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R e s u m e n .  En este artículo, dado un entero a >  1, nosotros estudiamos el menor 
exponente n  tal que an no sea palíndromo.

1. In trod u ction

A palindrome is a positive integer whose sequence of base 10 digits reads the 
same from left to right and from right to left. More generally, given any in
teger b > 1 a base b palindrome is a positive integer o such that if its base b 
representation is

a  =  a  o +  a \ b  - j - . . .  -f- a  tb^, a* G { 0 , . . . ,  b — 1 } , a t  >  0,

then a¿ =  a t- i  holds for all ¿ =  0 , . . . ,  For example, 12345678987654321 is a 
palindrome and bl +  1 is a base b palindrome for 6 >  1 and t >  1.

Several authors have investigated the occurrence of palindromes in special 
sequences. For example, Korec [3] looked at palindromic squares, Harminic and 
Soták [2] looked at the occurrence of palindromes in arithmetical progressions 
and Luca [5] looked at palindromic Fibonacci numbers. In [1], it is shown that 
almost all palindromes are composite.
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The Theorem on page 222 in [5] shows that if a > 1 is any fixed integer, then 
the set of n such that an is a base 6 palindrome is of asymptotic density zero. 
Hence, there certainly exists an n such that an is not a base 6 palindrome. It is 
the smallest positive integer n :=  n(a, 6) with this property that we investigate 
in this paper.

Note that if a =  6 +  1 and m is such that (™) < b for all j  =  0 , . . . ,  m, then 
all the numbers

are base b palindromes. Since the inequality

/ m \ 2m

\Lm/2J/  ^  Vrn ’
holds for all positive integers m, it follows that for a =  b -f- 1 we have that 
n(a, b) > (log b)/ log 2+0(log log b). Here, we use log for the natural logarithm. 
In particular, n(a,b) can be large. Further, note that n ( l , 6) =  oo, which is 
why we assume that a >  1 .

In this note, we prove the following upper bound on the size of n(a, b) when 
a >  1 .

Theorem  1 . There exists an absolute constant Co such that if a > 1  and b >  1, 
then

n(a,b) <  exp (C0(logA)3 log log A) , 

where A =  max{a, b}.

2 . P roof o f Theorem  1

Proof. Let a, b and A be as in Theorem 1. We assume that log A > 1 (otherwise, 
a =  b =  2, and so n(a, b) =  0). We assume that 6 >  2 and we shall indicate at 
the end how to modify the proof in such a way as to deal with the case 6 =  2 
also.

Given a and 6 we write 6 =  6162, where every prime factor of 61 divides a 
and 62 is coprime to a. It is clear that 61 and 62 are uniquely determined by a 
and 6, and in particular they are coprime. Let c G {0 , . . . ,  6 — 1 }  be the number 
such that c =  0 (mod 61) and c =  1  (mod b2). The number c exists and is 
uniquely determined by the Chinese Remainder Theorem.

For a positive integer m let <f>(m) be its Euler function. We note that the 
congruence

=  c (mod 6),

holds for all positive integers m. Indeed, note that since 62 and a are coprime, 
Euler’s Theorem tells us that =  1 (mod 62). Hence, am^ b̂  =  1 (mod 62) 
for all m >  1. We now prove that is divisible by 61. For this, let p be



a prime factor of b\ and assume that pa \ bi. Since 2n_1 > n holds for all 
positive integers n, we get that

pm  > pHpa) =  pPa~Hv-1) > pPa- 1 >  pta- 1 >  ^

and since p | a, we get that is a multiple of pa. Since this is true for 
all prime powers pa dividing &i, we get that a ^  is a multiple of b\. Hence, 
a™<t>(b) =  o (mod &i) for all m > 1. Recalling the definition of c, we conclude 
that

am4>(b) ^  c m̂0(j for all 777, >• i.

Thus, the last base b digit of am^ b̂  is c for all m >  1. In particular, if every 
prime factor of a divides b, then c =  0 and so am^ b̂  cannot be a palindrome. 
Thus, n(a, b) < </>(&) in this case. In fact, it is easy to show that the better 
inequality

n(a, b) < max{a : p a \ b for some prime p},
is satisfied in this case.

From now on, we will assume that there exists a prime factor p of a not 
dividing b. In particular, c > 0 and (log a/  log 6) ^ Q.

Suppose now that am^ b̂  is a palindrome for m =  1 , . . . , i V  where N  is 
some positive integer. Then the first digit of am^ b̂  is also c. Thus, for each 
m =  1 , . . . ,  N, there exists n :=  n(m) such that

cbn < a m m  < ( c + l ) b n.

Taking logarithms and dividing both sides of the resulting inequality by log b 
we get

lo g c + n  /.¿(6)loga\ < l o | ( c + l ) + n
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log b \ log b )  log b
Let 0 =  4>(b) log a/ log b. Note that 0 Q. Since l < c < c + l < & ,  we get that 
0 <  logc/log& <  log(c+ l)/log& <  1, therefore n =  \m9\ and inequality (2.1) 
leads to the conclusion that

log c log(c+l ) '
{ 7720}  € l  =

log 6’ log b
where N  =  [n(a, b)/(p(b)\. In the above, we used [xj and {x } for the integer 
part and the fractional part of x, respectively.

Recall now that the discrepancy of a sequence (am)m=1 ° f  real numbers 
(not necessarily distinct) is defined as

# { 77i <  N  : {am} <  7 }
Dn  =  sup 

0 <7< 1
~ 7N

From the above definition we see that the inequality

#{771 < N  : a <  {am} < 0} < ((3 -  a )N  +  2Dn N  

holds for all 0 <  a < ¡3 <  1.



Thus, setting am = mQ for all m =  1 , . . . ,  iV, containment (2 .2) for m =  
1 , . . . ,  N  leads to the conclusion that

N  =  # { m < W : { am } e I } < ( ! 2 i g i ) - g | ) W +  2 i3wAr

< X̂ \ n  +  2Dn N. (2.3)
log b

We now bound D^. The Koksma-Erdós-Turán inequality (see Lemma 3.2 
in [4]) bounds the discrepancy Dn as

* 77 + £  £ - T - T  (2'4)H N  ^  mllamll

where ||x|| is the distance from x to the nearest integer and H < N  is an 
arbitrary positive integer (see [7] for an even better inequality).

To bound ||am||5 n°te that
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am =
__<£(&) log a 4
^  i  .  ¿ log 6

* \m<f)(b) loga — ¿log&| ,
log 6

where £ is an integer such that t < m(¡>(b)\oga -f log6. Note that ||am|| is 
nonzero since 9 ^ Q. Thus, \m4>{b) log a — t log &| 7̂  0 and a lower bound to it 
can be obtained by using the theory of linear forms in logarithms. Indeed, the 
main result of Matveev [6] shows that there exists an effectively computable 
constant C\ >  1 such that

|m</>(&) log a — t log &| >  exp (—C\ log(2m</>(&) log a) log a log 6)

>  exp ^—Ci log(2m) ^1 +  (logA)2^ . (2.5)

We thus get that if H > 2 and m < H then log(2m) < 2 log i f  and so the 
inequality (2.5) leads to

7ri lr  <  (logb)Hc *(lo sA 3̂ < (log A)Hc^ °*a?,
||am||

where we can take C2 =  2(1  +  2/ lo g 2)C'i. Thus,

Dn  <  3 ( L  +  O  <  3 (  1 +
\ H  N  ^  m J  \ H  N  )

Choosing H  =  [Arl^ C2 l̂og A 3̂+2 Ĵ we get, assuming still that H > 2  and there
fore that

^ jV- i / ( C 2 (iog A )3+ 2 )  _  ^ - 1  <  2 A r 1/ (C 2 ( lo g A )3 + 2 ) ,

that
D n  < 9(log^)Ar“ 1/(Ca(losA)3+2),
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which together with inequality (2.3) leads to

0 <  ( l  -  ^  <  18(logi4)JV-1/iCailo* A)3+2)1

( 18 log A \C 2(logyl)3+218 log A

<
\ 1  -  (log 2 )/ log 3 /

(54 log A) c 2 ̂ ,og A 3̂ +2

exp(C3(log A)3(loglog A +  21og(54))),

where we can take C3 =  C2 +  2 (log .A)- 3 . Since n(a, b) < <f>(b)N < AN, we get 
the conclusion of Theorem 1 with a suitable constant Cq.

When b =  2, an argument similar to the one from the beginning of this 
proof shows that there exists c € {0 , 1 , 2 ,3 }  such that a2 =  c (mod 4). We 
may assume of course that c is odd since if not then the last binary digit of a is 
zero so no power of a of positive exponent can be a binary palindrome. Thus, 
the last two digits of a2 in base 2 are determined and they are either 1 1  or 01. 
Since a2m is a binary palindrome for m =  1 , . . . ,  \ n(a, 2)/2j, it follows that the 
first two binary digits of am are the same for all such m. Now one may apply the 
same argument as before based on the Koksma-Erdôs-Turân inequality (2.4) 
and the lower bounds for the linear forms in logarithms (2.5) to get a similar 
upper bound for n{a,b). We do not give further details here. EÎ
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