An improved convergence analysis of a superquadratic m ethod for solving generalized equations

IOANNIS K. ARGYROS **Cameron University, USA**

ABSTRACT. We provide a finer local convergence analysis than before $[6]-[9]$ of a certain superquadratic method for solving generalized equations under Holder continuity conditions.

Keywords and phrases. Superquadratic convergence, generalized equations, radius of convergence, Aubin continuity, pseudo-Lipschitz map.

2000 M athem atics Subject Classification. Primary: 65K10, 65G99. Secondary: 47H04, 49M15.

RESUMEN. Nosotros hacemos un análisis de convergencia local más fino que el proporcionado antes de [6]—[9] de cierto método supercuadrático para resolver ecuaciones generalizadas bajo ciertas condiciones de continuidad de Holder.

¹ **. Introduction**

In this study we are concerned with the problem of approximating a solution *x** of the generalized equation of the form

$$
o \in F(x) + G(x), \tag{1.1}
$$

where *F* is a twice Fréchet differentiable operator defined on a Banach space *X* with values in a Banach space *Y,* and *G* is a set-valued map from *X* to the subsets of *Y.*

Local results providing sufficient conditions for the existence of *x** have been provided by several authors using various iterative methods and hypotheses [2]- [9], [11]. Here in particular, we use the method

$$
o \in F(x_n) + \nabla F(x_n)(x_{n+1} - x_n) + \frac{1}{2}\nabla^2 F(x_n)(x_{n+1} - x_n)^2 + G(x_{n+1}) \tag{1.2}
$$

to generate a sequence approximating *x*.*

In the paper by Geoffroy and Pietrus [9] local convergence results were provided for method (1.2) using Hölder continuity conditions on $\nabla^2 F$. Here we are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we provide a larger convergence radius and finer error bounds on the distances $||x_n - x^*||$ $(n \ge 0)$.

Some numerical examples are provided to justify our theoretical results. The same examples are used to compare favorably our results with the corresponding ones in [9].

The paper is organized as follows: In Section 2 we have collected a number of necessary results [6], [9], [10] needed in our local convergence analysis appearing in Section 3.

² **. Prelim inaries**

We need a definition about the Aubin continuity [5]-[7]:

Definition 2.1. *A set-valued map* $\Gamma: X \rightarrow Y$ *is said to be M-pseudo-Lipschitz around* $(x_0, y_0) \in graph F = \{(x, y) \in X \times Y \mid y \in \Gamma(x)\}$ *if there exist neighborhoods V of xq and U of yo such that*

$$
\sup_{y \in \Gamma(u) \cap U} \text{dist}(y, \Gamma(v)) \le M \|u - v\| \text{ for all } x, y \in V. \tag{2.1}
$$

The Aubin continuity of Γ is equivalent to the openess with linear rate of Γ^{-1} and the metric regularity of Γ^{-1} .

Let *A* and *C* be two subsets of *X.* Then the excess e from the set *A* to the set *C* is given by

$$
e(C, A) = \sup_{x \in C} \text{dist}(x, A). \tag{2.2}
$$

Estimate (2.1) using (2.2) can be written

$$
c(\Gamma(u)\cap U,\Gamma(v))\leq M\|u-v\| \text{ for all } u,v\in V. \tag{2.3}
$$

We also need a lemma about fixed points [10]:

Lemma 2.2. Let (X, ρ) be a Banach space, let T be a map from X into the *closed subsets of X, let* $p \in X$ *and let* r *and* λ *be such that* $0 \leq \lambda < 1$ *, and*

$$
dist (p, T(p)) \le r(1 - \lambda), \qquad (2.4)
$$

$$
e(T(u) \cap U(p,r), T(v)) \leq \lambda \rho(u,v), \quad \text{for all } u, v \in U(p,r) \tag{2.5}
$$

where

$$
U(p,r) = \{x \in X \ \|x - p\| \le r\}.
$$
 (2.6)

Then T has a fixed point in $U(p, r)$ *. Moreover if T is single-valued, then x is the unique fixed point of T in* $U(p,r)$ *.*

Let x^* be a solution of (1.1) . We assume:

(A1) F is Frechet-differentiable on some neighborhood V of x^* ;

 $(A2)$ $\nabla^2 F$ is bounded by *L* on *V* and $\|\nabla^2 F(x^*)\| \le L_0$;

(A3) $\nabla^2 F$ is α -Hölder on *V* with constant *K*, i.e.

$$
\|\nabla^2 F(x) - \nabla^2 F(y)\| \le K \|x - y\|^{\alpha} \quad \text{for all } x, y \in V,
$$
 (2.7)

where *K* satisfies

$$
K \ge 5(\alpha + 1)(\alpha + 2)\overline{L}, \quad \overline{L} = \frac{L_0 + L}{2};\tag{2.8}
$$

(A4) $\nabla^2 F$ is α -center-Hölder on *V* at x^* with constant K_0 , i.e.

$$
\|\nabla^2 F(x) - \nabla^2 F(x^*)\| \le K_0 \|x - x^*\|^\alpha \text{ for all } x \in V; \tag{2.9}
$$

(A5) The application

$$
\[F(x^*) + \nabla F(x^*)(\cdot - x^*) + \frac{1}{2} \nabla^2 F(x^*)(\cdot - x^*)^2 + G(\cdot)\]^{-1} \tag{2.10}
$$

is M-pseudo-Lipschitz around (0, *x*)* and *G* has closed graph.

We can now compare our hypotheses with the corresponding ones in [9]:

Remark 2.3. In general

$$
K_0 \le K, \quad L_0 \le L,\tag{2.11}
$$

hold in general and $\frac{K}{K_0}$ can be arbitrarily large [1], [2]. If $K_0 = K$ our hypotheses reduce to the ones in [9]. Otherwise our hypotheses can be used to improve the results in [9] as stated in the Introduction. Note that in practice the computation of K requires that of K_0 . That is the computational cost of our hypotheses $(A1)$ – $(A5)$ is the same as the corresponding one in [9] using $(A1)$ – $(A3)$ and $(A5)$.

3. Local convergence analysis of method (1.2)

We will follow the proof routine in [9] but we will also stretch the differences where the really needed condition (2.9) is used instead of the stronger (2.7) used in [9].

We state the main local convergence result for method (1.2) :

Theorem 3 .1. *Letx* be a solution of (1.1). Under hypotheses* (A1)-(A5) *and for*

$$
c > \frac{MK}{(\alpha + 1)(\alpha + 1)}\tag{3.1}
$$

there exists $\delta > 0$ *such that for every starting guess* $x_0 \in U(x^*, \delta)$ *there exists a sequence* $\{x_n\}$ $(n \geq 0)$ *generated by method (1.2) satisfying*

$$
||x_{n+1} - x^*|| \le c||x_n - x^*||^{2+\alpha} \quad (n \ge 0).
$$
 (3.2)

In order for us to prove this theorem we first need some notations. Let us define the set-valued map *Q* from *X* to the subsets of *Y* by

$$
Q(x) = F(x^*) + \nabla F(x^*)(x - x^*) + \frac{1}{2}\nabla^2 F(x^*)(x - x^*) + G(x). \tag{3.3}
$$

Let

$$
Z_n(x) = F(x^*) + \nabla F(x^*)(x - x^*) + \frac{1}{2}\nabla^2 F(x^*)(x - x^*)^2
$$

- F(x_n) - \nabla F(x_n)(x - x_n) - \frac{1}{2}\nabla^2 F(x_n)(x - x_n)^2, (3.4)

and define $T_n: X \to Y$ by

$$
T_n(x) = Q^{-1}[Z_n(x)].
$$
\n(3.5)

Clearly x_1 is a fixed point of T_0 if and only if:

$$
F(x^*) + \nabla F(x^*)(x_1 - x^*) + \frac{1}{2}\nabla^2 F(x^*)(x_1 - x^*) - F(x_0)
$$

- $\nabla F(x_0)(x_1 - x_0) - \frac{1}{2}\nabla^2 F(x_0)(x_1 - x_0)^2 \in Q(x_1),$ (3.6)

or equivalently

$$
o \in F(x_0) + \nabla F(x_0)(x_1 - x_0) + \frac{1}{2}\nabla^2 F(x_0)(x_1 - x_0)^2 + G(x_1). \tag{3.7}
$$

We need the proposition:

Proposition 3.2. *Under the hypotheses of Theorem 3.1, there exists* $\delta > 0$ *such that for all* $x_0 \in U(x^*, \delta)$ $(x_0 \neq x^*)$, the map T_0 has a fixed point x_1 in $U(x^*,\delta)$.

Proof. By (A5) there exist positive numbers *a* and *b* such that

$$
e(Q^{-1}(y_1)\cap U(x^*,a),Q^{-1}(y_2))\leq M||y_1-y_2||, \text{ for all } y_1,y_2\in U(0,b). \tag{3.8}
$$

Choose $\delta > 0$ such that

 $\delta < \delta_0$, (3.9)

where

$$
\delta_0=\min\left\{a,\left[\frac{b(\alpha+1)(\alpha+2)}{K_0+K2^{2+\alpha}}\right]^{\frac{1}{2+\alpha}},\frac{(\alpha+1)(\alpha+2)}{MK}-\frac{1}{c},\frac{1}{1+\sqrt[n]{c}}\right\}.\tag{3.10}
$$

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for $p = x^*$, T being T_0 and r and λ parameters to be determined.

We first have

$$
dist(x^*, T_0(x^*)) \le e(Q^{-1}(0) \cap U(x^*, \delta), T_0(x^*))\,. \tag{3.11}
$$

Using (2.7) , (3.4) , and (3.9) we obtain in turn:

$$
||Z_0(x^*)|| = \left\| F(x^*) - F(x_0) - \nabla F(x_0)(x^* - x_0) - \frac{1}{2}\nabla^2 F(x_0)(x^* - x_0)^2 \right\|
$$

\n
$$
= \left\| \int_0^1 (1-t)\nabla^2 F(x_0 + t(x^* - x_0))(x^* - x_0)^2 dt - \frac{1}{2}\nabla^2 F(x_0)(x^* - x_0)^2 \right\|
$$

\n
$$
\leq K \left| \int_0^1 (1-t)t^\alpha dt \right| \|x^* - x_0\|^{2+\alpha}
$$

\n
$$
= \frac{K}{(\alpha+1)(\alpha+2)} \|x^* - x_0\|^{2+\alpha} < b. \tag{3.12}
$$

It follows from (3.8):

$$
e(Q^{-1}(0) \cap U(x^*, \delta), T_0(x^*)) = e(Q^{-1}(0) \cap U(x^*, \delta), Q^{-1}[T_0(x^*)])
$$

$$
\leq \frac{MK}{(\alpha + 1)(\alpha + 2)} ||x_0 - x^*||^{2+\alpha}
$$
 (3.13)

and by (3.11)

$$
dist(x^*, T_0(x^*)) \le \frac{MK}{(\alpha+1)(\alpha+2)} ||x^* - x_0||^{2+\alpha}.
$$
 (3.14)

Moreover by (3.9)

$$
dist(x^*, T_0(x^*)) < c \left[1 - \frac{MK\delta}{(\alpha+1)(\alpha+2)} \right] \|x^* - x_0\|^{2+\alpha}, \tag{3.15}
$$

since,

$$
c\left[1-\frac{MK\delta}{(\alpha+1)(\alpha+2)}\right] > \frac{MK}{(\alpha+1)(\alpha+2)}\,. \tag{3.16}
$$

Note that by the choice of c

$$
\frac{MK\delta}{(\alpha+1)(\alpha+2)} < 1. \tag{3.17}
$$

By setting $p = x^*$, $\lambda = \frac{MR\delta}{(\alpha+1)(\alpha+2)}$ and $r = r_0 = c||x_0-x^*||^{2+\alpha}$ we deduce (2.4). We shall show (2.5). We have $r_0 \leq \delta < a$, since $\delta \leq \frac{1}{1+\delta/c}$ for $||x_0 - x^*|| \leq$

70 I. K. ARGYROS

In view of (2.7) , (2.9) and (3.4) we can obtain in turn

$$
||Z_0(x)|| \le ||F(x^*) - F(x) + \nabla F(x^*)(x - x^*) + \frac{1}{2}\nabla^2 F(x^*)(x - x^*)^2||
$$

+
$$
||F(x) - F(x_0) - \nabla F(x_0)(x - x_0) - \frac{1}{2}\nabla^2 F(x_0)(x - x_0)^2||
$$

$$
\le \frac{K_0}{(\alpha + 1)(\alpha + 2)} ||x - x^*||^{2+\alpha} + \frac{K}{(\alpha + 1)(\alpha + 2)} ||x - x_0||^{2+\alpha}
$$

$$
\le \frac{K_0}{(\alpha + 1)(\alpha + 2)} ||x - x^*||^{2+\alpha}
$$

+
$$
\frac{K}{(\alpha + 1)(\alpha + 2)} (||x - x^*|| + ||x_0 - x^*||)^{2+\alpha}
$$

$$
\le \frac{(K_0 + K \cdot 2^{2+\alpha})\delta^{2+\alpha}}{(\alpha + 1)(\alpha + 2)} \le b,
$$
 (3.18)

and $Z_0(x) \in U(0, b)$. That is for all $u, v \in U(x^*, r_0)$ we have $e(T_0(u) \cap U(x^*, r_0), T_0(v))$

$$
\leq e(T_0(u) \cap U(x^*, \delta), T_0(v)) \leq M ||Z_0(u) - Z_0(v)||
$$

\n
$$
\leq M \|\nabla F(x^*)(u - v) - \nabla F(x_0)(u - v) + \frac{1}{2}\nabla^2 F(x^*)(u - v + v - u)^2
$$

\n
$$
- \frac{1}{2}\nabla^2 F(x^*)(v - x^*)^2 + \frac{1}{2}\nabla^2 F(x_0)(v - x_0)^2
$$

\n
$$
- \frac{1}{2}\nabla^2 F(x_0)(u - v + v - x_0)^2 \leq 5M\overline{L}\delta \|u - v\|,
$$
 (3.19)

which shows (2.5). It follows by Lemma 2.2 $x_1 \in U(x^*, r_0)$ is a fixed point of T_0 .

That completes the proof of Proposition 3.2. \Box

Proof of Theorem 3.1. We have $x_1 \in U(x^*, r_0)$. That is

$$
||x_1 - x^*|| \le r_0 = c||x_0 - x^*||^{2+\alpha}.
$$
 (3.20)

We continue using induction on $n \geq 0$. Set $p = x^*$, $\lambda = \frac{MK\delta}{(\alpha+1)(\alpha+2)}$ and $r_n = c||x_n - x^*||^{2+\alpha}$ to obtain again from the application of Proposition 3.2 to T_n the existence of a fixed point x_{n+1} of T_n in $U(x^*, r_n)$, which implies (3.2).

That completes the proof of Theorem 3.1. \Box

Î,

Corollary 3.3. Let x^* be a simple solution of (1.1). Under assumptions (A1)-(A5) *for*

$$
c > \frac{MK}{(\alpha + 1)(\alpha + 2)} = c_0 \tag{3.21}
$$

there exists $\delta > 0$ *such that any sequence* $\{x_n\}$ generated by (1.2) with $x_n \in$ $U(x^*,\delta)$ satisfies (3.2).

Proof. Let $\delta > 0$ be a number satisfying (3.9) and

$$
\delta < \delta_1,\tag{3.22}
$$

where,

$$
\delta_1 = \min\left\{\frac{1}{3M\overline{L}}, \frac{(\alpha+1)(\alpha+2)c - MK}{3(\alpha+1)(\alpha+2)cM\overline{L}}\right\}.
$$
\n(3.23)

We assume without loss of generality that x^* is a unique solution of (1.1) in a certain neighborhood of x^* , since x^* is a simple zero of (1.1) . Let us choose it to be $U(x^*, \delta)$. Set $x^* = Q^{-1}(0) \cap U(x^*, \delta)$. By Theorem 3.1

$$
x_{n+1} = Q^{-1}[Z_n(x_{n+1})].
$$

In view of (2.2) , (2.3) , (2.7) and (2.8) we obtain in turn:

$$
\operatorname{dist}(x_{n+1}, Q^{-1}(0)) = ||x_{n+1} - x^*||
$$

\n
$$
\leq e(Q^{-1}[Z_n(x_{n+1})] \cap U(x^*, \delta), Q^{-1}(0)) \leq M ||Z_n(x_{n+1})||
$$

\n
$$
\leq M \Bigg| F(x^*) + \nabla F(x^*)(x_{n+1} - x^*) + \frac{1}{2} \nabla^2 F(x^*)(x_{n+1} - x^*)^2
$$

\n
$$
- F(x_n) - \nabla F(x_n)(x_{n+1} - x_n) - \frac{1}{2} \nabla^2 F(x_n)(x_{n+1} - x_n)^2 \Bigg|
$$

\n
$$
\leq M \Bigg| F(x^*) + \nabla F(x^*)(x_{n+1} - x^*) + \frac{1}{2} \nabla^2 F(x^*)(x_{n+1} - x^*)^2
$$

\n
$$
- F(x_n) - \nabla F(x_n)(x_{n+1} - x^* + x^* - x_n)
$$

\n
$$
- \frac{1}{2} \nabla^2 F(x_n)(x_{n+1} - x^* + x^* - x_n)^2 \Bigg|
$$

\n
$$
\leq M \Bigg[\frac{K_0}{(\alpha + 1)(\alpha + 2)} ||x^* - x_n||^{2+\alpha} + 3L\delta ||x_{n+1} - x^*|| \Bigg], \quad (3.24)
$$

or

$$
||x_{n+1} - x^*|| \le \frac{MK}{(\alpha + 1)(\alpha + 2)(1 - 3M\overline{L}\delta)} ||x_n - x^*||^{2+\alpha}
$$

\$\le c ||x_n - x^*||^{2+\alpha}\$.

That completes the proof of Corollary 3.3.

Remark 3.4. If $L_0 = L$ and $K_0 = K$, then our results are reduced to the corresponding ones in [9]. Otherwise they constitute an improvement. Indeed, let us denote by $\overline{\delta}_0$, $\overline{\delta}_1$ parameters obtained from δ_0 and δ_1 respectively by replacing K_0 and L_0 by K and L respectively. Then, we get

$$
\overline{\delta}_0 \le \delta_0 \tag{3.25}
$$

Ei

and

$$
\overline{\delta}_1 \le \delta_1. \tag{3.26}
$$

That is we can obtain a larger convergence radius for method (1.2), which implies that a wider choice of initial choices x_0 becomes available, and finer error bounds on the distances $||x_n - x^*||$ $(n \ge 0)$. These observations are important in computational mathematics [1], [2], [6].

Remark 3.5. The local results obtained here can be used to solve equations where F'' satisfies the autonomous differential equation [1], [2]

$$
F''(x) = P(F(x)),
$$
\n(3.27)

where $P: Y \to X$ is a known continuous operator. Since $F''(x^*) = P(F(x^*)) =$ $P(0)$, we can apply our results without actually knowing the solution x^* of equation (1.1).

We complete this study with two numerical examples where we show that strict inequality can hold in (2.11).

Example 3.6. Let
$$
X = Y = \mathbf{R}
$$
, $x^* = 0$, and define F on $U(0, 1)$ by

$$
F(x) = e^x - x.
$$
 (3.28)

It can easily be seen that

$$
\alpha = 1, L_0 = 1, L = K = e \text{ and } K_0 = e - 1.
$$
 (3.29)

Example 3.7. Let $X = Y = \mathbb{R}$, $x^* = \frac{9}{4}$, $U(x^*, r) \subset D = [.81, 6.25]$, and define function *F* on *D* by

$$
F(x) = \frac{4}{15}x^{5/2} - \frac{1}{2}x^2.
$$
 (3.30)

We obtain

$$
\alpha = \frac{1}{2}, L_0 = \frac{1}{2}, L = \sqrt{6.25} - 1, K_0 = \frac{1}{2}
$$
 and $K = 1.$ (3.31)

R eferen ces

- **[1] I. K. A r g y r o s , A unifying local-sem ilocal convergence analysis and applications for two-point Newton-like m ethods in Banach space,** *J. Math. Anal. Applic.* **2 9 8 (2004), 374-397.**
- [2] I. K. ARGYROS, Approximate Solution of Operator Equations with Applications, World Scientific Publ. Comp., New Jersey, USA, 2005.
- [3] I. K. ARGYROS, On the secant method for solving nonsmooth equations, *J. Math. Anal. Applic***. (to appear, 2006).**
- **[4] I. K. ARGYROS, D. CHEN, & M. TABATABAI, The Halley-Werner method in Banach spaces,** *Revue d'Analyse Numerique et de theorie de VApproximation,* **1 (1994), 1-14.**
- [5] J. P. AUBIN, Lipschitz behavior of solutions to convex minimization problems, *Math. Oper. Res.* **9 (1984), 87-111.**
- **[6] J. P . A u b in & H. F r a n k o w s k a ,** *Set Valued Analysis,* **Birkhauser, B oston, 1990.**
- [7] A. L. DONTCHEV, Local convergence of the Newton method for generalized equa**tions,** *C.R.A.S. Paris* **3 3 2 Ser. I (1996), 327-331.**
- **[8] A . L. D o n t c h e v & W . W . H a g e r , An inverse function theorem for set-valued maps,** *Proc. Amer. Math. Soc.* **121 (1994), 481-489.**
- **[9] M. H. GEOFFROY & A . A . PiETRUS, Superquadratic method for solving generalized equations in the Holder case,** *Ricerche di Matematica* **L II fasc. 2 (2003), 231-240.**
- [10] A. D. IOFFE & V. M. TIKHOMIROV, Theory of Extremal Problems, North Hol**land, Amsterdam, 1979.**
- [11] S. M. ROBINSON, Strong regular generalized equations, Math. Oper. Res. 5 **(1980), 43-62.**

(Recibido en marzo de 2006. Aceptado en mayo de 2006)

DEPARTMENT OF MATHEMATICAL SCIENCES CAMERON UNIVERSITY OK 73505 LAWTON, USA e -mail: *iargyros@cameron.edu*