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R e s u m e n . Nosotros hacemos un análisis de convergencia local más fino que el 
proporcionado antes de [6]—[9] de cierto método supercuadrático para resolver 
ecuaciones generalizadas bajo ciertas condiciones de continuidad de Holder.

1 . Introduction
In this study we are concerned with the problem of approximating a solution 
x* of the generalized equation of the form

o e F ( x )  +  G(x), (1.1)

where F  is a twice Fréchet differentiable operator defined on a Banach space 
X  with values in a Banach space Y, and G is a set-valued map from X  to the 
subsets of Y.

Local results providing sufficient conditions for the existence of x* have been 
provided by several authors using various iterative methods and hypotheses [2]- 
[9], [11]. Here in particular, we use the method

o e  F{xn) +  VF{xn)(xn+1 -  xn) +  i v 2F(xn)(xn+1 -  xn ) 2 -f G{xn+i) (1.2) 

to generate a sequence approximating x*.
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In the paper by Geoffroy and Pietrus [9] local convergence results were pro
vided for method (1.2) using Holder continuity conditions on V 2F . Here we 
are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we 
provide a larger convergence radius and finer error bounds on the distances 
||rrrn — x*|| (n >  0).

Some numerical examples are provided to justify our theoretical results. The 
same examples are used to compare favorably our results with the correspond
ing ones in [9].

The paper is organized as follows: In Section 2 we have collected a number of 
necessary results [6], [9], [10] needed in our local convergence analysis appearing 
in Section 3.

2 . Prelim inaries
We need a definition about the Aubin continuity [5]-[7]:

Definition 2 .1 .  A set-valued map T: X  —» Y  is said to be M-pseudo-Lip- 
schitz around (xo,yo) € graph F  =  {(x,y)  € X  x Y  | y € T(x)} if there exist 
neighborhoods V of xq and U of yo such that

sup dist (y, r(v)) <  M\\u — v|| for all x ,y  € V. (2.1)
yer(u)n u

The Aubin continuity of T is equivalent to the openess with linear rate of T- 1  
and the metric regularity of T- 1 .

Let A and C be two subsets of X. Then the excess e from the set A to the 
set C is given by

e(C,A) =  supdist(x,yl). - (2.2)
xec

Estimate (2.1) using (2.2) can be written

c (r(ii)n tf,r(u ))  < M ||u -i/|| for all u, v e V. (2.3)

We also need a lemma about fixed points [10]:

Lem m a 2.2. Let (X, p) be a Banach space, let T be a map from X  into the 
closed subsets of X , l e t p E X  and let r and A be such that 0 <  A <  1, and

dist (p, T(p)) <  r ( l  -  A), (2.4)

e(T(u) fl U(p,r),T(v)) <  Ap(u,v), for all u, v € U(p,r) (2.5)
where

U(p,r) =  {x e  X  \\x — p\\ < r}.  (2.6)
Then T has a fixed point in U(p,r). Moreover i f T i s  single-valued, then x is 
the unique fixed point o fT  in U(p,r).

Let x* be a solution of (1.1). We assume:
(Al) F  is Frechet-differentiable on some neighborhood V  of re*;
(A2) V 2F  is bounded by L on V  and ||V2F(x*)|| <  Lq\
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(A3) V 2F  is a-Holder on V with constant K,  i.e.

||V2F(x) -  V2F(y)|| <  K\\x -  y||“  for all x ,y  €  V, (2 .7)

where K  satisfies

K > 5 ( a + l ) ( a  +  2)L, L =  ; (2.8)

(A4) V 2F  is a-center-Holder on V  at x* with constant K q, i.e.

|| V 2F(a;) -  V 2F(rc*)|| <  K 0\\x -  * T  for all x e V ;  (2.9)

(A5) The application

1 1_1 
F(x*) +  VF(x*)(- -  x*) +  - V 2F(x*)(- -  x * ) 2 +  G(-) (2.10)Zt
is M-pseudo-Lipschitz around (0, x*) and G has closed graph.

We can now compare our hypotheses with the corresponding ones in [9]: 

R em ark 2.3. In general
K 0 < K , Lq < L, (2.11)

hold in general and ^  can be arbitrarily large [1], [2], If K 0 =  K  our hy
potheses reduce to the ones in [9]. Otherwise our hypotheses can be used to 
improve the results in [9] as stated in the Introduction. Note that in practice 
the computation of K  requires that of Kq. That is the computational cost of 
our hypotheses (Al)-(A5) is the same as the corresponding one in [9] using 
(A1)-(A3) and (A5).

3. Local convergen ce analysis o f  m eth od  (1.2)

We will follow the proof routine in [9] but we will also stretch the differences 
where the really needed condition (2.9) is used instead of the stronger (2.7) 
used in [9].

We state the main local convergence result for method (1.2):

Theorem  3 .1 .  Letx* be a solution of (1.1). Under hypotheses (A1)-(A5) and 
for

M K
C > (a +  l)(a  +  l) ( , )

there exists S >  0 such that for every starting guess xo G U(x*,S) there exists 
a sequence {x n} (n >  0) generated by method (1 .2 ) satisfying

I|x„+ 1 - X * | | < c | | r r n - X * | | 2 + “  (n  >  0). (3 .2 )

In order for us to prove this theorem we first need some notations. Let us 
define the set-valued map Q from X  to the subsets of Y  by

AN IMPROVED CONVERGENCE ANALYSIS OF A SUPERQUADRATIC . . .  67

Q(x) =  F{x‘ ) + V F (x ') ( i  -  x*) +  i  V2F(x*)(x -  **) +  G(x). (3.3)
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Let

Zn(x) =  F(x*) +  VF(x*)(x -  X*) +  i v 2F(x*)(x -  x * ) 2

-  F(xn) -  VF(xn)(x -  xn) -  ^V 2F(xn)(x -  xn)2, (3.4) 

and define Tn : X  —> Y  by

T„(x) =  Q - 1 [Zn(x) J. (3.5)

Clearly x\  is a fixed point of To if and only if:

F(x*) +  VF(x*)(xi -  ar*) +  \ V 2 F(xm)(Xl -  x*) -  F{x0)
A

-  VF(x0)(xi -  x 0) -  ^ V 2 F(x0)(x1 -  x0)2 € Q(xi), (3.6)

or equivalently

o e  F(:r0) +  V F (x 0)(xi -  x0) +  ^ V 2F (x 0)(xi -  x0)2 +  G(xi). (3.7) 

We need the proposition:

Proposition  3 .2 . Under the hypotheses of Theorem 3.1, there exists S >  0 
such that for all xo E U(x*,S) (xo ^  x*), the map Tq has a fixed point xi in 
U(x*,5).

Proof. By (A5) there exist positive numbers a and b such that 

e{Q ~ 1 (yi)nU (x*,a),Q ~ 1 (y2)) < M \ \ y i - y 2\\, for all yx,y 2 G *7(0,6). (3.8) 

Choose S >  0 such that

S <  S0, (3.9)

where

Sq =  min< a, b(a +  l) (a  +  2)
K 0 +  K 2 2+a

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for p =  x*, T  
being To and r and A parameters to be determined.

We first have

dist(x*,T0(x*)) ^ ( Q - ^ n t ^ x V ^ T o t x * ) ) .  (3.11)



Using (2.7), (3.4), and (3.9) we obtain in turn:

Po(x')U  =  I F(z*) -  F(xo) -  VF(x0)(x' -  x 0) -  -  *o
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=  II f  ( 1  -  i)V 2F (x 0 +  t(x* -  x0))(x* -  x0): 
\\Jo

dt

~ - V 2 F(x0) ( x * - x 0) 2

< k \ [  (1 -  t)tc 
\J o

dt \\x* — ar0||2 + a

K
(a +  l)(a  4- 2) 

It follows from (3.8):

|x* — x0||2+a <  b

e ( Q - \ 0) n U ( x \ 8),T0(x')) =  e(Q -‘ (0) n Q“ 1 [roCrc*)])

< M K

and by (3.11)

(a +  l)(a  +  2)

M K

l l * o I I
*||2+a

dist(x*,To(x*)) <  (a +  1)(aH: 2 ) llx~ - x°
|2+a

Moreover by (3.9)

dist(a;*, To(:r*)) <  c 1 -

MK5
(a +  l)(a  +  2)

since,

1 - M K5 M K
{a +  l)(a  -f 2) 

Note that by the choice of c

M K5

(a +  l)(a  4- 2)

(a +  l)(a  +  2)r  <  I -

2

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

By setting p =  x*, A =  (a+Y ) f if2~) and r =  r0 =  c||x0-x*||2+a we deduce (2.4). 
We shall show (2.5). We have ro < 8  < a, since 5 < f°r ll^o — x *ll ^
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In view of (2.7), (2.9) and (3.4) we can obtain in turn

l|£o (* )|| < F{x*) - F { x )  +  VF(x*)(x -  x *) +  V 2F { x *) ( x  -  x * ) 2

+ F(x) -  F(x0) -  VF(x0)(a: -  * 0) -  ^V 2F(x0)(x -  x0) 2

<

<

K0
(a +  l)(a  +  2) 

Kp
(a +  l)(a  +  2) 

K

\x — x*||2+a + K
(a +  l)(a  +  2)

\X -  X q
| 2 + a

\X — X *||2+a

+

<

(a  - f  l)(a : +  2)

(K0 + 1< • 2 2+a)S2+Q

x - x * \ \  +  |Jrr0 — ar*||)2+a 

<b,
(a +  l)(a  +  2)

and Z q(x ) G U(0, b). That is for all u, v G U(x*,ro) we have 

e(T0(u) nU(x*,r0),T0(v))
< e(T0(u )n U (x \S ) ,T 0 (v)) < M\\Z0(u) -  Z0(v)\\

1

(3.18)

<  M VF(x*)(u - v ) -  VF(x0)(u - v )  +  ^ V 2F(x*)(u - v  +  v - u )2

-  ^ V 2F ( x *)(v - x ’f  +  ¿V*F(x0)(v -  x0f

~  - V 2 F ( x q ) { u - V  +  V - X q) 2 < 5ML5\\u — i/||, - (3.19)

which shows (2.5). It follows by Lemma 2.2 x\ G U(x*,ro) is a fixed point of 
T0.

That completes the proof of Proposition 3.2. Ef

Proof of Theorem 3.1. We have x\ G U(x* ,tq). That is

||*i -  ®*|| <  ro =  c\\xo -  x*||2+a. (3.20)

We continue using induction on n >  0. Set p =  x*, A =  ^ +Yhq+2) and 
rn =  c||x„ — a;*||2+a to obtain again from the application of Proposition 3.2 to 
Tn the existence of a fixed point x n+i of Tn in U(x*, rn), which implies (3.2). 

That completes the proof of Theorem 3.1. (Zi

C orollary 3 .3 . Let x* be a simple solution of (1.1). Under assumptions 
(A1)-(A5) for

M K
c >  T r iw  =  °o (3-2 1)(a +  l)(a  +  2)

there exists 5 >  0 such that any sequence {x n} generated by (1.2) with xn G 
U(x*,S) satisfies (3.2).



Proof. Let S >  0 be a number satisfying (3.9) and

S < S i ,  (3.22)

where,

=  min
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1 3 ML  ’ 3(a +  1) (a +  2)cML f  ' 3̂ '23^
We assume without loss of generality that x* is a unique solution of (1.1) in a 
certain neighborhood of x*, since x* is a simple zero of (1.1). Let us choose it 
to be U(x*,8). Set x* =  Q- 1 (0) fl U(x*,8 ). By Theorem 3.1

Xn+1  =  Q  [Zn( %n+1)]- 

In view of (2.2), (2.3), (2.7) and (2.8) we obtain in turn: 

dist(xn+1,<2- 1 (0)) =  ||a?n+i -x*\\
< e(Q~l [Zn{xn+{)\C \U {x \8 ) ,Q -\G ))  < M\\Zn(xn+i)\\

<  M F(x*) +  VF(x*)(xn + 1  -  x*) +  - V 2F(x*)(xn+1 -  x* ) 2

-  F(x„) -  VF(xn)(xn+1 -  xn) -  - V 2F{xn)(xn+i -  xn)‘

< M F(x*) +  S7F(x*)(xn+i ~ xm) +  - V 2F(x*)(xn+i -  x* ) 2

-  F(xn) -  V F (x n)(xn+ 1 -  X* +  x* -  xn)

-  i v 2F (x n)(xn+i -X *  +X* - X n ) 2

< M K o

or

||xn+i -x*|| <

(a +  l)(<* +  2) 

M K

\\x* — x n||2+a -f SL5\\xn+i — x*\\ , (3.24)

(a +  l)(ct -1- 2)(1 — SMLS) 
<c\\xn -x * \\2+a.

That completes the proof of Corollary 3.3.

■=— Xn -  X
,*||2+a

Ei

R em ark  3.4. If L0 =  L and K 0 =  K,  then our results are reduced to the 
corresponding ones in [9]. Otherwise they constitute an improvement. Indeed, 
let us denote by So, Si parameters obtained from So and Si respectively by 
replacing Ko and Lq by K  and L respectively. Then, we get

¿o ^  (3.25)

and
<5i < S\. (3.26)
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That is we can obtain a larger convergence radius for method (1.2), which 
implies that a wider choice of initial choices xq becomes available, and finer 
error bounds on the distances ||a;n — rr*|| (n >  0). These observations are 
important in computational mathematics [1], [2], [6].

R em ark  3.5 . The local results obtained here can be used to solve equations 
where F" satisfies the autonomous differential equation [1], [2]

F"(x)=P(F (x)),  (3.27)

where P: Y  —► X  is a known continuous operator. Since F”(x*) =  P(F(x*)) =  
P(0), we can apply our results without actually knowing the solution x* of 
equation (1.1).

We complete this study with two numerical examples where we show that 
strict inequality can hold in (2.11).

Exam ple 3.6. Let X  =  Y  =  R , x* =  0, and define F  on U(0,1) by

F(x) =  ex - x .  (3.28)

It can easily be seen that

a  =  1, Lq =  1, L =  K  — e and K q =  e — 1. (3.29)

Exam ple 3.7. Let X  =  Y  =  R , x* =  f , U(x*,r) C D  =  [.81,6.25], and define 
function F  on D by

F(x) =  ^ x 5/2 _  l x2 (3 30)

We obtain

a  =  I ,  L 0 =  i ,  L =  V&2S -  1 , K 0 =  i  and K  =  1. ' (3.31)
A Z ¿i
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