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A b s t r a c t .  A  proof of the Lie theorem which relates the symmetries of a first 
order differential equation (or of a  linear differential form) with its integrating 
factors is given. It is shown that a similar result partially applies for systems of 
linear differential forms and ordinary differential equations of any order.
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R e s u m e n . Se da una prueba del teorema de Lie que relaciona las simetrías 
de una ecuación diferencial de primer orden(o de una forma diferencial lineal) 
con su factor integrante. Se demuestra que un resultado similar parcialmente 
aplica para sistemas de formas diferenciales lineales y  ecuaciones diferenciales 
ordinarias de cualquier orden.

1. Introduction
A first order ordinary differential equation can be usually expressed in the form 
dy/dx  =  f(x ,y),  where /  is some function of two variables, or, equivalently, as 
Ldx+Mdy =  0, where L and M  are functions of two variables with —L/M  =  / . 
It may happen that the differential form, or Pfaffian form, Ldx + M  dy is the 
differential of some function, that is, there exists some function of two variables, 
<f>, such that d(f) =  Ldx +  Mdy , in which case it is said that Ldx +  Mdy is exact 
and the differential equation Ldx +  Mdy =  0 amounts to dcp =  0, in such a way 
that its solution is given simply by <j> =  constant.

When Ldx 4 - Mdy is not exact, there exists a function ¡i, called an inte
grating factor of Ldx +  Mdy, such that fi(Ldx 4- Mdy) is exact; but finding 
directly the integrating factor, given L and M , can be highly involved (see,
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for example, [1]). Nevertheless, it turns out that knowing an integrating factor 
of the differential form Ldx +  Mdy is equivalent to knowing a one-parameter 
group of transformations that leaves the equation Ldx +  Mdy =  0 invariant or, 
more precisely, to knowing the infinitesimal generator of that group. In other 
words, starting from the symmetries of Ldx -f Mdy, its integrating factors can 
be obtained and conversely.

This correspondence is an example of the relation between the theory of 
groups and the methods of integration of differential equations established ori
ginally by Sophus Lie. Lie found that the methods employed in the solution of 
differential equations can be understood by means of the theory of groups (see, 
for example, [2-5]).

In this paper the relationship between the integrating factors of a differen
tial form and the groups of transformations that leave it invariant is presented, 
considering the general case of a differential form in n variables, J2?=i aidxl 
(the case with n =  2 is considered, for example, in [3-5]). As mentioned abo
ve, the differential forms in two variables correspond to first order ordinary 
differential equations; the differential forms in more than two variables have 
application, for instance, in thermodynamics and in connection with mechani
cal systems with constraints. Furthermore, an ordinary differential equation of 
order n corresponds to a system of n differential forms in n +  1 variables and 
the integrating factors of a system of differential forms is also related with its 
symmetries.

In Sec. 2 the correspondence between integrating factors and one-parameter 
groups of invariance of a differential form in n variables is considered, including 
some examples. In Sec. 3 the systems of differential forms are studied and it is 
shown that an ordinary differential equation of order n is equivalent to a system 
defined by n differential forms in n 4 -1  variables (an alternative treatment of 
the symmetries of an ordinary differential equation of order n can be found in 
[3-5]).

2 . Sym m etries and integrating factors o f a differential form
A differential form or Pfaffian form in n variables is an expression of the form 
£ tn=i aidx*, where x 1, x2, . . . ,  xn, are n independent variables and a i, a2, . . . ,  an 
are n functions of the variables x \  It will be assumed that the derivatives 
of any order of all the functions that appear in what follows exist and are 
continuous. Furthermore, in order to simplify the notation, it will be assumed 
that there exists sum over all the possible values for each index appearing 
twice in the same term, once as subscript and once as superscript; for example, 
aidx1 =  YZ=i o.idx%.

The form aidx1 is exact if there exists a function, (f>, such that aidx1 =  d(f>. 
Since the total differential of a function 0 of n variables xl is given by dcj) =
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(d(j>/dxt)dxt, the fact that aidx1 is equal to d(J> is equivalent to the n equations

a < = 3 ? '  (2 J)

Differentiating both sides of (2.1) with respect to we have dai/dxi =  
d2(f)/dx:’dxt , and since by hypothesis the derivatives of all the functions are 
continuous, d2(f>/dx^dx% =  d2 4> ¡ dxl dx  ̂\ hence, aidx1 is exact if

da± _ d a ±
dxi dx{ ' ( }

The conditions (2.2) turn out to be also sufficient for aidx1 to be exact.
The form aidx* is integrable if there exists a function, /i, called an integra

ting factor of aidx1, such that fi(aidxl) is exact. According to (2.2), aidx1 is 
integrable if and only if there exists some function (i such that

d(nai) d(naj)
dxi dx{

or
( dai daj \  d\i dfi 

H d xi d x ‘ ) ~ a i dx' a idx r  ( *
While any differential form in two variables is integrable, not all the diffe

rential forms in three or more variables are.
In order to eliminate the function fi (which is not known, if only aidx* 

is given), we multiply both sides of (2.3) by ak and summing the resulting 
equation with those obtained by cyclically permuting the indices i, j ,  k we find 
that

f  dai d a A  ( daj dak\  f  dak d a i \  . .
a k { ^ J - w )  +  a i { a ^ - d ^ ) + a i { d ^ - d ^ ) = ° ’ (2'4)

(which only involves the functions a* and their derivatives). Then, conditions
(2.4) are necessary for aidx1 to be integrable and it can be shown that are also 
sufficient (see, for example, [6]). If in (2.4) two of the indices i, j  and k take the 
same value, the left-hand side vanishes, therefore when n =  2 , the conditions
(2.4) are satisfied for any functions a* and any differential form is therefore 
integrable.

We shall consider families of transformations depending on a parameter t 

xn =  F 1(x1, . . . , x n,t), 
x12 =  F2(x1,. .. ,xn,t),

x rn =  ir»(x i , . . . , xV ) ,  (2.5)

where the F i are real-valued functions that depend o n n + 1  variables (throug
hout this paper, the symbols like x', y', , do not stand for derivatives but 
for coordinates of points after effecting a transformation). In a more compact
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form, the n relations (2.5) are expressed as x'% =  F l(x̂  ,t). The transformations
(2.5) form a one-parameter group if

Fi(xk,t  +  s ) = F i(F*(xk,t),s),  (2.6)

for all t , s e R .  The relations (2.6) imply that Fl(xk,0) =  xl.
For example, if n =  2, using x, y in place of rr1 , rr2, the transformations

x' =  xeat, y' =  yebt, (2.7)

where a and b are two fixed real numbers, form a one-parameter group of 
transformations since

xea(t+s) =  (xe«‘ )eas, yeW+s') =  (yebi)ebs.

Other examples are given by

x' =  x cost — y  sin i, y' =  x sin t +  y cost (2 .8)

and
x' =  x +  at, y' =  y +  bt, (2.9)

where a and b are arbitrary real numbers.
In the applications to be considered here it is not necessary that the relations

(2 .6) hold for all the values of t and s, but it is sufficient that (2 .6) be satisfied 
for values of t and s in some neighborhood of 0 (see (2.13) below). For example,

, x , y
X 1 - t x ’ V 1 - t y ’

satisfies (2 .6) since

x _  ( l - t x )

1 — (£ +  s)x

provided that t and s are such that all the denominators are different from zero. 
When the relations (2.6) hold only for some values of t and s sufficiently small, 
it is said that the transformations (2.5) form a local one-parameter group of 
transformations or a flux; however, in what follows, we shall not distinguish 
between these two cases.

The differential form aidx% is invariant under a one-parameter group of trans
formations xtx =  F*(xJ ,£) if after substituting in it each x% by xn one obtains 
some multiple of a¿¿c, , that is, a* (Fj (xk,t)) dFl(xk,t) =  Xaidx1, where A is 
some function different from zero, which can depend on the xl and t, and in 
the differentials of the functions F l, t is treated as a parameter, that is,

a{ (.Fj (xk, t )) =  Xaidx* . (2 .10 )

Thus, if a{dx1 is invariant under a one-parameter group of transformations, the 
differential equation aidx1 =  0 is transformed into Xaidx* =  0 or equivalently, 
into aidx* =  0.



For example, under the group of transformations (2.7), the differential form 

8xy4dx +  (3 y2 +  4 x2y3 — 12 x4y4)dy (2.11)

is transformed into

¿ 2a+4bH x y 4dx +  ebt (3y2e2bt +  4 x V e (2a+3b)t -  12x4y4e(4a+4b)t) dy 

=  e3bt ^ '2aJrb̂ tSxy4dx +  ^3y2 4- 4x2y3ê 2a+b t̂ — 12x4y4e2̂ 2a+b^  dyj

which is a multiple of (2.11) if we choose b =  —2a. It can be seen that, by 
contrast, the form (2 .1 1 ) is not invariant under the transformations (2 .8) or 
(2.9), for t ±  0.

Differentiating both sides of (2.10) with respect to the parameter t and 
evaluating then at t =  0, by means of the chain rule, since Fl(xk, 0) =  xl, we 
have
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d C  „ dai • v , D d\ 
aid ^ d x + M i S <’d x = d i

a,idx1 , (2 .1 2 )
t=o

where we have introduced
AJPifrk A

(2.13)
t=0

and we have made use of dxl/dxp =  Sp, where 5%p is the Kronecker delta 
(Sp =  1 if i =  p and <5* =  0 if i ^  p). Hence, making v =  {d \/d t) \t=o, 
changing the names of the indices in the first term, equation (2 .12 ) amounts to 
a j(d^ /dx i)dxt +  & (dai/dx^dx1 =  uaidx1; therefore, if the differential form 
a.idx* is invariant under the group of transformations (2.5) then the functions 
a.i satisfy the n conditions

~jdai iniA\
a id * + (  d t f ~ v a i ' ( * 

The vector field with components f . . . , f n is called the infinitesimal gene
rator of the group of transformations x'1 =  Ft(xi ,t).

Multiplying both sides of (2.14) by a* we obtain

d£j ■ da{
ai akd ^ + S akf c j = ‘ k'

Since the right-hand side of this equation does not change under the inter
change of the indices i and k, the same must happen with the left-hand side, 
thus

d£j  ■ dai _  d£J j dak 
aj'a*ar<  ̂ akdxi ~ ajaidxk  ̂ l dxi

or, equivalently,

/  dai dak\ (  d£j  d£j \ ( ,
? \ akM - ait e ) = a \ a id ^ - akd * ) -  (2'15)
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If now we assume that a¿dx% is integrable, from (2.4) we can find the combi
nation appearing in the left-hand side of (2.15) and substituting that expression 
we find

£
daj daj dak dai \ \

-  "  aj d ¥  +  a jd ^ )  ~ ai p â ï *  -  akw )  '
that can be also written as

 ̂ dak d f e a j )  , . N da{ d ( ^ a j )
( e * i )  M  -  a* - Q ¿ r -  =  &<*) æ  -  « - g ? -  

or, equivalently, if & a j ^  0,

d (  ak \  d

t e ) -dx* \ & a j )  dxk \ & a j )  ’ (2.16)

Comparing with (2.2) it follows that the form (£J flj)- 1  a{dxx is exact and 
that

ix =  ( e a j ) - 1 (2.17)
is an integrating factor of aidx\

Conversely, if fi is an integrating factor of aidx1 then there exist functions 
. . .  ,£n such that ¿¿ can be expressed in the form (2.17) and equation (2.16) 

is satisfied. The steps leading to (2.16) are all valid and finally one deduces the 
existence of some function u such that (2.14) holds. Thus we have demonstrated 
the validity of the following proposition.

Proposition 2 .1 . Let aidx1 be an integrable differential form, (£ V  ••>£") is 
the infinitesimal generator of a one-parameter group of transformations under 
which aidx1 is invariant if and only if n =  (£J Oj)- 1  is an integrating factor of 
aidx\

In the case of the group (2.7), making use of f  and 77 in place of f 1 and f 2, 
respectively, from (2.7) and (2.13) we obtain

d(xeat)
dt

_  d{yebt)=  ax, 77 =
t=o &

=  by.
t=0

Recalling that the form (2.11) is invariant under the group (2.7) if b =  —2a, 
from (2.11) and (2.17) one finds that /z =  [ax(8xy4) +  by(3y2 +  4x2y3 — 
12x4y4)]- 1  =  [—6ay3(4x4y2 — l )]- 1  is an integrating factor of (2.11). In ef
fect, we have

8 xy4dx +  (3 y2 +  4x2y3 — 12  x4y4)dy =  d 1 , (  3 !  +  2x2y Y  
" S I S »  I—6ay3(4x4y2 — 1)

so that thé solution of the differential equation 8xy4dx +  (3y2 +  4x2y3 — 
12x4y4)dy =  0 is given by y3(l 4- 2x2y)/(l — 2x2y) =  constant.

A second example, for an arbitrary value of n, is given in the case where the 
coefficients a\ , . . . ,  an of the differential form aidx* are homogeneous functions 
of the same degree k (that is, a* (Ax1 , . . . ,  Axn) =  Afcaj(x1 , . . .  , x n) para all



A € R). Any form of this class is invariant under the transformations x'1 =  
xtei since ai(x'i)dx'% =  ai(x:iet )d(xtet) =  e^ +1^a¿dxt. The components of 
the infinitesimal generator of this group are C =  d(xiet)/dt\t=o =  x \  hence 
fi =  (xJ a_,)- 1  is an integrating factor of aidx*, if it is integrable. Accordingly, 
the form (z — y)zdx+(x+z)zdy+x(x+y)dz ,  which is integrable as can be seen 
verifying that conditions (2.4) are satisfied, has an integrating factor given by 
H =  [x(z — y)z +  y(x +  z)z  -f zx(x +  y)]- 1  =  [(x +  y)(x + z)z]~1. In effect, one 
can verify that

(z -  y)zdx +  (x +  z)zdy +  x(x +  y)dz (x +  y)z
--------------------- r~.------ r--------------- =  a m ----------- .(x +  y)(x +  z)z x + z

As an example of the application of the foregoing Proposition to find the 
symmetries of a differential form we shall consider the differential form

[P(x)y -  Q(x))dx 4- dy, (2.18)

which corresponds to the linear inhomogeneous differential equation of first 
order dy/dx +  P(x)y =  Q(x). By inspection one finds that

yeS* P{u)du _  J X Q(u)e/U P(v)dvdu

hence, an integrating factor of (2.18) is fi =  e fx p(u)du hence e~ p(u')du =  
& aj =  €l [P(x)y — Q(x)] +  £2, which implies that

( í 1 ,«2) =  ( í ! , e - / ' pWJ “ -  e ‘ [P(*)!/ -  <?(*)])

is the infinitesimal generator of transformations that leave invariant the form 
(2.18). Taking, for simplicity, f 1 =  0, and comparing with (2.13), one finds that 
the group generated by (C1 ,^2) =  (0, e~ fx p(u)du)} is

x' =  x, y' =  te~ p(u)du +  y.
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3. Sym m etries and integrating factors of  
system s o f differential forms

Now we shall consider systems formed by m differential forms in n variables 
(m < n), af-^dx1, . . . ,  a\m^dxl (a^  is the i-th coefficient of the j -th form of the 
system) such that at each point the matrix formed by the functions has 

rank m. The system of forms a ^ d x 1, . . . ,  af^dtx% is integrable if there exist 
m2 functions, (i , j  =  1  such that det(M^j) ^  0 and the forms

M^aff^dx* are exact, that is, there exist m functions, . . ,  <f̂ m\  such that

M ^fa^dx1 = d<j>(k\  (3.1)

[P(x)y — Q(x)]dx +  dy =  e f  p^ dud



Then, the solution of the system of equations a ^ d x 1 =  0 , . . . , a ^ d x % =  0 is 
given by <j>̂  =  constant,. . . ,  =  constant. As in the case where we have a 
single differential form, not all systems of differential forms are integrable, but 
any system of n — 1 differential forms in n variables is integrable.

The system a ^ d x 1 ,-.. . ,  a^ dx*  is invariant under a one-parameter group of 
transformations if there exist functions A ^  such that

a(j) (Fj (xk,t)) dFl(xk,t)  =  A ^ a ^ d x * , (3.2)

(recall that there is summation over repeated indices). Thus, proceeding as in 
the previous section, from (3.2) it follows that

a(k) __ (fc) (p) , . 
d x ' +  ̂ dxi ^

where £* , . . . ,  f n are the components of the infinitesimal generator of the group 
of transformations and the function is the partial derivative of A ^  with 
respect to t, evaluated at t =  0.

An ordinary differential equation of order n, =  f (x ,y , . . .  is
equivalent to a system of differential equations given by n differential forms 
in n 4- 1  variables which, as mentioned above, is integrable. Making x 1 =  x, 
x 2 — y, x3 =  dy/dx , . . . ,  x n+1 =  the equation y ^  =  /(x, y , . . . ,  y(n~^)
is equivalent to the system

dx2 — x3dx1 =  0, 
dx3 — xAdxl =  0,
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dxn — xn+1dx1 =  0,
dxn+1 — fd x 1 =  0. (3.4)

For example, the system of differential forms in three variables 

a^dx* =  dy — zdx,

af^dx1 =  ydz +  z2dx, (3.5)

which corresponds to the second-order ordinary differential equation y(d?y/dx2)+  
(dy/dx)2 =  0, is invariant under the one-parameter group of transformations

x' =  x +  i, y' =  y, z' =  z ,  (3.6)

(for convenience we use here the notation x =  x 1 , y =  x2, z =  x 3), whose 
infinitesimal generator is (£(i)jf(i)>£fi)) =  (1 , 0, 0), and is also invariant under 
the group of transformations

x ^ x e * ,  y' =  y, z , =  ze~t, (3.7)

whose infinitesimal generator is (£(2)>£22)’ f?2)) =  (x >°> -* ) •
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In the case of a system of differential forms the analog of the Proposition of 
the preceding section holds partially. If the system of forms a\^dxl , . . . ,  a¿m^dxi 
is integrable then the inverse of the matrix (M^j) appearing in (3 .1 ) can be 
expressed in the form

-«&>«?> (3.8)

[cf. (2.17)]. For each value of j ,  with 1 ^ j  ^  m, the functions £(j)) • • ■ > €(j) 
axe the components of the infinitesimal generator of a one-parameter group of 
transformations that leave invariant the system a^dx*,. . ., a\m^dxi .

For example, the system of differential forms in three variables

a\ 'dxl =  dy — zdx, 

a ^ d x 1 =  dz — ydx, (3.9)

a\^dxl ex e~x ‘ d(e~x(y +  z ) / 2) '
af^dx1 ex —e~x d(ex( y - z ) / 2 )

which corresponds to the equation d2y/dx2 =  y, is integrable and it can be 
verified that

(3.10)

The elements of the matrix 2 x 2 in this last equation have the form (3.8) with 
=  (0,ex,ex), which is the infinitesimal generator of the group

of transformations x' = x , y '  =  y +  ext, and z' =  z +  ext and (^(2) »^2) »^2)) =
(0, e~x, — e~x) that generates the transformations x' =  x, y' =  y 4- e~xt , and 
z' — z —e~xt. It can be seen directly that the system (3.9) is, in effect, invariant 
under these two groups of transformations. From (3.10) it also follows that the 
solution of the equations dy — zdx =  0, dz — ydx =  0 [see (3.9)] is given by 
e~x(y +  z)/2 =  c\, ex(y — z)/2 =  c2, where c\ and c2 are two constants; hence 
y =  ciex +  c2e~x.

The assertion above can be demonstrated in the following manner. From 
(3.1) and (3.8) we have

ai )(k) -S(k)aP
d<f)W

<*> ~d¿~ ~  ’
(3.11)

hence

pi JJ) _  cp JJ) ci  ̂
Hq)ai ~Hk)aP Hq) ßxi ’

which is equivalent to
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Substituting (3.11) into the left-hand side of the condition (3.3) we have

a« „ ^  
3 dx

( 9) da i _  er (k) 
+ Avi S(P) r

84
dxi dx*

( 9 )

í [ p)a

dx* J

(fr aW \  cr JM 9 ^ Pl
i [Z (p)a r  )  f a i  + H q )k p )a r Qx jQ x i

d(f>(p> dÌ(*) (q)
dxi

= t f t ì ìt à  (^p)“^ )  dx*

dx*
\ d(f>(pi

+

(3.13)

,  - . M y
(q) dxi  J  '

The last term of (3.13) vanishes as a consequence of (3.12), therefore, using 
again (3.1), we obtain

d a V

*(p) r dx* \*('

=  f j  A
^Mdxii ($ ,)< & )d x* ' ^  3xJ

and comparing with (3.3) one concludes that, effectively, , . . . ,  are the 
components of the infinitesimal generator of a one-parameter group of trans
formations that leave invariant the system a ^ d x 1 , . . .  ¡ a ^ d x 1.

By contrast with the case where m is equal a 1, the converse of the preceding 
result is not valid in general. For example, the system (3.5) is invariant under 
the groups of transformations (3.6) and (3.7). Calculating the matrix (3.8) one 
finds that

r - M d )  ( j t f - l j O )
(M  ) 1 
(M -1 )!;;

/m
(m - 1 )!'! j

—z
J2

— X Z  
.2xz — yz

and a straightforward computation shows that the inverse of this matrix is

xz —y 
—z

x
- 1

Then, substituting the expressions (3.5),

1 xz — y x a\^dxl 1 yzdx +  (xz — y)dy +  xydz
yz - z  - 1 a^dx* yz —zdy — ydz

yz
d(xyz -  y2/ 2) 

d (-yz ) (3.14)

[cf. (3.1)]. While the second of the entries in the last expression is an exact 
differential, j^d(-yz)  =  d\n(yz)~l , the first entry is not an exact differential, 
but only integrable.

Prom (3.14) it follows that the solution of the differential equation y(d?y/dx2) 
+(dy/dx)2 =  0 is given by xyz — y2/ 2 =  c\, —yz  =  C2, where c\ and C2 are 
two constants. Substituting the second of these last equalities in the first one 
we have, — c2x — y2/ 2 =  ci, therefore, finally, y =  [—2 (ci +  c2x)Ÿ^2.
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4. Concluding remarks
Usually the subject of integrable equations and integrating factors is only briefly 
considered in the texts on differential equations, in view of the difficulty to find 
the integrating factors in a direct manner. However, from the results of Sec. 2 
it follows that for any first-order ordinary differential equation an integrating 
factor can be found if some one-parameter group of transformations that leave 
invariant the corresponding differential form is identified. As shown in this 
paper, any integrable differential form, or system of m differential forms, always 
has symmetries, with m one-parameter groups of transformations that leave 
invariant the system.
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