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R e s u m e n . N o so tro s hacem os u n a  rev isio n  a c e rc a  d e  resu lta d o s recien tes sob re 
la  ecu aciô n  D io fâ n tica  x 2 +  c =  y n .

1. W h o  w a s  D io p h a n tu s ?

The expression ‘Diophantine equation’ comes from Diophantus of Alexandria 
(about A.D. 250), one of the greatest mathematicians of the Greek civilization. 
He was the first writer who initiated a systematic study of the solutions of 
equations in integers. He wrote three works, the most important of them 
being ‘Arithmetic’, which is related to the theory of numbers as distinct from 
computation, and covers much that is now included in Algebra. Diophantus 
introduced a better algebraic symbolism than had been known before his time. 
Also in this book we find the first systematic use of mathematical notation, 
although the signs employed are of the nature of abbreviations for words rather 
than algebraic symbols in contemporary mathematics. Special symbols are 
introduced to present frequently occurring concepts such as the unknown up
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to its sixth power. He stands out in the history of science as one of the great 
unexplained geniuses. A Diophantine equation or indeterminate equation is 
one which is to be solved in integral values of the unknowns.

The fundamental problem when studying a given Diophantine equation is 
whether a solution exists, and, in the case it exists, how many solutions there 
are. A very important problem closely related to the previous one is the ques­
tion of the actual computation of the existing solutions or whether there is a 
general form for the solutions. For more information, we refer the reader to 
the books [32, 36].

2 . T h e  D io p h a n t in e  e q u a t io n  f(x)  =  yn

Let f ( X ) be an irreducible polynomial with integer coefficients and of degree 
m > 2. Let n > 2 be an integer. Since the work of Siegel, we know that the 
Diophantine equation

f(x) =  yn, in integers x, y , (1 )

has only finitely many solutions, provided that (m, n) ^  (2,2). Several papers 
deal with (1) or particular cases from (1). In particular, there is a very broad 
literature on the Diophantine equations

ax2 +  bx +  c =  dyn, in integers x, y, n > 3, (2)

and
ax2 +  bx +  c =  dyn, in integers x, n > 3, (3)

where a, 6, c and d are fixed integers, and y is a fixed integer in (3).

3 . T h e  D io p h a n t in e  e q u a t io n  x2 +  c =  yn

In the present survey, we restrict our attention to the Diophantine equation

x2 +  c =  yn, in integers x, y, n >  3, (4)

where c is a positive integer.
The first result on (4) seems to be the proof in 1850 by V. A. Lebesgue [20] 

that there are no non-trivial solutions for c =  1. He assumed that there exist 
positive integers x, y  and n > 3 such that x2 +  1 =  yn. He then worked in the 
ring of Gaussian integers, estimated the 2-adic valuation of various quantities 
and reached eventually a contradiction.

The next cases to be solved were c =  3 and c =  5 by Nagell [27] (see also [28]) 
in 1923. It is for this reason that equation (4) is called the Lebesgue-Nagell 
equation in [12]. Then, Ljunggren [22] established that equation (4) with c =  2 
has only the solution 52 -1- 2 =  33. The case D  =  4 was subsequently solved by 
Nagell [30]: the only solutions are 22 +  4 =  23 and l l 2 +  4 =  53. As pointed
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out by Cohn [14], there axe numerous cases of duplication of known results: 
for instance, Ljunggren’s result on the case c =  2 has been later rediscovered 
by Nagell [29] (note that, recently, a more elementary proof has been given by 
Sury [37]). Note that Nagell’s works have been collected by Ribenboim [31].

The next important step is an article by Cohn [14], where he completed 
the solutions for 77 values of c in the range 1 <  c < 100. His methods are 
ingenious and elementary, in the sense that they do not rest on deep tools 
from Diophantine approximation. His paper also contains an extensive list of 
references on earlier works on (4).

The smallest value of c not treated by Cohn is c =  7. The difficulty comes 
from the fact that 2 =  (1 +  \/—7)(1 — y/—7) in the field Q(y/—7), as will be 
explained in the next section.

The solutions for the cases c =  74, 86 were completed by Mignotte and de 
Weger [26] (indeed, Cohn solved these two equations of type (4) except for p =
5, in which case difficulties occur since the class numbers of the corresponding 
imaginary quadratic fields are divisible by 5). Bennett and Skinner (Proposition 
8.5 of [9]) applied the modular approach to solve the cases D — 55 and 95. The 
19 remaining values, namely

c =  7, 15, 18, 23, 25, 28, 3 1, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100,
(5)

are clearly beyond the scope of Cohn’s elementary method, and were solved in 
2004 by Bugeaud, Mignotte and Siksek [12].

4 . M e th o d s  a n d  d iff ic u lt ie s

The starting point when dealing with equation (4) is to factor it over the 
quadratic field K  generated by y/^c. In the sequel, we assume that n is an 
odd prime, and we choose to denote it by p. Assume that (x,y ,p) is a solution 
of (4) and write

{x +  v^-c) • (x -  V -c ) =  yp.

We would like to conclude that both x +  y/—c and x +  y/—c are then perfect 
p-th powers in K . Unfortunately, this is far from being always the case.

A first problem occurs when x +  yf—c and x -f \f~-c are not coprime. We 
can then only conclude that both numbers are ‘almost’ perfect p-th. powers. 
Observe that the greatest common divisor in the ring of algebraic integers of 
K  of x +  -v/—c and x  +  V —c divides both 2x and 2\/—c. Furthermore, if c is 
squarefree, then x and \ f—c are necessarily coprime, and a problem may only 
occur when 2 splits in the number field K , that is, when c is congruent to 7 
modulo 8 . If c is not squarefree, then (4) may have a solution (x, y, p) with 
gcd(x,y) > 1 .

A second problem occurs when p divides the class number of the quadratic 
field K . Then, the principal ideal 7r generated by x +  \f—c can be written
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under the form 7r =  £p, for some ideal £, but it is not always the case that £ is 
principal.

A third problem occurs when K  =  Q(\/—1) or Q(\/—3), that is, when there 
exist in K  units other than ± 1  (see [14], Lemma 2).

The main methods used in [12] for attacking equation (4) are linear forms 
in logarithms (to bound p) and the modular approach, though for some small 
values of p  it is necessary to reduce the equation to a family of Thue equations. 
The tools for reducing equation (4) to Thue equations are well-known.

For all the 19 remaining examples, estimates for linear forms in three vari­
ables (and not in two: Le’s paper [17] is erroneous) are needed. The current 
best bounds are due to -Mignotte [25] and lead to upper estimates for p (in 
our range of values for c) being comprised between 108 and 2.4 x 109. Then, 
the authors of [12] used the modular method, which is very well explained by 
Siksek in the expository paper [34] (see also [35]), to solve equation (4) for all 
values of c listed at (5). A sample of their result is the following.

Theorem  ([12]). The Diophantine equation x2 + 7 =  yn in positive integers 
x, y and n >  3, has only the solutions given by

(xjy, n) G {(1,2 ,3 ) , (3,2,4), (5,2,5), (11,2,.7), ( 18 1,2 ,15 )} .

The above Theorem shows that the equation x2 +  7 =  yn has no more 
solutions than the equation x2 +  7 =  2n. Earlier results on x2 +  7 =  yn are due 
to Lesage [2 1 ] and to Siksek and Cremona [35].

5. T h e  B H V  T h e o r e m

Yu. Bilu, G. Hanrot and P. M. Voutier [11] completely solved the problem of 
existence of primitive divisors in Lucas-Lehmer sequences. Their deep result, 
which we refer to as the ‘Theorem BHV’, turns out to have many applications to 
Diophantine equations, and, in particular, to equation (4). Indeed, as observed 
by Cohn [16], the equations solved in his paper [14] can now easily be solved 
by using Theorem BHV.

This theorem has also been applied in several papers [23, 7, 24] whose results 
are discussed in the next section. Furthermore, it has been used in many works 
on equations of type (1 ), see for instance [10].

6 . T h e  D io p h a n t in e  e q u a t io n  x* + c = yn, w it h  c in  s o m e  in f in ite  s e t

Several authors have studied various extensions of equation (4). Cohn [13] 
showed that if c =  22fc+1, then equation (4) has solutions only when n — 3 
and in this case there are three families of solutions. He also pointed out 
that the case c =  22k is much more difficult. Arif and Abu Muriefah [5] 
conjectured that the only solutions are then given by (x, y) =  (2fc, 22fc+1) and



(x,y) =  ( l l  • 2fc_1,5  • 22(k~1̂ 3), with the latter solution existing only when 
(k,n) =  (3M +  1,3 ) for some integer M  > 0. Partial results towards this 
conjecture were obtained in [5, 15], and it was finally proved by Arif and Abu 
Muriefah [7]. Alternative proofs are due to Le [18] and to Siksek [33].

Luca [23] was able to prove the conjecture of Abu Muriefah and Arif [2] con­
cerning the solutions of the Diophantine equation x2 + 3 2m =  yn. Subsequently, 
Luca [24] solved completely the case c =  2°36, under the additional assumption 
that x and y  are coprime. Here, a and b denote arbitrary non-negative integers.

Arif and Abu Muriefah [6] proved that if c =  32fc+1, then (4) has exactly 
one (infinite) family of solutions. The case c =  32fc has been solved by Luca 
[23] under the additional hypothesis that x and y are coprime.

Abu Muriefah [1] established that if c =  52fc, then equation (4) may have 
a solution only if 5 divides x and p does not divide k for any odd prime p 
dividing n. Abu Muriefah and Arif [3] proved that if c =  52fc+1, then (4) has 
no solutions for all k >  0. They further obtained several results [4] if c =  q2k, 
where q is an odd prime.

Let q > 1 1  be an odd prime number not congruent to 7 modulo 8 . Arif and 
Abu Muriefah [8] established that (4) with c =  q2k+l, n > 5 odd and coprime 
with the class number of Q{y/—q), has exactly two families of solutions.

In the very particular case when c is the square of an odd prime number, 
Le [19] gave rather complicated, but very strong necessary conditions for the 
solutions (x,y ,n) of (4) satisfying the additional assumption gcd(rc,i/) =  1.
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