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An improved convergence analysis
of a superquadratic method for
solving generalized equations
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ABsTrACT. We provide a finer local convergence analysis than before [6]-[9] of a
certain superquadratic method for solving generalized equations under Holder
continuity conditions.

Keywords and phrases. Superquadratic convergence, generalized equations, ra-
dius of convergence, Aubin continuity, pseudo-Lipschitz map.

2000 Mathematics Subject Classification. Primary: 65K10, 65G99. Secondary:
47THO4, 49M15. '

ResUMEN. Nosotros hacemos un anélisis de convergencia local mas fino que el
proporcionado antes de [6]-[9] de cierto método supercuadritico para resolver
ecuaciones generalizadas bajo ciertas condiciones de continuidad de Holder.

1. Introduction

In this study we are concerned with the problem of approximating a solution
z* of the generalized equation of the form

o€ F(z) + G(z), (1.1)
where F is a twice Fréchet differentiable operator defined on a Banach space

X with values in a Banach space Y, and G is a set-valued map from X to the
subsets of Y.

Local results providing sufficient conditions for the existence of z* have been
provided by several authors using various iterative methods and hypotheses {2]-
[9], [11]. Here in particular, we use the method

0 € F(z0) + VF(@n)(@nt1 — Tn) + %VzF(xn)(an — 2n)? + Glznr) (12)

to generate a sequence approximating z*.
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In the paper by Geoffroy and Pietrus [9] local convergence results were pro-
vided for method (1.2) using Hélder continuity conditions on V2F. -Here we
are motivated by this paper, our paper [1], and optimization considerations.

In particular using the same hypotheses but more precise error bounds we
provide a larger convergence radius and finer error bounds on the distances
lzn — 2z*|| (n 2 0).

Some numerical examples are provided to justify our theoretical results. The
same examples are used to compare favorably our results with the correspond-
ing ones in [9)].

The paper is organized as follows: In Section 2 we have collected a number of
necessary results [6], [9], [10] needed in our local convergence analysis appearing
in Section 3.

2. Preliminaries

We need a definition about the Aubin continuity [5]-{7]:

Definition 2.1. A set-valued map I': X — Y is said to be M-pseudo-Lip-
schitz around (zg,y0) € graph F = {(z,y) € X xY |y € I(z)} if there exist
neighborhoods V' of =y and U of yo such that

sup dist (y,I'(v)) < M||lu—v| forall z,y V. (2.1)
yel(u)nU

The Aubin continuity of I is equivalent to the openess with linear rate of I'"!
and the metric regularity of I'"1.
Let A and C be two subsets of X. Then the excess e from the set A to the

set C is given by
e(C, A) = sup dist(z, A). - (2.2)
zeC
Estimate (2.1) using (2.2) can be written
c(C)NUTw) < M|u—o| foral u,veV. (2.3)
We also need a lemma about fixed points [10]:

Lemma 2.2. Let (X, p) be a Banach space, let T be a map from X into the
closed subsets of X, let p € X and let r and X be such that 0 < A < 1, and
dist (p, T'(p)) < r(1 = A), (2.4)
e(T(u) NU(p,r), T(v)) < Mp(u,v), forallu,veU(p,r) (2.5)
where
Up,r)={zeX|z-p|| <t} (2:6)
Then T has a fized point in U(p,r). Moreover if T is single-valued, then z is
the unique fized point of T in U(p,r).
Let z* be a solution of (1.1). We assume:

(A1) F is Fréchet-differentiable on some neighborhood V of z*;
(A2) V2F is bounded by L on V and ||[V2F(z*)|| < Lo;
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(A3) V?F is a-Hélder on V with constant K, i.e.
[V2F(z) = V2F(y)|| < K|z — y||* for all z,y € V, (2.7)

where K satisfies
K>5(+1)a+2T, T= £2;“—L : 2.8)

(A4) V2F is a-center-Hélder on V at z* with constant K, i.e.
|V2F(z) — V2F(z*)|| < Kollz — z*||* for all z € V; (2.9)

{A5) The application
- -1
F(z*) + VF@")(- — z*) + %VzF(z*)(- — )2+ G() (2.10)

is M-pseudo-Lipschitz around (0, z*) and G has closed graph.
We can now compare our hypotheses with the corresponding ones in [9]:

Remark 2.3. In general
KO S K’ LO < L1 (211)

hold in general and Kio can be arbitrarily large (1], [2]. If Ko = K our hy-
potheses reduce to the ones in [9]. Otherwise our hypotheses can be used to
improve the results in [9] as stated in the Introduction. Note that in practice
the computation of K requires that of Ky. That is the computational cost of
our hypotheses (A1)-(A5) is the same as the corresponding one in [9] using

(A1)-(A3) and (A5).

3. Local convergence analysis of method (1.2)

We will follow the proof routine in [9] but we will also stretch the differences
where the really needed condition (2.9) is used instead of the stronger (2.7)
used in [9].

We state the main local convergence result for method (1.2):
Theorem 3.1. Let z* be a solution of (1.1). Under hypotheses (A1)-(A5) and

for
MK

> @t D@+

there exists § > 0 such that for every starting guess zo € U(z*,8) there exists
a sequence {zn} (n > 0) generated by method (1.2) satisfying

IZnt1 —2*|| < ellzn —2*|*** (n 2 0). (3.2)

In order for us to prove this theorem we first need some notations. Let us
define the set-valued map Q from X to the subsets of Y by

(3.1)

Q(z) = F(z*) + VF(a" )z — %) + %V2F(a:")(:c _2")+G@).  (33)
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Let
Zn(a:). = F(z*)+ VF(z*)(z — z*) + %VzF(z*)(m -z*)?

— F(:z:n). — VF(z,)(z —zn) — %VzF(xn)(:r —z,)? (3.4)
and define 7,,: X - Y by

| To(@) = Q![Za (2] (3.5)
Clearly z; is a fixed point of Ty if and only if:

F(&*) + VF(z")(z1 — z*) + %V2F(x‘)(x1 — 2"} — F(zo)

— VF(z0)(z1 — 7o) — %VZF(IO)(zl — ) EeQ@), (36)

or equivalently-
0 € Flao) + VF(zo)(z: — z0) + 3V’ Flao)(e1 — z0)* + Clar). (37

We need the proposition:

Proposition 3.2. Under the hypotheses of Theorem 3.1, there exists 6 > 0
such that for all zo € U(z*,8) (zo # z*), the map Ty has a fizred point x, in
U(z*,9).
Proof. By (A5) there exist positive numbers a and b such that

e (@' (w1) NU(z*,a),Q (y2)) < Mlly1 — well, for all y1,y2 € U(0,b). (3.8)

Choose d > 0 such that

d < do, (39)
where
| la+D(@+2)]7F (a+1)@+2) 1 1
(50 = mm(la, [ KO +K22+° ] ! MK e E, T‘O/E ‘ (310)

We shall show condition (2.4) and (2.5) of Lemma 2.2 hold true for p = z*, T
being Tp and r and A parameters to be determined.
We first have

dist (z*, To(z*)) < e (Q~H(0) N U(z*,8), To(z*)) . (3.11)
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Using (2.7), (3.4), and (3.9) we obtain in turn:

1 Zo(z*)| F(z*) — F(zo) — VF(zp)(z* — x0) — %VEF{m](z' — x9)?

=
[
_|
||

- 5vzz«“(zg)(ap* — z9)?

1
/ (1 - t)V2F(zo + t(z* — z0))(z" — 20)°dt
0

|2+a

1
(1 — t)tdt| ||lz* — ol
0

K . «
= (—aT)(an)“I — zof|*t* < b. (3.12)
It follows from (3.8):

e(Q71(0) NU(z",6), To(z")) = ¢(Q*(0) N U(z",6), Q™" [To(z")])

MK 2t
77— — @ 3.13
< arargie = (3.13)

and by (3.11)

: K .. 24
* "N ————|z" — % 3.14
dist(z*, To(z*)) < CESNCES) llz" — ol| (3.14)
Moreover by (3.9)
MKS -
P _ . : 3.15
dist(z*, Tp{z*)) < ¢ [1 i@t 2)] Jlz* = 0| (3.15)
since,
MK ] MK
_ S . 3.16
c[l e+Da+2)]  (a+)a+2) (3.16)
Note that by the choice of ¢
MKS
— <1 3.17
(a+1)(a+2) (317)
By settingp = z*, A = (ﬁ{&%f) and r =g = c|zo— :L'"||2+°‘ we deduce (2.4).

We shall show (2. 5) We have rg < § < a, since § < T*_V for ||z — z*| < 4.
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In view of (2.7), (2.9) and (3.4) we can obtain in turn

1Z0(@)] < ”F(x*) ~ F(@) + VE(e)(e ~2) 4 2VPF(a")(z — o)

+ ”F(z) — F(zo) — VF(zo)(z — xo) — %VzF(xo)(x — z0)?

- KO * a K a
S CERVeEs) Lkt N rew s L
< e — 2
(a+1){a+2)"
K * * a
+ m(“m —z*|| + ||lzo — =*|))**

(Ko + K - 22+e)g2+e
<b,
- ({a+1){a+2) —
and Zo(z) € U(0,b). That is for all u,v € U(z*, ry) we have
e(To(w) NU(z*, 7o), To(v))
< e(To(u) NU(z*,8), To(v)) < M||Zo(u) — Zo(v)]|

(3.18)

sw

VF(z*)(u—-v) = VF(zo)(u —v) + %V2F(z')(u —v+v—u)?
- %VzF(x')(v _ot) 4+ %vﬁp(xo)(u _ 2o)?

- %V2F(zo)(u — v+ v—20)?|| < 5MI8]u -, - (3.19)

which shows (2.5). It follows by Lemma 2.2 z; € U(z*, 7o) is a fixed point of
Ty.

That completes the proof of Proposition 3.2. ]
Proof of Theorem 3.1. We have z; € U(z*, 7). That is

lz1 — z*|| < ro = ¢fjzo — z* |2 (3.20)

We continue using induction on n > 0. Set p = z*, A = % and

Tn = c||Tn — z*||2* to obtain again from the application of Proposition 3.2 to
T, the existence of a fixed point z,41 of T, in U(z*, rn), which implies (3.2).
That completes the proof of Theorem 3.1.

Corollary 3.3. Let z* be a simple solution of (1.1). Under assumptions
(A1)-(A5) for

MK
—_ = 3.21
(a+1){a+2) o (3:21)
there exists 6 > 0 such that any sequence {z,} generated by (1.2) with x, €
U(z*,8) satisfies (3.2).

c>
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Proof. Let § > 0 be a number satisfying (3.9) and
d < éy, (3.22)
where,

(3.23)

. { 1 (a+1){a+2)c-MK}
é; = min —, — .
3ML 3(a+1)(a+2)cML
We assume without loss of generality that z* is a unique solution of (1.1) in a

certain neighborhood of z*, since z* is a simple zero of (1.1). Let us choose it
to be U(z*,6). Set z* = Q~*(0) N U(z*,6). By Theorem 3.1

Tnt1 = Q7 Zn(zn41))-
In view of (2.2), (2.3), (2.7) and (2.8) we obtain in turn:
dist{Zn41,Q71(0)) = [|Zns1 — z*||
e(Q7HZn(zn41)] NU(z*,6),Q7(0)) < M| Zn(zn41)]

1
M”F(l“) + VF(.’L‘*)(.’L‘".*.l - :E‘) + §V2F(x")(:cn+1 - x‘)2

IA

IA

— F(z,) — VE(@n)(@ns1 — 7a) %VZF(xn)(an — )2

IA

1
M”F(x‘) + VF(x*) (zp41 — %) + §V2F(x‘)(a:n+1 - z*)?
— F(zn) = VF(zp)(Tp41 — 2 + 2% —24)

— %VzF(xn)(an —r 2" — Tn)?

Ko

< M[m”z' — 2, ||**® + 3L6||Tnyr — 2|, (3.24)
or
MK
zn41 —2*(l < — ||z, — 2>
(a+1)(a+2)(1 —3MLY)
< df|lzn — |22
That completes the proof of Corollary 3.3. of

Remark 3.4. If Lo = L and Ky = K, then our results are reduced to the
corresponding ones in [9]. Otherwise they constitute an improvement. Indeed,
let us denote by 8y, §; parameters obtained from dp and &) respectively by
replacing Ko and Ly by K and L respectively. Then, we get

3o < & (3.25)

and
61 < dy. (3.26)
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That is we can obtain a larger convergence radius for method (1.2), which
implies that a wider choice of initial choices zg becomes available, and finer
error bounds on the distances ||z, — z*|| (n > 0). These observations are
important in computational mathematics [1], [2], [6].

Remark 3.5. The local results obtained here can be used to solve equations
where F” satisfies the autonomous differential equation [1}, [2]

F"(z) = P(F(z)), (3.27)
where P: Y — X is a known continuous operator. Since F"(z*) = P(F(z*)) =
P(0), we can apply our results without actually knowing the solution z* of
equation (1.1).

We complete this study with two numerical examples where we show that
.strict inequality can hold in (2.11).
Example 3.6. Let X =Y =R, z* = 0, and define F on U(0,1) by
' F(z)=¢€" —=z. (3.28)
It can easily be seen that
a=1, Ly=1, L=K=e¢ and Kg=e—1. (3.29)

Example 3.7. Let X =Y =R, z* = 2, U(z*,r) C D = [.81,6.25], and define
function F on D by

_ 4 52 14
F(z) = Tl 5% (3.30)
We obtain
a=%, L0=%,L=\/6.25—1, KO=% and K = 1. '(3.31)
References

(1] I. K. ARGYROS, A unifying local-semilocal convergence analysis and applications
for two-point Newton-like methods in Banach space, J. Math. Anal. Applic. 298
(2004), 374-397.

{2} I. K. ARGYROS, Approzimate Solution of Operator Equations with Applications,
World Scientific Publ. Comp., New Jersey, USA, 2005.

(3] I. K. ARGYROS, On the secant method for solving nonsmooth equations, J. Math.
Anal. Applic. (to appear, 2006).

[4] I. K. ArRGYROs, D. CHEN, & M. TABATABAI, The Halley—-Werner method in
Banach spaces, Revue d’Analyse Numerique et de theorie de l’Approrimation, 1
(1994), 1-14.

(5] J. P. AuBIN, Lipschitz behavior of solutions to convex minimization problems,
Math. Oper. Res. 9 (1984), 87-111.

{6] J. P. AuBIiN & H. FRANKOWSKA, Set Valued Analysis, Birkhauser, Boston, 1990.

(7] A. L. DoNTCHEV, Local convergence of the Newton method for generalized equa-
tions, C.R.A.S. Paris 332 Ser. I (1996), 327-331.



AN IMPROVED CONVERGENCE ANALYSIS OF A SUPERQUADRATIC ... 73

[8] A. L. DoNTCHEV & W. W. HAGER, An inverse function theorem for set-valued
maps, Proc. Amer. Math. Soc. 121 (1994), 481-489.

[9] M. H. GEOFFROY & A. A. PIETRUS, Superquadratic method for solving gener-
alized equations in the Holder case, Ricerche di Matematica LII fasc. 2 (2003),
231-240.

[10] A. D. IoFFE & V. M. TIKHOMIROV, Theory of Eztremal Problems, North Hol-
land, Amsterdam, 1979.

[11] S. M. ROBINSON, Strong regular generalized equations, Math. Oper. Res. 5
(1980), 43-62.

(Recibido en marzo de 2006. Aceptado en mayo de 2006)

DEPARTMENT OF MATHEMATICAL SCIENCES
CAMERON UNIVERSITY

OK 73505

LawToNn, USA

e-mail: iargyros@cameron.edu






	An improved convergence analysis of a superquadratic method for solving generalized equations

	IOANNIS K. ARGYROS Cameron University, USA

	1.	Introduction

	2.	Preliminaries

	xec

	3.	Local convergence analysis of method (1.2)



	C>(a + l)(a + l)	(,)

	T„(x) = Q-1[Zn(x) J.	(3.5)

	o e F(:r0) + VF(x0)(xi - x0) + ^V2F(x0)(xi - x0)2 + G(xi). (3.7) We need the proposition:

	MK

	< e(Q~l[Zn{xn+{)\C\U{x\8),Q-\G)) < M\\Zn(xn+i)\\

	References






