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Spectral properties o f com pressible  
stratified flows

Propiedades espectrales de los flujos estratificados com primibles
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A b s t r a c t . For bounded and unbounded domains in R 3, we establish the lo
calization and the structure of the spectrum of normal vibrations described by 
systems of partial differential equations modelling small displacements of com
pressible stratified fluid in the homogeneous gravity field. We also compare the 
spectral properties of gravitational and rotational operators. Our main result 
is the construction of Weyl sequence for the essential spectrum, which is an 
explicit form of non-uniqueness of the solutions.

K ey words and phrases. Partial differential equations, essential spectrum, Sobolev 
spaces, stratified fluid, internal waves

2000 M athematics Subject Classification. 35Q 35, 35B 05, 35P 05, 76026.

R e s u m e n . Para los dominios acotados y  no-acotados en R 3, estudiamos la 
localización y  la estructura del espectro de las vibraciones normales que se 
describen mediante sistemas de ecuaciones en derivadas parciales que modelan 
los movimientos pequeños de un líquido estratificado comprensible en el campo 
gravitacional homogéneo. También comparamos las propiedades espectrales de 
los operadores rotacionales y  gravitacionales. Nuestro resultado principal es la 
construcción de la sucesión de Weyl para el espectro esencial, la cual representa 
explícitamente la no-unicidad de las soluciones.

Palabras y  frases clave. Ecuaciones diferenciales parciales, espectro esencial, es
pacios de Sobolev, líquido estratificado, ondas internas.
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1. In trod u ction

The objective of this paper is to study the structure and the localization of the 
spectrum of partial differential operators which arise in the description of small 
motions of an exponentially stratified compressible fluid in the gravity field. 

We consider a system of equations in the form

in the domain {x  G Q C -R3}, t ^  0, where ~u (x,t) is a velocity field with 
components ui,M2>«3> the function p(x, t)  is the scalar field of the dynamic 
pressure, p(x, t)  is the dynamycal density and p+,g,N are positive constants. 
The equations (1.1) are deduced in [3] under the assumption that the function 
of stationary distribution of density is performed by the function p*e~Nx3.

The system (1.1) was studied from different angles, some of the results may 
be found in [10], [12], [18], [9], [11], [7]. Particularly, the smoothness of the 
solution of stratified system for the case of the intrusion was studied in [18]. 
The isolated case of uniqueness of solutions for stratified fluid in a class of 
increasing functions was considered in [9]. The case of essential spectrum for 
ideal (non-compressible) fluid was considered in [10], [12]. The general smooth
ness of solutions was considered in [11]. The essential spectrum for rotational 
(non-stratified) ideal and compressible flows was considered in [17], and mathe
matical properties for different problems concerning rotational fluids were con
sidered in [20] and [16].

Without loss of generality, we may assume g =  1 and p* =  1 in (1.1), which 
can be achieved by introducing new unknown functions and renaming them as 
follows:

< (1.1)

u :=  p+u,  p :=  gp.

Thus, we obtain the system

< (1.2)
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SPECTRAL PROPERTIES OF COMPRESSIBLE STRATIFIED FLOWS 335

Let us observe certain mathematical similarity of the incompressible case of the 
system (1.2) and the system which describes rotational motions of ideal fluid 
over the vertical axis (Tj =  (0,0, u;)):

+ ZÎ x~v +  Vp =  0
dv\  i dvi i dv-s _ r»
Qx\ d i 2 Ox 3

Particularly, we would like to compare the scalar form of the two systems 

dt2 \  dx\ "** dx\ dx\ )  ^  \  dx\ dx\ )  ’

dt2 \  dx2 dx\ dx\ )  U dx\ 
and their corresponding singular solutions ([12]):

£{x' t) = î ^ \  I  J^ d a '
o

£{X’t] =  4 ï k w \  J  Jo ^ d a - 
0

This mathematical analogy between gravitational and rotational waves, may 
lead to the corresponding analogy in spectral properties.

In [17] we proved that the essential spectrum of normal vibrations generated 
by rotational inner waves for compressible fluids, is the interval of the real axis 
[—w, u>] for bounded domains, and it was the whole axis Rl for the case Q = R3. 
Thus, it seems appropriate to express the conjecture that the operators gene
rated by (1.2) should possess spectral properties, analogous to the rotational 
system. Here we prove that this conjecture is true.

2. S p ectra l prob lem  form ulation

Let fi be a bounded domain in R3 and let us consider the boundary condition 
~u • "n |an =  0 for the system (1.2). We consider the following problem of 
normal vibrations

~u (x, t) =  ~v (x) e~xt
p{x, t ) =  Nvi(x)e~Xt (2.1)
p{x,t) =  vs(x)e~xt , X e C .

We denote v =  (vi,V2 ,V3 ,u4, v5) and write the system (1.2) in the matrix form

Lv =  0 , (2.2)
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336 ANDREI GINIATOULLINE & CÉSAR HERNÁNDEZ

where

and
L = M -  XI

M  =

V

0 0 0 0 0 
dx i

0 0 0 0 a
dx2

0 0 0 N a
dx3

0 0 —N 0 0
0

dx\
a

dx 2
a

dX3 0 0 /
Now, let us define the main symbol L °  (£) of the operator L. According to [8], 
[1 ], we can choose the numbers s* =  tj =  0 for i , j  ==. 1 , 2 ,3 ,4  and S5 =  £5 =  1 , 
such that the elements Uj in the matrix L  will have the differential order not 
greater than Si +  tj. In this way, the main symbol takes the following form:

L° ( 0  =

( - X 0 0 0 A
0 -A 0 0 £2
0 0 - X N £3
0 0 - N -X 0\ 6 £3 0 0 /

and thus
det£,°(Ç )=A (A 2 |i|2 +  AT2 | ç f ) , (2.3)

where |£'|2 =  i f  +
We can see that if A ^ [—iiV, iJV], then for every ^ O w e  have detL0 (£) ^  0 

and, consequently, the operator L is elliptic in sense of Douglis-Nirenberg.
Our aim is to investigate the spectrum of the operator M.  Let us define the 

domain of the operator M  as follows:

1?  £ L 2 ( f t ) | 3 / € L 2 (ft): '
=  ( / ,( p ) v ^ € ir 2I (n)

where (•, •) is an inner product in L2 (ft) and (ft) is a Sobolev space with 
the norm

1
/ \ 2

D (M)
- {

x (ft) x (ft),

J [|V/ | 2 +  / 2]dx

V /
First, we will show that M  is skew-selfadjoint and thus its spectrum will belong 
to the imaginary axis. Then, we will find its structure and localization either 
for bounded domains ft C R3, or for the whole space R3.

From the physical point of view, the separation of variables (2.1) serves as 
a tool to establish the possibility to represent every non-stationary process 
described by (1 .2) as a linear superposition of the normal vibrations. The
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knowledge of the spectrum of normal vibrations may be very useful for studying 
the stability of the flows. Also, the spectrum of operator M is important in 
the investigation of weakly non-linear flows, since the bifurcation points where 
the small non-linear solutions arise, belong to the spectrum of linear normal 
vibrations, i.e., to the spectrum of operator M.

3. S p e c tra l p ro b lem  so lu tio n  for com p ressib le  flu id  

Lem m a 3 .0 .1 . The operator M is skew-selfadjoint.

Proof. We observe first that, for compressible fluid, the Lemma cannot be 
proved by using the projection of L2 (ft) onto the space of the solcnoidal fields, 
as it was done in [10], [12]. Here we will use directly the definition of an adjoint 
operator.

Since M  can be represented as M  =  Mq + B , where B is an anti-symmetric 
bounded operator

( 0 0 0 0 0 ^
0 0 0 0 0
0 0 0 N 0
0 0 —N 0 0

\ 0 0 0 0 0 )
then it is sufficient to verify the skew-selfadjointness for the operator M q with 
the domain D (Mo) =  D (M).

Let u,v G D (Mo). Integrating by parts, we obtain

(Mqu,v) =  (Vu5 ,~v) +  (div~u ,v$) =  -(d iv!) ,u5) -  (~u,Vv5) =  -  (u, M0v ) .

Now, we shall prove the equality

D ( M q )  = D  (Mo).

First, we verify that D(Mq)  C D(Mo).  Since the operator Mo is not acting 
on the fourth component of the vector u, then, without loss of generality, we 
may consider U4 =  V4 =  f \  =  0.

Let v E D (Mq). It means that v € L2 (f2) and that there exists f  £ L2 (ft) 
such that

(Mqu, v) =  ( 5 ,/ )  for all u E D (Mo) :

(M0u, v) =  (Vu5, ~v) +  (div~u , v5) =  ( i t , /  ) +  (u5, f 5) .

Let u =  (0,0,0,0, u5), U5 E W\ (Cl). For such u we have

(V u 5 , ~v) =  (u5, f 5) .

Now, take u =  (ui,ii2,U3 , 0, 0). For such u we obtain

( d i v u , v b ) =  ( ' y , / )  .
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338 ANDREI GINIATOULLINE & CÉSAR HERNÁNDEZ

It follows from the last relation that V5 has a weak gradient from L2 (fi) and 
vs G (fi). Finally, D(Mq)  C  D(Mo).  The reciprocal inclusion can be 
proved analogously and thus the lemma is proved. [Zi

We recall that the essential spectrum is composed of the points belonging to 
the continuous spectrum, limit points of the point spectrum and the eigenvalues 
of infinite multiplicity ([14], [19]). We shall use the following criterion which is 
attributed to Weyl ([14], [19]) : a necessary and sufficient condition that a real 
finite value fi be a point of the essential spectrum of a self-adjoint operator A  
is that there exist a sequence of elements xn € D (̂ 4) such that

||z„|| =  l ,  xn - 0 ,  | | ( i4-/ i I)a:B| | - > 0 .  (3.1)

Theorem  3 .1 .  The essential spectrum of the operator M  is the interval of the 
imaginary axis [— iN,iN].

Proof From Lemma 3.1 we know that the spectrum of the operator M  belongs 
to the imaginary axis. Taking into account (2.3), we consider Ao € (—i N, i N) \  
{0} and choose a vector £ ^  0 such that

Afe2 + n 2 (Ag +  Af2) = 0 .
Therefore, there exists the vector rj =  (771, 772, 773, 774, 775) such that L°(£)77 =  0 :

—A0771 +  £1775 
—A0772 +  £2775

- A 0 7 7 3  +  N t]4 +  £ 3 7 7 5

-Nrj 3 -  A0774
£1771 + £2772 + £3773

Solving (3.2) with respect to 77, we obtain one of possible solutions:

(3.2)

7?i

772

773

774

775

ÍL
Ao
Í2.
Ao

A2+ÍV?
-&»AT

1

We observe that 77* 0, i =  1 , 2 ,3 ,4 ,5 .
Now, let Co°(f2) be a space of smooth functions with compact support in Cl 

and let us choose a function

t/>o ( x )  e  C£°(ft), J  ipl (x) dx =  1 .

l * K i

We f i x i o ^ f i  and define

■t¡>k(x) =  k % i p o ( k  (x  -  X o ) )  ,
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One can easily see that, starting from certain k,

\ m fi) =  1,
drpk
Ox. Cjk,

La( «)

d2 i>k
dx) =  Cjk2,

La(n)

where the constants Cj /  0 do not depend on k. 
We define the Weyl sequence

as follows:

uk =  (uk,uk,u%,uk,qk) 

u )  (x) =  i ( j p k  +
u¡(x) =  774e,fc3(x,í)í/>fc

9*0*0 = - À
( z , f )  =  +  X2&  +  Z3&3

=  1 ,2 ,3

, A: =  1 ,2 , . .

(3.3)

Now we have to show that the sequence (3.3) actually satisfies all the conditions 
(3.1).

For the functions (3.3), the weak convegrence to zero follows from the weak 
convergence to zero of the functions elk (x,& and the estimates II£,2(n) =

g k  =  C }k .  
dxj l 2(n) 3
The condition ||a;n|| =  1, actually, is equivalent to the condition that the 

norms of the Weyl sequence are separated from zero, and, it is sufficient to 
prove that at least the norms of one of the coordinates of the field uk are 
separated from zero. Let us consider the first coordinate

u\ (x ) =  +  T)\e

For the second term in the sum (3.4) we have

ik3(x¿) i dlPk
k3£i dx\

(3.4)

lim
k—f 00

771 eik3(x,£) * d ^ k
k3£ 1 dx\

However, for the first term we obtain

=  lim \m
l 2

dxpk
dx\ =  0.

L»2

r n e tk 3 { x ’° x p k  = \ m \  \\i> k \\L2  =  \ m \  ^  0 .
L  2

Now, it remains to verify that || (M  — AqI) wfc||L2 —♦ 0. Let us denote

f k = { M - X 0I)uT.k
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For the first component / f  we have 

/ f \ k dq—Xou1 + —— =
O X  i

* 3 V í i  V  a x r

since —XoT]i +  ^  =  0, which follows from the first equation of (3.2). Thus, we 
have

ll/ill

Analogously,

La(n)

dqk

< Const
k3 dx\ l2( fi) fc—>oo

0 .

/2 -  -A o«2 +  ^ -

= (-Ao% + Í 2 ) + l )  e*3« >

_ ± f ^ o m + 1 )iir><s,e>^i. 
k3 V Í2 7  9 *2 ’

dipk
0 X2

and

ll/ill
^ Const 

La(fi) -  “ fcT“ <9x2 Mfi) k —*oo

In a similar way we have

/3 =  ~^0U3 +  -^u4 +  Tp”ox3

=  (-A 01» +  ÍV7/4 +  f a ) +  1 )  eit3( * '« | ^  =

■ - é  < T f  -  0  *-*• dx3 ’

and thus

ll/ill
L 2(fi)

k —*oo
0.

For the fourth component we have the expression 

/4* =  - N u l - X 0qk =

=  (—A0t/4 -  N V3 )e ik3 ^ 4,k -  =

=  » NtJ3 ik^ x^)dipk
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which is followed by the estimate

dipk
I W I U ,  * Const dx:. -> 0.

Mfi) k~*°°
IL a (I2) -  ¿ 3

To evaluate , we use the last equation of (3.2)

Z i V i  +  62*72 +  £3*73 =  0,

which leads to

=  divuh — Xoqk =

Finally, we obtain the estimate

+ <3-5> 
We have verified that for A € (- i N , i N ) \  {0} the functions defined by (3.3) 
actually represent a Weyl sequence. Since the essential spectrum is a closed 
set, the points A =  0, A =  ±iN,  belong to it.

It was proved in [13] that the essential spectrum of the operator M  is equal 
to Q U S, where

Q =  {A G C : (M -  A I) is not elliptic in sense of Douglis-Nirenberg}

and
/  A 6 C \ Q : the boundary conditions of the operator (M — A I) 1 

~ y do not satisfy Lopatinsky conditions J ’

We have seen that for A ^ [~iN, iN] the system M -  XI is elliptic in sense 
of Douglis-Nirenberg. Let us prove that, for this case, the boundary condition 
~u • ~n \an = 0  satisfy Lopatinsky conditions.

Here we remind that the Lopatinsky conditions (see [13]) consist of the linear 
independence of the rows of the matrix

G (x, r )  L t )

with respect to the module M + r) ,  for ||j ^  0.

Here x =  (x i ,x 2,x 3), £ =  ( 6 .6 ,6 ) ,  6 -  { t u b ) ,  L° (0  is the matrix of the 
algebraic complements of the main symbol matrix L° (£), G (x , £) is the symbol
of the matrix G (x, D) which defines the boundary conditions, M + r j  =

Y[ ( r  — Tj Tj are roots of the equation detL =  0 with
positive imaginary part.
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Since A ^ [—iN, iN], then we can introduce the parameter a ^ O a s

' A2 -f N 2a2 = (X 2 +  N 2\
V A2 J ’

so that the equation det L (£) =  0 takes the form

a2 i n 2 + e 32 = o .

In the upper half of the complex plane, the equation has only one root

t =  ia |£'|.

Let us choose a local system of coordinates so that £1 =  1, £2 =  0. 
Then, we have

— t  — ia,

(  - X  0 0 0 1 \
0 -A  0 0 0

L°(t) —  0 0 -A  N t

0 0 —N  -A  0

L°(r) =

(3 .6 )

\  1 0 T 0  0 /

0 A2t —X N t A (A2 +  N 2)
- A 2 ( l + r 2) -  N 2 0 0 0

0 —A2 X N A2t
0 — NX — A2 ( l  +  T2) X2N t
0 X 3r - A  2N t A2 (A2 + N 2)

conditions in form

G ( i t =  0

we obtain immediately that

G =  (n i,n 2,n 3,0,0) .

and G is a vector row. Since L°(r)  is a matrix whose size is 5 x 5, then GL(r) 
is a row with five components. In other terms, the Lopatinsky condition is 
satisfied, which completes the proof. Gf

Now, let us consider the system (2.2) in ft =  R 3. For the normal vibrations 
problem we have the system

(M* -  XI) u =  0,

where the matrix M* is the same matrix M,  and the domain of M* is defined 
as

d  <"*> -  { ( 1 ,  v 5 i V ,  K  ^ w i f e } x * ?  (fi3) * w  ■
Theorem  3.2. The essential spectrum of the operator M* is the whole imag
inary axis. Moreover, the points X such that X (£ [—iN, iN], belong to the 
continuous spectrum of the operator M *.
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Proof. Let A G [—iN, iN]. We note first that, due to the inclusion theorem 
(R3) —► C (R3), for all ip G W$ (R3) we have the property: lim <p (x) =  0.

|x |—*00
Thus, for every € W£ (R3) the integration by parts is valid:

/ t H *  = - / &
R 3 R 3

Therefore, by Lemma 3.1 we obtain the skew-selfadjointness for the operator 
M *, and, using the same Weyl sequence as in Theorem 3.1, we have that 
A € [—iN, iN] belongs to the essential spectrum.

It is easy to see that the system (2.2) is equivalent to the scalar equation

d2u d2u A2 d2u . 2  n to *7\
a í f  + d4 + { 3 )

Now, let us consider A G (~ioo,—iN)  U (iN,ioo). In this case, the equation
(3.7) is elliptic. Thus, changing the scale in X3 , we can perform the equation"
(3.7) as I

Ait — A 2u — 0. j
From [7], [22] we have that the continuous spectrum of the Laplace operator 
acting in C^3)> composed if the points A2 € (—00,0]. Thus, the points 
A G (—¿00, ¿00) form the continuous spectrum of the differential operator in
(3.7) when it is equivalent to the Laplace operator, in other terms, when A G 
(—¿co, — iN)  U (iN, zoo). Finally, we have that the points A G [—iN , iN] belong 
to the essential spectrum of M*, and the points A G (—ioo,—i N ) U (iN,ioo) 
belong to the continuous spectrum of M*,  and thus the Theorem is proved. EÍ
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