterfly (B ,R ,T ) is a 3-ball B  
with a polygonization of its boundary S  by a graph R  into 2n polygons, together 
with a subset T  of n mutually disjoint edges of R, such that the polygons are 
identified by a-reflections in pairs, a  € T. (As we said before, to be identified, 
two faces must share exactly an edge a GT. The identification of a pair of faces 
is then achieved by an a-reflection along this common edge.) The 2n polygons 
of an n-butterfly are called wings, the union of the edges along which we made 
the reflections is called the trunk T  and n is called the butterfly number.

The result of the identification of pairs of wings of an n-butterfly (B , R, T) 
is a 3-manifold M (B , R, T) homeomorphic to the 3-sphere S 3 (see [4]). Denote 
by p : B  —* M (B , R , T) the natural projection.

D efinition 3.3. In the identification p : B  —* M (B, R, T) =  S 3 the image p{T) 
of the trunk T  is a (linked) graph K  embedded in S 3, and we say that the graph 
(knot, or link) K  in S 3 can be represented by an n-butterfly, or that K  admits 
an n-butterfly representation, or that (B ,R ,T ) is an n-butterfly representation 
of K .

Let (B, R, T) be a butterfly and p : B  —> M (B, R, T) =  S 3 the natural 
projection. We now make a classification of the set of vertices of R. A vertex V  
of R  will be called an A-vertex iff V  € T. (It will be generically represented by 
j4). The vertex V  of R  will be called an E-vertex iff it is not an A-vertex but 
V  € p~1p(A). (It will be generically represented by E). Finally the vertex V  
of R  will be called a B-vertex iff V p~xp{A) for any A-vertex A. (It will be 
generically represented by B). In the proof of Theorem 3.4 there is an example 
of a butterfly with vertices of types A  and E, and in Example 3.5 there are 
some vertices of type A  and B.

In the sequel we will consider definitions and concepts about knots, links 
and their projections as explained in [1], [8] and [12].

It is obvious that the trivial knot is the only one admitting a 1-butterfly 
representation (just identify the northern and southern hemispheres of S  by 
reflection in the equator R = T).
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Let us recall that for each rational number p/q  in lowest terms (p > q > 0) 
there is a knot (if p is odd) or a link (if p is even) denoted by the same number
p/ q-

The following theorem is a translation of [10, page 164] to our language of 
butterflies, see [11, page 78].

Theorem  3.4. Every 2-bridge knot or link p/q can be represented as a 2- 
butterfly. Except, for the trivial knot or the link 2/1 (Hopf link) the butterfly 
will have E-vertices.

Proof. For shortness we give the proof only for the rational knot 5/3. Without 
difficulty, it could be generalized to every other 2-bridge knot or link. We start 
from the following 2-butterfly and we show that performing the reflections 
illustrated by arrows in Figure 3, we obtain the knot | .

3(tu/5)
Figure 3: The rational knot 5/3.

This butterfly has four wings; FDHAGC\ F E JB ID \ JEFC G A  and A H D I  
B J , which are identified two by two by the reflections made along the edges FD  
and AJ, that are indicated by arrows. The trunk is {FD, A J }, so that F, D, A 
and J  are .A-vertices. The vertices C, G, H, / ,  B  and E  are E- vertices. Now, 
we make a sequence of deformations in order to be able to visualize the knot 

First, we stretch out the points placed on the butterfly “equator”, obtaining
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a cylinder. Next we rotate the “upper lid” of the cylinder an angle 3 (f).

a  J

Finally, making the identifications indicated by the arrows on the “upper 
and lower lids” of the cylinder, the knot |  becomes visible.

Ef

Exam ple 3.5. Similarly Thurston showed in [15] that the Borromean-rings 
admits a 6-butterfly representation. In this butterfly there are 12 A-vertices 
and 8 B-vertices. See Figures 6a and 6b.
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Borromean rings.
Figure 6b: The 

Borromean rings.

4. R epresenting knots as butterflies

Actually, every knot or link can be represented by an n-butterfly, for some 
n € N. This representation will depend on the diagram of the knot or link, so 
for each knot or link we have an infinite number of butterfly representations.

Theorem  4.1. Every knot or link admits an n-butterfly representation, for 
some n  € N.

Proof. There is a more detailed proof in [4]. Let K  be a knot (or link) which 
is embedded in S 3 = R3 U {oo}, we assume that it is as flat as possible as in 
the following picture.

Figure 7: The cone over a knot.
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Figure 8: The butterfly.

The preview picture illustrates the boundary of the 4-butterfly representation 
of the Figure-eight knot (that is, the rational 5/3 knot). We envision that the 
interior of the butterfly is placed over the paper. We can see 20 edges. Three 
of them go to the point at infinity. The trunk has 4 edges that form the knot 
before cutting the cone off and we have 8 wings identified in pairs. Ef

A regular diagram of a knot (or of a link), like the one in Fig. 7 or 9a, can 
be thought of as a disjoint union of arcs in a plane. These arcs will be called 
the arcs of the diagram.

We remark that the last theorem is constructive. Now, we make explicit the 
algorithm for constructing a butterfly from a given regular diagram.

A lgorithm  for constructing  a  bu tte rfly  associated to  a  d iagram  of 
a  knot: Let Dk  be a regular diagram of a knot (or link) K , which we 
assume oriented only in order to fix notation. Without lost of generality we 
can assume that K  is not the trivial knot (for this case we have a 1-butterfly 
representation). We also assume S 3 oriented. The positive orientation of S 3 in 
our figures will be given by a right handed screw.

Step 1 The diagram D k  of i f  is a finite collection T  of disjoint, oriented arcs 
(no circles!) in a plane P  (the plane of the paper; see Fig. 9a). We 

. assume, as we can, that the projection of D k  onto P  is connected and
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has no kinks.

Figure 9a: A diagram of a 
knot. Figure 9b: The regions.

Step 2 We consider the regions R{ determined in the plane P  by the projection 
of K  (see Fig. 9b). In the interior of each bounded region we choose 
a point and label it by B(Ri). For the unbounded region Ro, we label 
B(Ro) the point at the infinity. These points are B-vertices.

Step 3 (Recall that the end points of the arcs of the diagram D k  are the 
A-vertices.) Each A-vertex, end of an arc a  of the collection T, is 
joined, using an arc in P, with each of the 5-vertices that belong to 
the adjacent regions to the arc a. So the paper becomes polygonalized 
by the graph R which is the union of the trunk T and the added arcs. 
(See Fig. 8).

Step 4 Over the plane of the paper P , we assume that there is a 3-ball B k ,  with 
the induced orientation, whose boundary is the polygonalized plane P, 
oriented as the boundary of the oriented 3-ball B k - 

Step 5 The adjacent faces to each arc a  of S  are identified by an a-refiection 
that is indicated by double arrows. We denote by A  the wing (or face) 
identified with the wing A. The face A  will be placed at the right side 
of the oriented arc a. (See Fig. 8).

Then (B k , R , T ) is the wanted butterfly. It will be called the butterfly  as
sociated to the diagram D k  o f  the kn o t K .  For shortness, we denote it simply 
by B k .
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For each arc a of the trunk T, there are. two adjacent wings in B k  that are 
identified by a reflection along a  and they have the following shape:

On each wing we distinguish two types of vertices:
A-vertices are the ends of the different arcs of T.
B-vertices are those that come from the vertex of the cone once we cut it 

off. They correspond to the points B(R{) given in the algorithm.
R em ark  4.1. M. Toro ([16]) explains a programm in Mathematica for con
structing the butterfly associated to a diagram of a knot.
Exam ple. 4.2. Applying this algorithm to the regular diagram of the Bor- 
romean rings shown in Fig. 6b, we recover the butterfly representation discov
ered by Thurston (Fig. 6a).

5. A  canonical triangulation A k  o i  (S'3, u>)

If (£ , R, T) is a butterfly representation of a knot K , each (oriented) edge a  of 
the trunk T  defines a meridian generator fia of the knot group of K  as follows. 
Take an interior (base) point O inside B  and run an oriented arc from O to 
an interior point in A  and another oriented arc from the corresponding point 
in A  back to O. The (oriented) union of these two arcs represents a meridian 
generator of the knot group that will be denoted by ¡j.a. If a; is a representation 
of the knot group into the symmetric group En of the numbers 1 , 2, • • • , n we 
can endow the (oriented) edge a  € T  with the permutation w(/ia ). (If the 
representation oj sends meridians to elements of £ n of order two, then the 
permutations u;(/xQ) and (w(/zQ))- 1  coincide and the orientation of the trunk 
becomes irrelevant).

In the sequel we will assume that for n < m  there is a natural inclusion of 
2 n as a subgroup of Em induced by the inclusion {1,2, • • • , n} C {1,2, • • • , m}. 
In this way an element of En acts in the set {1,2, • • • , m} fixing the numbers 
{ n +  ].,••• ,m}.

We will understand that the boundary of a butterfly is triangulated if we 
have a triangulation for the butterfly boundary, such that all the triangles
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become identified by couples when we identify the butterfly wings using the 
reflections along the edges of the trunk.

We need to extend slightly the definition of a triangulation of an M n mani
fold to be (n 4- l)-colored (see Definition 2.3) to the case in which the number 
of colors I be > (n +  1 ).

D efinition 5.1. Let A  be a triangulation of an n-manifold. Let I > (n+ 1). Let 
C  =  {1 , • • • , /}. An n-simplex a is l-colored iff to each vertex is assigned a color 
from C, and the colors of its vertices are pairwise different. A triangulation A  
is l-colored iff all n-simplexes can be l-colored simultaneously. In a I-coloration 
of A with C =  {1 , • • • ,1}, C(v) will denote the color of the vertex v.

Definition 5.2. I f u  is a representation of the knot group of K  into the 
symmetric group £ n, n > 2, (B ,R ,T ) is a butterfly representation of K  
and the boundary of this butterfly is triangulated by A and l-colored by C = 
{1,2, • • • , /}, I > n, we say that C is compatible with u) if and only if under the 
a-reflection (a is the arc shared by A and A) the color k matches with color 
uj(fxa)(k), that is, for every vertex v € A we have C(a(v)) = uj(fia)(C{v)).

Exam ple 5.3. The knot 3 /1 . The Fig. 11 illustrates a triangulation A  of a 
butterfly (B ,R ,T ) that represents the rational knot 3/1 (trefoil knot). It is 4~ 
colored by C =  {1,2,3,4} as shown. The representation u  : 7Ti (S3\3 / l )  —+ £3 
is the map of the group of 3/1 into £ 3  sending the two generating meridians 
/¿a and up (associated to the trunkT) to the permutations (12)(3) and (13)(2), 
respectively. It is easy to see that this 4-coloration is compatible with u>.

The next is the principal result of this section.

Theorem  5.4. Let (K ,u ) be a knot (or a link) with a given regular diagram 
Dk , together with a transitive representation w : 7Ti (S 3\ K ) —► £ m, 1 < m  <
3, sending meridians to transpositions. Then there is a triangulation Ag of
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the boundary 8{Bk) of the butterfly B k  and a 4-coloration of Ag which is 
compatible with uj.

Proof Our purpose is to find a triangulation of 8{B k ) and a 4-coloration 
compatible with u j. In other words, we need a triangulation of 8{Bk) such that 
if two triangles are identified by an a-reflection whose associated transposition 
is (i j) , i , j  G {1,2,3}, the a-reflection sends colors (i,j)  to colors ( j , i), and 
leaves the remaining two colors fixed. (The number 4 remains always fixed.) 
In particular, in an a-reflection with permutation (i j )  the vertices upon the 
arc a  are colored with one of the remaining numbers.

First of all, we construct an initial triangulation A, and we assign four colors 
to the vertices in such a way they are compatible with u A f t e r  that we will 
refine A in order that colors along adjacent vertices be different.

Let us describe the set of vertices of A. This set contains all the A-, and 
£ -vertices given in the Algorithm before. Moreover, it also contains a point, 
which is taken in the interior of each arc of the diagram. We denote generically 
these points by D  and we say that they are D-vertices.

Figure 12: Putting a D-vertex.

Now, we describe the edges of A. On one hand, the curves A B  and AD  that 
are contained in the boundary of the wings are edges of A. On the other hand, 
we notice that each wing has only one D-vertex in its boundary. From that 
point we trace disjoint curves (except in D) toward every B-, and ^4-vertex 
(that is not an end of the arc that contains the point D). These additional 
curves are contained in the same wing that contains the point D  and are also 
edges of A by definition.

We already have the triangulation A. We remark that each triangle has one 
vertex of each type.

Now, we color the vertices of A. In order to get a 4-coloration compatible 
with uj, first of all, we color the A-, and D-vertices which are the only ones 
lying in the edges a  of the trunk. If the permutation associated to the edge a  
is (i j) , the vertices of a  are to be given a color in {1 , 2,3,4} — {i,j} .

Assign the number 4 to /^-vertices and the color {1,2,3} — {¿,j} to A- 
vertices. The color 4 given to D-vertices is compatible with because u  fixes
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4. We observe that the colors given to the A-vertices are also compatible 
with ui. In fact, this is trivial for the A-vertices that are ends of the arc a; 
they remain fixed under the a-reflection. Hence, let us consider an ^4-vertex 
that belongs to the adjacent wings to a  but is not an end point of a. Its 
corresponding point under the a-reflection is another .4-vertex, and these two 
A-vertices arise from the same crossing point of the diagram. So, their colors 
also match under the permutation (i j )  associated to a  because u  associates 
to each arc a transposition in £3 and the only possibilities for the .4-vertices 
that arise from the same crossing point are the following: ^-vertices belong 
to arcs with the same associated transposition (Fig. 13a) or belong to arcs 
with different associated transpositions (Fig. 13b). (Actually, the fact that the 
colors of the A-vertices match is a consequence of the Wirtinger relations that 
are verified at each crossing point of the diagram).

(U)

(U) (ik)

k  *
D

i *

\  B

(  U )
Figure 13a: Colors compatible 

with (i j).

(jk)
Figure 13b: Colors compatible 

with (i k).

Now, we proceed to color 5-vertices. Recall that for each region Ri, deter
mined by the projection of the knot, there is exactly one B-vertex denoted by 
B(Ri).

Figure 14: Touring the regions.
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We note the obvious fact that starting in a region Ri, it is possible to tour 
all the regions going transversely across the arcs of the link. For instance, here 
is a curve visiting all the regions, in the case of a knot: Our initial point is a 
point Q in a given region. Then we move following a parallel curve to the knot 
until we again find Q. Once there, we traverse the knot and we choose another 
point in the adjacent region to the initial one, that we label R. We continue 
touring the regions moving along a parallel curve to the knot until we find R  
and we stop there. In this way we have passed through every region because 
every region is bounded by the knot (see Fig. 14). If we have a link, an obvious 
modification of the above method gives the touring curve.

Now, let us give the coloring rule for the B-vertices. We start by assigning 
any of the numbers 1,2 or 3 to one of them. Once it is colored the others 
become colored in the following way: if Ri1 and Ri2 are two regions that share 
an arc to which is associated the transposition (i j)  and if we have assigned 
the color k € {1,2,3} to B (R i1), then the vertex B(Ri2) gets the color (i j)k ,
i.e., the image of k under the transposition (i j).

This coloring rule and the fact that starting in any region we can travel to 
any other region guarantees that it is enough to choose the color of only one 
of the B(Ri) to get all the B  vertices colored. Moreover, since we have three 
options for coloring the first one, each of the three gives a different coloration 
of the B(Ri) vertices. (Incidentally, we will see later, in Remark 8.1, that these 
different colorations might give rise to different triangulations).

We need to prove that given the color of B(Ri), then the color of B (R j) is 
independent of the chosen path between B(Ri) and B(Rj). In fact, it is enough 
to observe what happens with the colors of B-vertices of the four regions sharing 
a crossing point.

Let Rix,R i2,R i3 and R{4 be the four adjacent regions to a fixed cross
ing point. If we give the color, for example, to B(R{1) then the colors of 
B(Ri2),B (R i3) and B(Ri4) are determined. In fact, the two possible cases are:

( V)

a

(ij)

A (U)D a 4
A r\

Figure 15a: The three arcs 
have the same associated 

transposition.

(JD
Figure 15b: The three arcs have 

different associated transpositions.
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So, the color of one of the B(Ri) determines the color of the rest. Further
more, because of the coloration rule, we have that these colors are compatible 
with u). (Again, all this is a consequence of the Wirtinger relations that are 
verified at each crossing point of the diagram.) In this way, we have colored all 
the vertices of the triangulation A.

However, this coloration is not in general a 4-coloration, because we could 
get two adjacent vertices with the same color. Since the only vertices that are 
given the number 4 are D-vertices and they are not adjacent, then the only 
adjacent vertices that could have the same color have to be A  or 5-vertices. 
Let us assume that we have a fixed A-vertex that has color k and is an end 
of an arc a  with associated transposition (i j) . Suppose that it connects to a 
B-vertex with the same color k . In Fig. 16a we illustrate what happens at the 
crossing point, at which the fixed A  belongs.

Actually, there are two 5-vertices that connect to the same fixed A-vertex, 
and both have to have the same color k because the number k is fixed under 
the action of (i j). Now, let a ' be the arc that pass over at this crossing point. 
Suppose that the associated transposition of a ’ is (V j '), then we see that the 
A  and B-vertices placed on the other side of the arc a' have the same color 
(i' j')k . Therefore there are four vertices to be adjusted by subdivision. We 
take a point in the interior of each of these four edges in such a way that all 
four become identified by the reflections performed along a  and a'. We call 
these points C-vertices. We add them to the initial set of vertices of A. Now, 
we trace curves from each of these C-vertices to connect them to the two D- 
vertices placed in the two adjacent wings to C. We add these new edges to 
the triangulation A. See Fig. 16b. To color these four C-vertices, we take any 
of them and color it with i G {1,2,3} — {£}, if it belongs to the arc whose 
ends are colored with k. Immediately, because of the Wirtinger relations, the 
colors of the other three axe determined and they are compatible with w. We 
see this situation in Fig. 16b. Moreover, the coloration of the four C  points 
around a crossing point is local, that is, it is independent of the coloration of
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any other (7-vertex placed at a different crossing point (if it exists). Since, it is 
possible to color the four C-vertices wherever they appear, we get a 4-colored 
triangulation A3 of 8B k  compatible with uj. This completes the proof of the 
theorem. EÎ

R em ark  5.1. Notice that any triangle in the triangulation A q has always a 
D-vertex, i.e., a vertex labeled with the color 4• Moreover, the colors of the 
vertices of any edge that is not on the trunk T  belong to the set {1,2,3}.

Now, we extend this triangulation Aa of 8B k  to the butterfly Bk by using a 
constructive theorem of Goodman and Onishi that says that given a 4-colored 
triangulation of S 2 it is possible to extend it to a 4-colored triangulation of the
3-ball B 3 (see [2]).

Once we have this triangulation of B k , identifying the butterfly wings by 
p : Bk —> S 3 we not always obtain a triangulation of S 3. We have to be 
careful! The obtained “triangulation” might not be a good triangulation, since 
we could get two tetrahedra sharing more than one face or one tetrahedron 
with two of its faces identified between them. If this occurs, we need to make 
a special type of subdivision, that we call antipyramidal subdivision, to each of 
the problematical tetrahedra. In the following we explain how to perform this 
subdivision.

Let V1V2V3 be a triangle in a triangulation A of a 2-manifold M 2. We suppose 
that the colors of the vertices are the same subindexes. Let B  be its bary- 
center. Let ¿?i, #2 and B3 be the barycenter of the triangles BV2V3, Bv\v^ and 
Bv 1V2, respectively, that we color with their subindexes. The antipyramidal 
subdivision has the following 7 triangles B \B 2 B3, v\V2B3, V1V3B2, V2V3B 1 , 
V1B 2B3, V2B 1B 3 y V3B 1B2. We extend the coloration of the initial triangle to 
this new triangulation.

Figure 17: The antipyramidal 
subdivision.

Similarly, for dimension 3, if V1V2V3V4 is a tetrahedron with barycenter B, 
its antipyramidal subdivision contains the following 13 tetrahedra B 1B2B 3B 4,



REPRESENTING 3-MANIFOLDS BY TRIANGULATIONS OF S 3 81

V1 V2V3B 4i ViV2V4B 3, V1 V3V4B 2 , V2V3V4B 1 , V1 V2 B 3B 4 , V1 V3 B 2B 4 , V2V3 B 1 B 4 , 
v3v4B iB 2, V1B 2B3B4, V2B 1B3B4, V3B 1B 2B4 and V4B 1B2B3, where Bi is 
the barycenter of Bvjvkvi, with j, k , I different numbers in {1 ,2,3,4}. As in the
2 dimension case, this subdivision has the advantage that the coloration of the 
original tetrahedron extends to it, i.e., it does not spoil it.

Definition 5.5. The triangulation of B k  just defined, which is 4-colored, will 
be denoted by A b k and coZ/ed the canonical triangulation of B k  • It induces a 
triangulation of S 3, denoted by A k , and called the canonical triangulation of 
S 3.

Notice that this canonical triangulation depends on the given diagram D k - 
See an example in Section 8.

The following lemma classifies the edges in the canonical triangulation A k  
of S 3 and will be essential in the proof of the Main Theorem.

Lem m a 5.1. The edges a in A k  such that p~1(a) C 8B k  are of three types:
a) I fp ~ l (a) C T, the trunk of B k , thenp~1(a) consists of precisely one 

edge.
b) I fp ~ 1(a) <f. T  and Int(p~ 1(a)) C In t(A  U Â), for some wing A, then 

p~1 (a) consists of precisely two edges.
c) I fp ~ l (a) <£. T  andp~l (a) is contained in the boundary of some wings, 

thenp~1(a) consists of precisely four edges.

Proof. Types a) and b) come directly from the identification p, since the re
flections are made along the trunk T, so the points in the trunk are identified 
with no other point. Also the points in the interior of the wings always are 
identified in pairs.

Figure 18: The edges 77, n , A and e 
are identified.

Now the Type c) is true because if p_ 1 (a) (£. T  and p- 1 (a) is contained in 
the boundary of some wings, so if 77 is an edge in p~l (a) then it is an edge or
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a part of an edge that joins an ^-vertex with a JB-vertex. Therefore, we see 
that under p, 77 is identified with 3 more edges fj,, 7  and e, each one placed in a 
different regions adjacent to the same crossing point of K . See Figures 12 and 
18. Gi

We finish this section proving that the set of odd edges in Ak  coincides with 
the knot K.

Proposition  5.6. I f A k  is the canonical triangulation of S 3 then Oa k =  K.

Proof We first show that each edge of A k  not in K  is even. The edges of K  
form the trunk T  of B k • The other edges a of A ^  belong to one of three cases:
Case 1 Int(a) C Int(BK)- Since Abk , the canonical triangulation of B k ,  is

4-colored then a  is even. See comment after Theorem 2.4.
Case 2 p_ 1 (a) C 8B k  and 7n£(p_ 1 (a)) C In t(A  U A) for some wing A. Then 

p- 1(a) is the union of two edges ¡3 and 7 , where ¡3 C A  and 7 C A  and 
they are identified by p. See b) of Lemma 5.1.

The st(a) is decomposed by 8B k  in st(/3) and in st(7 ) in B k - We 
want to show that the valences of (3 and 7  have the same parity, i.e., 
v(/3) =  v(7 )(mod2). Notice that v(0) is even if and only if the two 
vertices of (st((3) H 8B k )\(3 have the same color. But then the corre
sponding vertices (sf(7 ) fl 8B k )\7 have the same color, because they 
are obtained by applying the permutation uj(fis), where S =  A  fl A. 
This shows that in fact v((3) = ^(7 ) (mod 2), then v(a) =  0(mod2) as 
we wanted to prove.

Case 3 p- 1 (a) C 8B k  and Int{p~x(a)) <£. In t(A  U A). This is the Type c) of 
Lemma 5.1 therefore p~1(a) is the union of four edges 7/, /x, A, e that are 
not in T  but are in the boundary of wings. Thus st(a) is fragmented 
into four stars in B k , i.e., st(a) = st(r])\Jst(fj,)\Jst(X)Ust(£). We want 
to show that v(a) =  0(mod2).

This will follow if we prove that v (tj)  =  v(ji) =  v(X) =  v(e) =  0(mod2). 
Consider, for instance, st(rj). The set st(r]) fl 8 B k  consists of two triangles, S  
and Q (see Fig. 18). Since the vertices of S  — 77 and Q— 77 are colored by 4, see 
Remark 5.1, then v(rj) is even (compare the italics in Case 2). Thus O ak Q K .

To see that O ak 2  K  simply notice that if t  is an edge of T  the valence v(r) 
is odd because the two vertexes forming the link lk(r) in 8 B k  have different 
colors. This completes the proof. Ei

6. P roo f o f th e  main theorem
Now we are in place of proving The Main Theorem.

Theorem  6.1. (M ain  Theorem) Let {K ,u) be a knot or a link K  in S 3 
together with a transitive representation oj : (S 3\ K ) —» £ m, 2 < m  < Z,
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sending meridians to transpositions (simple representation). Then there exists 
a triangulation A k  of S 3 such that:

(i) Oa k =  K  and (ii) w(Aif) =  w .

Proof. We take the canonical triangulation Ak  of S 3 associated to the butterfly 
B k  and to the representation ui, constructed above. By Proposition 5.6 we 
already know that 0&K =  K.

We will show that u) ( A k )  =  cj.
Take then a meridian ¡ia of an edge a  of K . Then p~l {a) is an edge of the 

trunk T  in 8B k • Denote p-1 (a) by r  (see Fig. 18), so

p~1(st(a)) =  st(r) in B k -
The set st(r) fl 8B k  consists of two triangles U and V  sharing the edge r. Let 
u (resp. v) be the vertex in U — r  (resp. V — r). Let w be the vertex lk(U) in 
B k •

Assume uj(fia) is the transposition Then the vertexes of r  are colored 
k and 4. Thus, u is colored i or j  (say j). Then w is colored i.

Recall that the canonical triangulation A i s  4-colored. In this coloration 
(To is colored. We take this as the starting coloration of ao needed to obtain 
the permutation cj(A k )(Mcx)- Call s* the vertex of <ro having the color i.

Since uj([xa)(i) = j  we want to prove that o;(A/c)(/xQ)st =  Sj, where sj is 
the vertex of oo with color j.

Recall that /zQ consists of a tail t starting in the base tetrahedron <jq (inside 
B k ), going from b(<Jo) to the tetrahedron of st{r) with base U, going around a  
through st(a) and coming back to b(ao) by the reverse of the tail t. Note that 
the orbit of s* (resp. S j )  through t under propagation ends in the vertex w of 
U (resp. u) because A b k is 4-colored. Going around st(r), the vertex w of U 
propagates to the vertex v of V  because v(t) is odd. When we match U and V  
by p, the vertex v e  V  matches with the vertex u e U  which under propagation 
through t~ l ends in S j .  Therefore a;(A/^)(/ia ) and uj(fxa) coincide when applied 
to the 3 colors i, k, 4 of U. Therefore they coincide in the remaining one. Thus 
u;(A/f)(/ja ) =  u(fia) for all elements a. This ends the proof. [ZÎ

7. T he theorem  of Izm estiev and Joswig
In a very interesting paper by I. Izmestiev and M. Joswig ([7] and [6]) they show 
that a triangulation of a manifold AT gives rise, in a natural way, to a branched 
covering over N. For any triangulation A they associated a group 11(A), called 
the group of projectivities of A. This group has some similarities with the 
fundamental group, even though it is not a topological invariant. In fact, the 
action of it on the set of vertices of a simplex of A, permits the construction of 
branched coverings over N. In this way, they show that any closed orientable 3- 
manifold M  arises as a branched covering over S 3 from some triangulation of S 3.
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Their proof uses the theorem that asserts that any closed orientable 3-manifold 
M  is a simple 3-branched covering over S3 with a knot K  as branched set (see
[3] and [9]). They start from a tubular neighborhood R of the knot K  and 
give a triangulation for it. Now, using handlebody decomposition, they attach 
triangulated fc-handles to finally find the triangulation A of S3 from which 
M  arises as a branched covering of S3. But their proof is not constructive. 
Nevertheless, this result is important because it shows that branched coverings 
arise automatically once we have a triangulation of the manifold.

The aim of the precedent sections was to obtain this same theorem in a 
different way, which it turns out to be constructive.

C orollary 7 .1 .  (Izmestiev-Joswig) . LetM be a closed, orientable 3-manifold. 
Then there exists a triangulation A  of S 3, such that M is homeomorphic to 
M  (A); and there exists a natural simplicial 3-fold simple covering p : M (A) —> 
A branched over some knot (dependent on M). '

Proof. In fact, it was shown independently in [3] and in [9] that for any 3- 
manifold M  there is a simple 3-fold covering branched over a knot. In other 
words, for each 3-manifold there is a knot (K , u>) in S3 together with a transitive 
representation u  : (S3\K )  —► S 3 sending meridians to transpositions. Apply 
Theorem 6.1 to obtain a triangulation A  of S3, such that cj(A) =  c0 . Then 
M  (A) is connected (Remark 2.1) and being the 3-fold branched covering of S3 
over K  associated to uj(A) =  uj coincides with M, up to homeomorphism. We 
finally note that the construction of the branched covering p : M (A) —» S3 is 
simplicial. EÎ

8 . A n exam ple

Figure 19: A 4-colored triangulation.
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This section is written to substantiate our claim that the theorems in this 
paper are constructive. We will make a construction for a concrete knot.

Fig. 19 shows a regular diagram for the rational knot K  =  9/2 (the knot 6 i 
in [1]) with a 4-colored triangulation for the boundary 8Bk  of its associated 
butterfly B k - For simplicity, we have placed the point at the infinity in several 
places in the picture, but we note that oo represents only one point.

To obtain the triangulation A bk (and with it the triangulation A k  of S3, 
which involves some antipyramidal subdivisions) one only needs to apply Good
man and Onishi algorithm that can be seen in [2].

Rem ark 8 .1. By no means is the triangulation A k  unique. To start with, 
the Goodman-Onishi algorithm gives many possible triangulations. Moreover, 
if we refer to Section 5, one sees that the potential C-vertices to be added to the 
triangulation will depend on the initial color attributed to B(R\). And different 
triangulations might arise according to the choice of color of B(R\).

Figures 16a and 16b show the crossing points where we have to subdivide 
to adjust coloration discrepancies (i.e., where we adjoin C-vertices) when we 
give different colors to oo. Each figure corresponds to a different canonical 
triangulation. For example, Fig. 19 illustrates one of the 4-colorations that we 
could obtain for the Fig. 20a.

Figure 20a: Figure 20b: Figure 20c:
oo is colored with 1. oo is colored with 2. oo is colored with 3.

Of course, it remains to find the relationship between triangulations of S3
giving rise to the same 3-manifold.
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