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A b s t r a c t .  In this article, we study a variant of Newton’s method of the fol­
lowing form

0 € f(xk) +  hvf(xk)(xk+1 -  xk) + F(xk+1),
where /  is a function whose Frechet derivative is if-lipschitz, F is a set-valued 
map between two Banach spaces X  and Y and h is a constant. We prove that 
this method is locally convergent to x* a solution of

0 e f(x) +  F(x)
if the set-valued map [f(x*) +  /iV /(x*)(. — x*) +  F ( .) ]~ l is Aubin continuous 
at (0, x*) and we also prove the stability of this method.
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R e s u m e n . E n  este artículo estudiamos una variante del método de Newton de 
la forma

0 6 f(xk) +  hVf{xk)(xjt+i -  xk) +  F(xk+1)
donde, /  es una función cuya derivada de Frechet es if-lipschitz, F es una 
función entre dos espacios de Banach X  y Y  cuyos valores son conjuntos y  h 
es una constante. Probamos que este método converge localmente a x*, una 
solución de

0 € f(x) + F(x),
si la aplicación [/(x *) +  hVf(x*)(. -x*)  +  F (.)]_ 1  es Aubin continua en (0, x*). 
También probamos la estabilidad del método.
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1. Introduction
Throughout this article X  and Y  are two Banach spaces. We consider a gen­
eralized equation of the form

0 e f { x ) + F { x )  (1)

where /  : X  —► Y  is Frechet-differentiable and F : X  —» 2y is a set-valued map 
with closed graph. Let us note that the equation (1) is an abstract model for 
various problems.

•  When F  =  0, (1) is an equation,
•  when F  is the positive orthant in IRm, (1) is a system of inequalities,
•  when F is the normal cone to a convex and closed set in X,  (1 ) may 

represent variational inequalities.

For others examples, the reader could refer to [4].
To solve (1), in [3] and [4], A.L. Dontchev introduced a Newton type sequence 

of the form

0 €  f(xk) +  V /(xfc)(xfc+i - x fc) +  F (x fc+i), fc =  0 ,1 . . . .  (2)

where V/(xfc) is the Frechet derivative of /  at the point x*, and he also proved 
the stability of the method (2). The main tool used for obtaining the conver­
gence which is quadratic is the Aubin continuity of (/ +  F )_1 and the Lipschitz 
property of the Frechet derivative V/.

Following up, in [10], A. Pietrus extended this study to the functions /  
whose Frechet derivative V/  satisfies the Holder condition, he showed that the 
convergence is superlinear and also proved, in [9], the stability of the method
(2) in this mild differentiability context.

Let us remark that when F  =  {0} and x* is a solution of (1 ) of order h >  1, 
the method (2) is no longer valid. To avoid this drawback, in [7, 8], the authors 
proposed a variant of the Newton method of the form

x fc+i = x k - h  V/(xfc)- 1 /(xfc). (3)

Following this work, we introduce to solve (2), the following sequence of the 
form

0 e  / (x fc) +  /iV/(xfc)(xfc+i - x k) +  F(xk+i), k =  0 , 1 . . .  (4)

Let us remark that when h =  1, the method (4) is exactly the Newton type 
method (2).

This paper is organized as follows : in Section 2, we recall a few preliminary 
results, in Section 3, we show that the method (4) is locally convergent and in 
Section 4, we prove the stability of this method. In the sequel, all the norms 
will be denoted by ||.||, the distance by dist and the ball of center x  and of 
radius r by Br(x).
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2 . Prelim inaries
In this section, we collect some definitions and results that we will need to 
prove our results.

Definition 2 . 1 . A set-valued map T : Y  —» 2X is said to be M-pseudo-lipschitz 
around (yo,xo) G Graph(T) :=  {(y, x) € Y  x X ,x  € r(V )} if there exist 
neighborhoods Vofyoand U of xq such that

sup dist(x,V(y2)) < M\\yi -y 2||, V yu y2 e V. (5)
x e  r(yi)nt/

Let A and C  be two subsets of X ,  we recall that the excess e from the set A to 
the set C  is given by e(C, A) =  supie  c  dist(x, A). Then, we have an equivalent 
definition of M-pseudo-Lipschitz property in terms of excess replacing (5) by

e(r(!/1)nCi,r(y2))<M||yi-y2|| (6)
in the previous definition.

In [2], the above property is called the Aubin continuity and the maps sat­
isfying this property are called Aubin continuous. In [5], the above property 
has been used in order to study the problem of inverse for set-valued maps. 
For more information about the Aubin continuity, the reader could refer to 
[1, 2, 1 1 ,  12].

Lem m a 2 .1 .  Let (X,p) be a complete metric space, let ^ be a map from X  
into the closed subsets of X , let rjo € X , r and A be such that 0 <  A <  1  and

(a) dist(r)0, ^(r}0)) < r ( l -  A).
(b) e(^(a;i) n 5 r(77o),^(x2)) <  \p {xu x2), V ® i,x 2 e Br{r]o).

Then 'ir has a fixed point in Br(Tjo). That is, there exists x € Br(r]o) such that 
x £ ^(x). If ̂  is single-valued, then x is the unique fixed point of ̂  in Br(rjo).

The previous lemma which has been proved in [5] is a generalization of a 
fixed point theorem in Ioffe-Tikhomirov [6] where in (b) the excess e is replaced 
by the Hausdorff distance. It’s clear that when is single-valued, the theorem 
is closed to the Picard fixed point theorem.

3. Convergence analysis
From now on, we make the following assumptions (we recall that x* denotes a 
solution of (1 )):

(HI) /  : X  —*■ Y  is a function which is Frechet-differentiable in a open 
neighborhood Cl of x*.

(H2) The Frechet derivative V / of /  is if-lipschitz in Cl with K  a constant 
which is strictly positive.

(H3) F : X  —>■ 2y  is a set-valued map with closed graph.



(H4) The set-valued map [/(x*) -f /iV/(x*)(. — x*) +  F (.)]_1 is M-pseudo- 
lipschitz at (0,x*) where h E JR.

Let us remark that the hypothesis (H2) implies that there exists a 
constant L >  0 such that ||V/(x)|| <  L, for every xQ .fl ,  we will 
use this assumption, in the sequel of our study.

(H5) The constants M ,K, L and h are such that M  (~  +  |1 — h\L) <  1.
The first theorem of this paper reads as follows :

Theorem 3.1. Let x* be a solution of (1) and suppose that the assumptions 
(H1)-(H5) are satisfied. Then for every c such that M  ( y  +  |1 — h\L) < c < 1, 
one can find 5 >  0 such that for every starting point xo € Bs{x*), there exists 
a sequence (xk)k for (1) defined by (4) which satisfies :

llxfc+1 -x* \\  <  c||xfc -x *||  (7)

that is, the sequence, (xk)k is linearly convergent to x*.

Proof Before proving theorem 3.1, we need to introduce some notations. First, 
define the set-valued map P  from X  into the subsets of Y  by

P(x) =  f(x*) +  h'7f(x*)(x -  x*) +  F(x) ,

with h € IR and the map for xq fixed in X  by

x -+ ^o(^) =  P ^ if ix * )  +  hVf(x*){x -  x*) -  f (x 0) -  hVf(x0)(x -  ar0)]-

Then a fixed point x\ of checks x\ € ^ 0(^1 )» which may be written as 
follow :

f{x*) +  hVf{x*){x 1 -  x*) -  f (x 0) -  hVf(x0)(x 1 -  x 0) C P(x  1 ), 

and finally
0 € f (x 0) +  hVf(a:0)(x! -  x0) +  F(x 1) , (8)

i.e., x\ is a solution of the equation (4).
The induction will consist in starting point xk to show that the map

x -» y k(x) =  -I- hVf(x*)(x -  x*) -  f (x k) -  hVf(xk)(x -  x *)],

has a fixed point x^+i.
This fixed point will satisfy a relation which is similar to (8), replacing xo 

by xk and x\ by xk+i . So, repeating this algorithm, we will build a sequence 
(xk)k which will converge to x*.

Now, we state a result which is the starting point of our algorithm. It is an 
efficient tool to prove theorem 3 .1 and reads as follows.

Proposition 3.1. Under the assumptions of theorem 3.1, there exists S >  0 
such that for all xo ^  x* and xo € Bs(x*), the map ^o(^) =  jP- 1  [/(£*) +  
h'7f(x*)(x — x*) — f  (x0) — hVf(xo)(x — xq)] has a fired point x\ 6  B${x*).
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Proof. Without loss of generality, we can suppose that the diameter of Cl noted 
diam(Q) is less than 1. By hypothesis (H4), there exist positive numbers a and 
b such that

e ( p - \ y ‘) n B a( x ' ) ,p - l (y")) < M\\y' -  y"||, V y', y" € S „(0). (9) 

fix S >  0 such that

5 -  m i n i ,  - | l - h | W ^ | l - f t P  +  2 6 t f ( l  +  2 |h|) 1  1
,5<m,n( o'-------------w r m ------------- ’ ~M\h\K j  ’ (10)

To prove proposition 3.1, we will show that both assertions (a) and (b) of 
Lemma 2.1 hold, where 770 =  x*, ^  is the function #0  defined at the very 
beginning of this section and where r and lambda are numbers to be set. 

According to the definition of the excess e, we have

dist(x*,'I,o(£*)) <
e (P - 1 (0) n Bs(x*), P _1 [f(x*) -  f (x 0) -  hVf(x0)(x* -  x0)J). (11)

Moreover, for all xq G Bs(x*), we have

1 1 / 0 0  -  f (x 0) -  hVf(x0)(x* -  z0)||

<  1 1 / 0 0  ~  f ( x0) “  Vf(x0)(x* -  x0)|| +  ||(1 -  h)Vf(x0)(x* -  x0)||

<  y \\x* -  x0\\2 +  \ 1 -  h\L\\x* -  x0||

<  y s2 +  I1 "  h\L5'

Thanks to (10), we have +  |1 — h\L5 < b, which implies that (f(x*) — 
f(xo) — hVf(xo)(x* —xo)) G Bb(0). Combining the last remark, the inequality 
(9) and the definition of we get

dist (x*, , tfoO O ) <  M  | | / 0 0  -  f (x 0) -  hVf(x0)(x* -  x0)| |

<  M \\x* -  ar0|| +  |1 -  h\Lj \\x* -  x0||.

fix c such that c > M  ( y  +  |1 — h\L). Setting A =  M\h\K5, then, A G]0,1[ 
and one can find 5 such that M  ( y  +  |1 — h\L) <  c( 1 — A) since diam(i)) <  1 . 

Hence,
dist(rc* ,*oO O ) <  c(l — A)||x* — xo||.

By setting 770 =  x* and r =  ro =  M  (%\\x* — rro|| +  |1 — h\L) \\x* — xo||. We 
can deduce from the last inequalities that assertion (a) of Lemma 2.1 is satisfied.

Now, we show that condition (b) of Lemma 2.1 holds. By (10), we have 
ro < 6  < a. Moreover, for x G Bs(x*), setting

y =  f(x*) +  hVf{x*){x -  x*) -  f (x 0) -  hVf(x0)(x -  x0)
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we have

IMI <  II f(x*) -  f ix  o) -  V/( x 0)(x* -  x 0)|| +  ||(1 -  /i)V/(x 0)(x* -  x0)||
+  | | M V / ( x * ) - V / ( x o ) ) ( x - x * ) | |

< y  llx * “  *o ||2 +  |1 -  h\L\\x* -  x0|| +  \h\K\\x* -  x0||||x -  x*j|

< ( y  + ¿ 2  +  |1 -  h\LS.

Then, by (10), we can deduce that for all x G Bs(x*), y G Bb(0). It follows 
that for all x',x" G Bro (x*) where ro <  <5, we have

e C M *') n Bro{x*), V0(x")) <  e (^o(rr') n B6{xm), tf0(z"))

which yields, by (9),

e (tf0(x;) n Bro(x*), ^o(®")) ^  M||/iV/(x*)(x' -  x") -  /iV/(x0)(x' -  x")||

<  M\h\K\\x* — xo|| ||x' — x"|| 

<M |/i|K ’(5||x/ - x //||

<  A||x' — x"\\

Thus condition (b) of Lemma 2.1 is satisfied.
Since both conditions of Lemma 2.1 are fulfilled, we can deduce the existence 

of a fixed point x i G Bro(x*) for the map ^o- The fact that ro <  S completes 
the proof of Proposition 3.1. Ei

According to a previous remark, x\  is obtained by the equation (4) starting 
with xo and x\  G Bro(x*). Thus, we have

||zi — x*|| <  r0 =  M  ||x* -  x 0|| +  |1 -  h\Lj ||x* -  x 0||.

Now that we proved proposition 3.1, the proof of theorem 3.1 is straightfor­
ward as it is shown below:
Proof of theorem 3.1. Proceeding by induction, keeping A =  M\h\K5 rjo =  x* 
and setting rk =  M  (yllx^ — x*|| 4-11 — h\L) ||xfc — x*|[, the application of 
proposition 3 .1 to the map ^ k gives the existence of a fixed point Xfc+i for ^ k, 
which is an element of Brk(x*).

This last fact implies that

||xfc+i -x * || < rk

and proceeding as in the proof of the proposition 3.1, we can choose c <  1 
such that ||xfc+ i — x*|| <  c||xjt — x*||. Hence, the proof of theorem 3 .1 is 
complete. Ei

As an illustration of our general results, let us consider the following non­
linear programming problem:
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minimize fo{x) 
subject to

f  fi{x) = 0, i -  l,---  ,m 
\  fi{x) < 0, i =  m +  I,--- ,p

where the function /< : 1RU —*• IR, i =  1, • • • ,p are twice continuously differ­
entiable on lRn. The lagragian L associated with the minimization problem is 
defined by

p
L : (x, A) G IRn x IRP f 0(x) +

1=1
then, the Karush-Kuhn-Tucker first order optimality conditions read as follows:

V xL(x, A )= 0  (12)

V aL (x ,A )g  Na(A) (13)

where N\(X) denotes the normal cone to the set A =  IRm x IR^~m at the point 
A. Then, it is easy to see that conditions (12) and (13) amount to

0 G (VxL(x, A),- V xL(x, A)) +  Nc (x, A) (14)

where C =  IRn x A. Moreover, relation (14) can be reformulated in the follow­
ing way:

0G /(x , A) +  F(x,X), (15)
where /(x , A) =  (Vx£(x, A ) 'V \L (x ,  A)) and F(x, A) =  Nc{x, A). Hence, 
Karush-Kuhn-Tucker optimality system (12),(13) is equivalent to (14) which 
is a generalized equation of the form of (1 ) and then can be studied using the 
method presented in this paper.

4. Stability  o f the m ethod
Now, we prove that the hypothesis (H4) of Aubin continuity is sufficient to 
obtain the stability of the method. In fact, this section is about the method 
for solving equations involving set-valued maps and parameters.

We consider the generalized equation of the following form:

V € f{x) +  F(x) (16)

where y is a parameter, /  is a function which is Frechet-differentiable and F  is 
a set-valued map.

The second important result of this paper follows.

Theorem  4 .1 .  Let x* be a solution of (1), and suppose that the assumptions 
(Hl)-(H5) are satisfied except (H2) that we replace by a weaker assumption 
(H’2). The Frechet derivative V /  of f  is continuous in Cl. Then, there exist 
positive constants a, b and c such that for every y G B b (0 )  and for every
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xo € Ba(x*), there exists a sequence (xfc)fc starting to xq which converges to a 
solution x of (16).

Moreover, if xq is a solution of (16) for y =  y0 then the limit x satisfies

I I* -s o il <  c \ \ y - y 0\\.
Proof. To prove this theorem, we will show the following Lemma.

Lem m a 4 .1 . Let (x*,y*) € Graph(f +  F) and suppose that the assumptions 
(HI), (H’2) and (H3) are satisfied. If the map Px*(.) =  [f(x*) +  /iV/(x*)(. — 
x*) +  F(.)]~1 is Aubin-continuous at (y*,x*) then there exist positive constants
a, ¡3, M  such that for every x € Ba{x*),

e(Px{y') D Ba(x*),Px(y")) < M  ||y' -  y"\ \, Vy',y" e Bp(y*).

Proof. The map Px* (.) is Aubin-continuous at (y*,x*) let a, b and M' be the 
associated constants.

Choose e >  0 such that M'e\h\ <  1  and a > 0 such that ||V/(x) —V/(x*)|| <  
c, for every x € Ba(x*). Moreover, by hypothesis (H’2), there exists L >  0 
such that ||V/(x)|| <  L, for every x € Ba(x*).

Take a >  0 smaller if necessary so that 2a < a and a  (e 4- |1 — h\L +  3e|/i|) <
b. Further, choose 0 > 0 such that

2Af'/9
(3 +  a  (e +  3e|/i| +  |1 -  h\L) < b and ----- ——  < a. (17)

1 — M'eh
Let x e Ba(x*), let y',y" G B@(y*) and let x' e  Px(y') H Ba(x*). Denote 

X\ =  x '. Then

x\ € Px• (y' -  f ix )  -  / i V / ( x ) ( x i -  x) +  f{x*) +  / i V / ( x * ) ( x i -  x * ))  n Ba{x*), 
and

||s  -  x ill ^  Ik -  s*|| + ll1* -  ^lll < 2a-
Using (17), we obtain

lly' ~  f ix) ~  /iV/(x)(xi -  x) +  f{x*) +  /iV/(x*)(xi -  x*) -  y*||

=  lly* -  y; +  /(x) -  f i x *) -  V/(x*)(x -  x*)
+  (1 — / i) V / ( x * ) ( x  — x*) — / i V / ( x * ) ( x i  — x )  +  / i V / ( x ) ( x  i — x)||

<  ||y# -  y*ll +  Wf(x) -  f ix ' )  -  v/(x*)(x  -  x*)||

+ 11-̂ 1 Ilv/COH Ik - *11 + \h \ l|v/(x*) -  V/(x)|||||(x -  xOII
<  (3 +  e||x — x*|| +  \l — h \L  ||x — x*|| H- |/i| e ||x -  xi||

< ¡3 +  a{e +  2\h\ e +  |1 -  /i|L) <  6 ;

the same inequality holds for y".
For these estimates and from the Aubin-continuity of Px*, we obtain that 

there exists an element X2 € -Px* (y//_ fix) — /iV/(x)(xi — x)+ /(x*)+ /iV /(x*) 
(xi — x*)) that is,

y" € f(x)  +  /iV/(x)(xi -  x) +  /iV/(x*)(x2 -  x i) +  F{x2) ,
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and such that
11*2 -  Sill <  M'\\y' -y"\\.

Proceeding by induction, suppose that there exist an integer n >  2 and 
points X2 i 2?3 , . . . ,  xn with

y' e  / (x) +  hVf{x)(xi- 1  -  x) +  hVf{x*){xi -  x{- i )  +  F(x*),

and

||xi - I f —ill < (Ai'e|ft|)t—2 ||x2 - * i | | ,  * =  3,4....... ft.
<  (M'c\h\y-2 M'\\y'-y"\\.

Then

||^n — X * \ \  <  ^ W X j  -  X j - i \ \  +  ¡ ¡Xi  -  X * \ \

3=2

< ' E t{M'€\h\)*-3\\x2 - x l \\ +  a  
j = 2

^ ¿ ( M W 2M'||y, - y " | | + a  
j = 2 

2M'(3 
~ 1 -  M'e\h\ +  a
<  2a according to (IT).

We obtain for both y =  y' and y =  y",
||y -  f{x) -  hVf(x){xn - x )  +  f(x*) +  hVf(x*)(xn -  x * )  -  y*\\

< (3 +  a(e +  3|/i| e +  |1 — /i|L) .
< b.

Then there exists an

xn+i e  Pi* (y"  -  f(x) -  hVf{x)(xn - x )  +  f(x*) +  hVf{x*)(xn -  X*)) 
that is,

y" e f(x)  +  /iV/(x)(x„ -  x) +  h,Vf(x*)(xn+1 -  xn) +  F(xn+1 ) , (18) 

such that

||*n +l -  *n|| <  M '  | |/ lV /(x )(x n_ i  -  Xn) +  / l V / ( x * ) ( x n -  Xn_ i)||

<  M ’\h\ \\{yf{x) -  vf(x*)){xn - x n-i)\\
< M'\h\ e ||x „ - x „ _ i | |

<  M ,\h\e(M'e\h\)n- 2M '\\y'-y"\\
< M '\\y'-y"\\ \h\ {M’e\h\)n~ \  

this induction step is complete.
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Thus (xn)n is a Cauchy sequence, hence there exists x" such that xn —> x" 
as n —* oo. Moreover, passing to the limit in (18), we get x" G Px(y") and

n

Jim  s u p ^ l lx ,  -x<_i||
1=2 
71

lim su p y^ (M /e|/i|)I_2||x2 — xi||
n —>oo ^i=2

M ' .
Hence, the lemma holds with M  =  ----- . 0

1 -  M'e\h\

<

Proof of theorem Ĵ .l. Let a, ¡3 and M  be the constants in Lemma 4.1 and 
let Qx(.) =  [/(x) +  /iV/(x)(. — x) +  F(.)]_ 1 , for x G Ba(x*) and h G JR. Let 
e >  0 satisfy Me <  1  and choose a >  0 such that Ba(x*) C  fiand ||V/(x') — 
Vf {x ")|| <  e,whenever x',x" G Ba{x*). Let L > 0 be such that ||V/(x)|| <  L, 
for x G Ba(x*). We can take e in such way that M(e +  |1 — h\L) <  1. Choose 
a >  0 such that

a < a  and 2(e 4- |1 — h\ L)a < 0  (19)

and let h >  0 satisfy

b(l +  M  (e 4- |1 — h\ L)) 4- 2 (c 4- |1 — h\ L) a <  /? and
Mb 4- 2 a

1 — M (e + \l — h\ L) ~ a'  ̂ ^

Let xo G Ba(x*). Then

x* e Qxo {-f(x*)  4- / ( x 0) 4- / iV /(x o )(x *  -  x 0)) n  Ba(x0) .

Further,

II f ( x*) ~ f ( xo) -  hVf(xo)(x* -  x 0)||
< \\f(x*) “ f(xo) “ V / ( x 0)(x *  -  x 0)|| + |1 -  h\ | | V / ( x 0)|| ||x* -  x 0||

<  e||x0 -  x*|| 4- |1 -  h\ L\\x* -  x 0 ||

<  a(e 4- |1 — h\ L) < [3, according to (19).

Let y  G Bb{0). From Lemma 4.1, there exists x i G QXo(y)> i-e,

y € f( xo) + /iV/(x0)(x 1 -  x0) 4- F(xi ) ,
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such that

11*1 -  **11  <  M\ \ y  +  f { x*)  -  f ( x o) -  / i V / ( x 0)(x *  -  x 0)||

<  M[\\y\\ +  ||/(a:-) -  f{x 0) -  V /(x0)(x* -  x0)||

+  |1 - h \  ||V/(x0)|| \\x* - x 0||]

<  M[b +  e ||x0 -  x*|| +  |1 -  h\ L ||x0 -  x*||]

< M b  +  Mcr(e + \ l - h \  L)
< Mb +  <r, according to M(e -f |1 — h\ L) < 1, that is 

||xi — re* 11 <  a , according to (20).

Then,

||* i—*o|| <  ||* i—®*||+  11®* “ *o|| <  Mb +  M a(e+  |1 -  h\ L) + a .  (21) 

Note that

* i e Q XI (y  +  / ( * i) -  / ( * o) -  h vf(x0)(xi -  x0)) n Ba(xi ) .

Thanks to M(e +  |1 — h\L) < 1 and (20), we have

IIy +  / ( * i) -  / ( * o) -  hVf(x0)(xi -  x 0)||
<  ||y|| +  e ||xi - x 0|| +  | l - / i |  L \\xi x011
<  b 4- (e +  |1 -  h\ L) ||xi -  x0||

<  6 +  (e +  |1 -  h\ L)(Mb +  M(e +  |1 -  h\ L)a +  a)
< b ( l  +  M ( e + \ l - h \  L)) +  (e +  \ l - h \  L){M{e +  \ l - h \  L)a +  a)
<  6(1 +  M(e +  |1 — /i| L ) ) + 2 a { e + \ l - h \  L)
< P-

Then, from Lemma 4.1, there exists an X2 G QXl(y) such that

||*2 - * i  || < M | | / ( x i ) - / ( x 0) - / iV / ( x 0)(a:i - x 0)||

<  M(e +  |1 -  h\ L) ||xi -  x0||.

Further,

||*2 -  **|| <  11*2 -  * l| |  +  ||*1 -  *o|| +  ||x0 -  x*\\
<  [1 +  M(e +  (1 -  h\ L)]\\xi -  Xoll +  a ,
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now,

(1 +  Af(e +  |1 -  h\L)) {Mb +  M (e+  |1 -  h\L)a +  a) 
Mb +  M(e 4- ¡1 — hf L)cr +  a

1 — M(e 4-11 — h\L)
[1 +  M(e +  |1 -  h\L))[l -  M(e 4- |1 -  h\L)][Mb 4- M(e 4-11 -  h\L)a +  a) 

l - M { e + \ l - h \ L )
Mb 4- M(e 4- |1 — h\L)a 4- a

1  — M(e -4-11 — h\L) 
[1 -  M 2(e +  |1 ~h\L)2 -  1  ][Mb 4- M(e +  |1 -  h\L)a +  a]

1 — M(e 4-11 — h\L)
M 2[e +  |1 -  h\L]2][Mb 4- M(e +  |1 -  h\L)a 4- a]

1 — M(e +  |1 — h\L)
< 0 .

Then using (20), we obtain

Mr r*n -  Mb + M ( e + \ l - h \ L ) a  + (r 
11X2 " 1*  11 *  1 -  M{e +  |1 -  h\L) ~  +  ^ (22) 

^ Mb + M(e 4 -11 -  h\L)a + cr +  cr -  M(e + \1 -  h\ L)a 
~  1 — M(e 4-11 — h\L) 

Mb +  2ar 
~ l - M ( e + \ l - h \  L)
<  a .

Suppose that for some integer n >  2, the points x2, X3 , . . . ,  xn are obtained 
by the method (4) in which 0 is replaced by y, that is, Xi € QXi-i(y)  and

||xi <  (M(e 4 -11 -  /i| £ ) ) t_1 ||an - x 0||, t =  3 ,4 , . . . ,n .

Then, by repeating the argument in (22), we obtain that x* € Ba{x*), for
i =  3 ,4 , . . . ,  n. Further, we have

IIV +  f M  ~ f (x n- 1) -  hVf(xn- i) (x n -  x„_i)||
<  6 4-e ||xn xn—i || 4 -11 -  h\ L |[xn - x n_i||

<  b 4- (c 4- |1 -  h\ L ) (M(e 4 -11 -  /ilL) ) " ' 1 \\xi -  x0||
<  6 4- (e 4-11 — /i| L ) ||xi — xo||, according to M(e 4-11 — h| L) <  1

<  b+ (e  +  \ l - h \  L )  (Mb 4- M(e 4-11 — /i| L)a +  a)
< P,.

(see front).
Then from,

i n e QXn (y +  f (x n) -  f (x n- 1) -  /iV/(xn_i)(x„ -  x n_i)) n Ba(xn) (23)



and from Lemma 4.1, we conclude that there exists a sequence

* ^ n + l  £  Q x M  ( 2 4 )

satisfying

||x„+i -  xn11 <  M\\f(xn) -  f (x n_ i) -  /iV/xn_i)(x„ -  xn_i)||

<  Me ||xn — x„_i|| + M \ l - h \ L  ||x„ - x n_i||

<  M(e +  |1 -  h\ L) \\xn -  xn_i||

<  M(e +  | l - A |  L) (M(e +  |1 — h\ L )n_1 | | n - x 0||

< (M(t +  \l — h\ L)n | | j t i - * 0||.
Then, there exists a sequence (xn)„ satisfying (4) when 0 is replaced by y, 

(xn) is a Cauchy sequence, and, passing to the limit in (24), we obtain that 
(xn)n is linearly convergent to a solution x to (16).

Let y0 G Bb(0) and x 0 G (/ +  F)~l (y0) D Ba(x*). Then x0 G Q xo(y)  H 
Ba(x*). Prom Lemma 4.1, we obtain that there exists xi G Q Xo[ y ) such that

||xi — x0|| <  M\\y — yo\\.

By repeating the argument between (21) and (24), we obtain a sequence (xn)n 
satisfying (23) and (24) and which converges to a solution x G (/ 4- F )- 1  (y). 

Moreover
n

||*n “ Soil < X )\\Xi - X i - i  || 
t=l

<  ¿ ( M i e + i l - h l L ) ) ' - 1 | | i ,-x o ||
1 = 1

“  l - M ( e  +  \ l - h \  L)
M

Passing to the limit with n and taking c =  ----- — -----n---- ttvz, we complete
& & 1 -  M ( e + 11 -  h\L) *

the proof. (?i

The last result of this paper is the following theorem.

Theorem  4.2. Let x* be a solution of (1) and suppose that the assumptions 
(HI), (H’2), (H3) and (H4) are satisfied. Then there exist positive constants 
a, b, and ari <  1  such that for every y  G Bb(0), for every xo G Ba(x*), there 
exists a Newton sequence (xk)k starting from xo which linearly converges to a 
solution x G {f  +  F)~1(y), i.e

||xfc+i - x | |  <  C*l||Xfc — x||.

Proof. Let Px*(-) =  [/(^*) +  ^V/(x*)(. — x*) +  F (.)]- 1  be a set-valued map 
which is Aubin-continuous at (0, x*) G Graph(Px.) with modulus c. Then,
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from the definition, there exist constants S > 0 such that for every y G B$ (0), 
there exists x G Px{y) n B c||„||(x*), that is, x G (/ 4- F)~1(y) D £ c||y||(x*).

Let a, /3, M  be the constants in the statement of Lemma 4.1 and K  the 
Lipschitz constant of V/ on f2. Without loss of generality, we can suppose that 
a  <  1 .

Choose positive constants a  and b such that Bcb{x*) C ii, and

(0 °  ^  f  >
(ii) b < m in {f, ,

(iii) cb <  ^ ,

(iv) c6 +  <r <
- \ l - h \ L + y / L * \ l - h \ * + K l 3  1

K r
Let x 0 G B<r(x*), y G i?&(0) and let x G (/ 4- F )~ 1 (y) fl £ c||y||(x*). Then 

||x — x*|| <  cb <  a. Note that

x e  Pxo (y -  f {x)  +  f { x o) + /iv/(x0)(x -  x0)) n B a (x*)

and

lly -  f ( x )  + /(x 0) 4- /iV/(xo)(x -  x0)||
< IMI + ll/(s) -  f M  -  v /(x 0)(x -  x0)|| 4- |1 -  h\ ||V/(x0)|| ||x -  Xoll

< b + ~  ||x -  x0||2 4- |1 -  h\ L ||x -  x0||

< 6 + y  (cb +  cr)2 4-11 — /i| L (c6 4- cr).

From (iv), it follows that y  (c& 4- cr)2 4- 11 — h\L(cb 4- cr) — |  <  0 and using
(ii), we obtain ||y — f(x) +  f (x o) 4- /iV/(xo)(x -  xo)|| < (3. Now, from Lemma 
4.1, there exists x i G P * M ,  i-e

V 6 f(.xo) + h v f ( x 0)(x! -  Xo) + F(x i)

such that

||x -  Xi|| < M ||/(x) -  f  (x0) -  /iV/(x0)(x -  xQ)11
< M ||/(x) — /(x0) — V/(x0)(x — x0)||

+  M \ l - h \  ||V/(x0)|| ||x-xo||

<  M J  I k  -  x 0||2 4 -11 — h\ L  I|x -  x0||
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Hence,

| | z i - x * | | <  Ik i - s | |  +  ||x -x *||

< M [ y  Ik -  x0||2 +  |1 -  h\ L Ik  -  x0|| ] +  cb

< M [ y  (cb +  a)2 +  \ l - h \  L (cb +  a) ] +  cb.

Prom (iv), it follows that M  [ y  (cb -f cr)2 4- |1 — h\ L (cb +  <r)] — y  <  0 
and using (iii), we obtain |k i — s*|| <  a.

Further, x e PXl (y -  f(x) +  f ( x i) +  /iV/(xi)(x -  xi)) fl Ba(x*) and from

Ik “  si|| <  Y K (cb +  cr)2 + M \ l - h \ L ( c b  +  (T)

< -  
“  2 
<  <*,

according to (iv) we have 

lly ~  /(s) +  f (x  i) +  /iV/(x i)(x -  xi)||

<  llyll +  ll/(s) -  f (x i) -  V /(xi)(x -  Xi)|| +  |1 -  h\ llv/ix !)!! ||x -  Sill

< 6 +  j  ( J ^ ( c b  +  a)2 + M  \ l - h \  L(cb +  a)^

+  | l - / i |  L ^ ^ ( c b  +  (7)2 + M  \ l - h \  L(c6 +  a)^

K< b + —(cb +  cr)2 4- |1 — h\ L(cb +  cr), according to (iv)

<  ^  -f ^  =  0 , according to (ii) and (iv).

Then, there exists x2 € PXl (y) with

||s2 ~  s|| <  M||/(x) -  f (x i) -  /iV/(xi)(x -  Xi)||

< \\x - x i \\2 +  M \ l - h \  L ||x -  s i| | .

We have c*i =  — (̂cb +  a) +  M \l — h\L <  1  according to (iv). This implies 
that ||x2 _  s|| <  Qi||xi - s | | .

Proceeding by induction, we complete the proof of theorem 4.2. (Zi
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