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R e s u m e n .  En este artículo introducimos y  estudiamos propiedades topológicas 
de A-derivada, A-borde, A-frontera y  A-exterior de un conjunto usando el con
cepto de A-conjunto abierto. Presentamos un nuevo estudio de axiomas de 
separación usando las nociones de operador A-abierto y  A-clausura.
Palabras y frases clave. Espacios topológicos, A-conjuntos, conjuntos A-abiertos, 
conjuntos A-cerrados, espacios X-Ro, espacios X-Ri.

1. Introduction
Maki [12] introduced the notion of A-sets in topological spaces. A A-set is 
a set A  which is equal to its kemel(= saturated set), i.e. to the intersection 
of all open supersets of A. Arenas et al. [1] introduced and investigated the 
notion of A-closed sets and A-open sets by involving A-sets and closed sets. 
This enabled them to obtain some nice results. Jn this paper, for these sets, 
we introduce the notions of A-derived, A-border, A-frontier and A-exterior of 
a set and show that some of their properties are analogous to those for open
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sets. Also, we give some additional properties of A-closure. Moreover, we offer 
and study new separation axioms by utilizing the notions of A-open sets and 
A-closure operator.

Throughout this paper we adopt the notations and terminology of [12] and
[1] and the following conventions: (X ,r) ,  (Y ,a ) and (Z, v) (or simply X , Y  
and Z) will always denote spaces on which no separation axioms are assumed 
unless explicitly stated.

Definition 1 . Let B  be a subset of a space (X, r). B  is a A-set (resp. V-set) 
[12] if B =  B A (resp. B  =  B v ), where:

B a =  P){t/ \ U D B ,U  G t} and B v  =  (J { F  \ B  D F, F c e  r }  .

Theorem 1 . 1  ([12]). Let A, B and {B{ \ i G 1} be subsets of a space (X ,t ). 
Then the following properties are valid:

a) B C B A.
b) If A c  B then AA c  B A.
c) B aa =  B a .

d) ( U  =  U B A.
\ i € l  J  iG/

e) If B  E r, then B  =  B A (i.e. B is a A-set).
f) (Bc)a =  (B v ) c.
g) B v  C B.
h) If B c € r, then B =  B v  (i.e. B is a V-set).

i) i n  s* )  c  n ^ A-
\ i £ i  /  i e i  

j) ( u W )  D U  b y .  
\ i € l  /  iGl

k) If Bi is a A-set (i 6 I), then [J B{ is a A-set.
»G/

1) If B, is a A-set (i G I), then P) Bi is a A-set.
i € l

m) B  is a A-set if and only if B c is a V-set. 
n) The subsets 0 and X  are A-sets.

2 . A pplications o f A-closed sets and A-open sets
Definition 2. A subset A of a space {X ,t ) is called X-closed [1] if A =  B f\C ,  
where B is a A-set and C is a closed set.

Lemma 2 .1. For a subset A of a space (X , r ), the following statements are 
equivalent [1]:
(a) A is X-closed.
(b) A  =  L D Cl(A), where L is a A-set.
(c) A =  AA nC l(A ).
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Lemma 2.2. Every A-set is a X-closed set.

Proof. Take A fl X ,  where A is a A-set and X  is closed. Ei

Rem ark 2.3. [1]. Since locally closed sets and X-sets are concepts independent 
of each other, then a X-closed set need not be locally closed or be a A-set. 
Moreover, in each Tq non-T\ space there are singletons which are X-closed but 
not a A-set.

Definition 3. A subset A of a space (X , r) is called X-open if Ac =  X \ A  is 
X-closed.

We denote the collection of all A-open (resp. A-closed) subsets of X  by 
XO{X) or XO{X,t ) (resp. XC{X) or X C(X,t )). We set XO{X,x) =  {V  <E 
XO(X) | x € V}  for x € X .  We define similarly XC(X, x).

Theorem 2.4. The following statements are equivalent for a subset A of a 
topological space X :
(a) A is X-open.
(b) A =  T  U C, where T  is a V-set and C  is an open set.

Lemma 2.5. Every V-set is X-open.

Proof. Take A =  A U 0, where A is V-set, X is A-set and 0 =  X \ X .  Gf

Definition 4. Let (X, r) be a space and A C X .  A point x € X  is called 
X-cluster point of A if for every X-open set U of X  containing x, AC\U  ^  0. 
The set of all X -cluster points is called the X-closure of A and is denoted by 
Clx{A).

Lemma 2.6. Let A, B and Ai (i G I )  be subsets of a topological space (X , r). 
The following properties hold:
(1 ) If Ai is X-closed for each i 6 I, then fliejAi is X-closed.
(2) If Ai is X-open for each i G I, then Ujz iA i is X-open.
(3) A is X-closed if and only if A =  C l\(A).
(4) Cix(A) = n {F  e x C(X,T) \ A C F } .
(5) A  c Clx(A) c Cl(A).
(6) If A C  B, then Clx{A) C  Clx(B).
(7) C l\{A) is X-closed.

Proof. (1) It is shown in [1], 3.3
(2) It is an immediate consequence of (1).
(3) Straightforward.
(4) Let H =  f] {F  \ A C F, F is A-closed}. Suppose that x € H. Let U be a 
A-open set containing x such that A f ] U  =  0. And so, A C X \U .  But X \ U  
is A-closed and hence Cl\{A)  C  X \U .  Since x X \U ,  we obtain x Cl\{A)  
which is contrary to the hypothesis.

On the other hand, suppose that x  e Cl\(A),  i.e., that every A-open set of 
X  containing x meets A. If x £ H, then there exists a A-closed set F  of X
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such that A C F  and x £ F. Therefore x € X \ F  € AO(X). Hence X \ F  is a 
A-open set of X  containing x, but (X \ F ) p| A =  0. But this is a contradiction 
and thus the claim.
(5) It follows from the fact that every closed set is A-closed.

Gi

In general the converse of 2.6(5) may not be true.

Example 2.7. Let X  =  {a, 6, c}, r  =  {0, {a}, {6}, {a, 6} ,X } .  Then Cl ({a}) =  
{ a ,c} ¿  Clx ({a}) =  {a}.

Definition 5. Let A be a subset of a space X .  A point x  € X  is said to be 
X-limit point of A if for each X-open set U containing x, U n(>l\{x}) ^  0. The 
set of all X-limit points of A is called a X-derived set of A and is denoted by 
Dx(A).
Theorem 2.8. For subsets A ,B  of a space X ,  the following statements hold:

(1) D \{A )  C D(A) where D(A) is the derived set of A.
(2) If A C  B, then D X(A) C  D X(B).
(3) D X(A) U D X(B) c  D X(AU B) and D x(A n  B) C D X(A) n D X(B).
(4) D x (Dx( A ) ) \ A c D x(A).
(5) D X(A U D X( A ) ) C A U D X(A).

Proof. (1 ) It suffices to observe that every open set is A-open.
(3) it is an immediate consequence of (2).
(4) If x € DX(DX(A))\A  and U is a A -open set containing x, then U D 
(Z>a(^)\{^}) 7̂  0- Let y e  U H (Da(j4)\{:c}). Then since y £ D X(A) and 
y  G t/, U fl (i4\{y}) ^  0. Let z £ U 0  (A\{y}). Then z x  for z E A  and 
x £ A. Hence U fl (k\{x}) 7̂  0. Therefore x € D X(A).
(5) Let x  € D X(A U Z)^(A)). If x G A, the result is obvious. So let x € 
D x(AuDx(A))\A, then for A-open set U containing x, i/n(i4uZ^A(-4)\{^}) i 1 0- 
Thus U fl (j4\{x}) 0 or U fl (£>a(>1)\{x}) ^  0. Now it follows from (4) that 
U D (i4\{x}) 7̂  0. Hence x £ D x(Al). Therefore, in any case D X(A\J D X(A)) C
i4uZ>AU)- Gi

In general the converse of (1) may not be true and the equality does not 
hold in (3) of Theorem 2.8.

Exam ple 2.9. Let X  =  {a, 6, c} with topology r  =  {0, {a}, {a } ,X } . Thus 
XO(X, t) =  {0, {a}, {c}, {a, b}, {a,c}, {b,c}, X ) . Take:

(i) A =  {a}. We obtain D(A) % D X(A).
(ii) C  =  {a} a n d E = { b ,c } .  Then D a (C  U E) ^  D a {C) U Da (E).

Theorem 2.10. For any subset A of a space X ,  Clx(A) =  A  U D X(A).

Proof. Since DX(A) C Clx(A), A U D X(A) c Clx(A). On the other hand, 
let x  € C lx(A). If x G A, then the proof is complete. If x £ A, then each 
A-open set U containing x intersects A at a point distinct from x. Therefore 
x G Dx(A). Thus Clx(A) C A  U D X(A) which completes the proof. Ef
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Definition 6. A point x € X  is said to be a \-interior point of A if there 
exists a X-open set U containing x such that U C A. The set of all X-interior 
points of A is said to be X-interior of A and is denoted by In t\(A ).

Theorem 2 .1 1 .  For subsets A ,B  of a space X ,  the following statements are 
true:
(1) In t\(A ) is the largest X-open set contained in A.
(2) A is X-open if and only if A =  In t\{A ).
(3) In t\(In t\{A ))  =  Int\{A).
(4) In t\{A) =  A \D x{X \A ) .
(5) X \In t>(A) =  Clx(X \A ).
(6) X \ C l x{A) =  In tx{X\A) .
(7) A c  B, then Int\{A)  C  In t\(B ).
(8) I n t\ (A ) U In t\(B )  C In t\ (A  U B).
(9) Intx(A) fl Intx(B) D  In t\{A  fl B).

Proof. (4) If x e  A \D \ (X \A ) ,  then x (£ D \ (X \A )  and so there exists a A-open 
set U containing x such that U fl (X \ A ) =  0. Then x 6 U C A and hence 
x e  In t\(A),  i.e., A \ D \ ( X \ A ) C Int\(A).  On the other hand, if x e  In t\{A),  
then x D \(X \A )  since Int\{A)  is A-open and In t\(A )  fl (X\A) =  0. Hence 
Intx(A) =  A \D x(X \A ) .
(5) X \ I n t x(A) =  X \(A \D >.(X \A ))  =  (X\,4) U D *(X \A ) =  C h (X \A ) .  &S 

Definition 7. bx(A) =  A\Intx{A) is said to be the X-border of A.

Theorem 2 .12 . For a subset A of a space X ,  the following statements hold:
(1) bx(A) C b(A) where b(A) denotes the border of A.
(2) A =  Intx{A) U bx{A).
(3) I n tx (A) f)bx (A )= 0 .
(4) A is a X-open set if and only if bx(A) =  0.
(5) b \{Int\{A)) =  0.
(6) Intx(bx(A)) =  0.
(7 )bx(bx(A ))= bx(A).
(8)bx(A) =  A n C lx (X \A ) .
(9)bx(A) =  D x(X \A ).

Proof. (6) If i  € Intx{bx(A)), then x € bx{A). On the other hand, since 
b\(A) C A, x e  Intx(bx(A)) C In tx(A). Hence x  G In tx{A) D6a(^) which 
contradicts (3). Thus Intx{b\{A)) =  0.
(8) bx(A) =  A\In tx (A ) =  A \ ( X \ C l x ( X \ A )) =  A n  Clx(X\A) .
(9) b\(A)  =  A\Intx{A) =  A \ (A \D x(X\A))  =  Dx{X\A).  Bi

Definition 8. Frx{A) =  Clx(A )\In t\(A ) is said to be the X-frontier of A.

Theorem 2 .13 . For a subset A of a space X ,  the following statements are 
hold:
(1) Frx{A) C Fr(A) where Fr(A) denotes the frontier of A.
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(2) Clx(A) =  In tx(A )U F r x(A).
(3) In tx( A ) n F r x(A) =  t).
(4) b\(A) c  Frx(A).
(5) Frx(A) =  bx(A )U D x(A).
(6) A is a A-open set if and only if F rx(A) =  D \(A).
(7) Frx(A) =  Clx( A ) n C lx(X \A ) .
(8) Frx(A) =  fV A( J iV ) .
(9) F rx(A) is X-closed.
(10) Frx(Frx{A)) C F rx(A).
(11) F rx(fn tx(A)) C F r A(/l).
(12) F rx(Clx(A)) c  F r A(/l).
(13) In tx{A) =  A \Frx(A).

Proof. (2) In tx(A) U F rx{A) =  In tx(A) U (Clx(A )\In tx(A)) =  Clx(A).
(3) Intx(A) n Frx(A) =  In tx(A) fl (Clx(A )\In tx(A)) =  0.
(5) Since In tx(A) U F rx(A) =  In tx(A) U M-'l) U DX(A); Frx(A) =  bx(A) U 
D X(A).
(7) F rA(4) =  Clx(A ) \ ln tx(A) =  Clx(A) fl
(9) Clx(Frx(A)) =  Clx(Ctx(A)r\Clx(X \A ))  c  C/A(CTA(^))nC/A(CiA(X \J4)) =

Hence Frx(A) is A-closed.
(10) Frx(Frx(A)) =  Clx(Frx(A))nClx( X \F r x(A)) C Clx(Frx(A)) =  F rx(A).
(12) F rx(Clx(A)) =  Clx(Clx(A )) \In tx(Clx(A)) =  Clx((A))\Intx(Clx(A)) =  
Clx(A ) \ ln tx(A) =  F r A(/l).
(13) A \F r x(A) =  A \(C lx(A )\In tx(A)) =  l n t x(A). M

The converses of (1) and (4) of the Theorem 2.13 are not true in general as 
are shown by Example 2.14.

Example 2.14. Consider the topological space (X , t) given in Example 2.7 . 
If A — {a}. Then Fr(A) %. F r \(A ) and if B  =  {a, c}, then F r\{B ) % b\(B).

Recall that a function /  : (X , r) —> (Y, a) is said to be A-continuous [1] if 
/ - 1 (V) G AC (X)  for every closed subset V of Y.

Theorem 2 .15 . For a function f  : X  —► Y , the following are equivalent:
(1) f  is X-continuous;
(2) for every open subset V o fY , / - 1 (V) € AO(X);
(3) for each x € X  and each V  € 0(Y , f(x)) ,  there exists U £ X 0(X ,x)  such 
that f(U )  C V.

Proof (1) -> (2) : This follows from f ~ l {Y \V )  =  X \ f ~ l {V).
(1) —* (3) : Let V 6 0 ( Y )  and f(x)  6 V. Since /  is A-continuous / _ 1(Vr) €
A0 { X )  and x € / _ 1(^)- Put U =  Then x 6 U and f(U )  C V.
(3) —» (1) : Let V  be an open set of Y  and x € f ~ 1(V). Then f(x )  G V. 
Therefore by (3) there exists a Ux € XO(X) such that X  e  Ux and f{U x) C V. 
Therefore X  G Ux C / - 1 (V). This implies that / - 1 (Vr) is a union of A-open 
sets of X .  Consequently / - 1 (V) C A0 (X ) .  Hence /  is A-continuous. IZi
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In the following theorem jJA.c. denotes the set of points x of X  for which a 
function /  : (X, r) —> (Y, a) is not A-continuous.

Theorem 2.16 . JjA.c. is identical with the union of the X-frontiers of the 
inverse images of X-open sets containing f(x).

Proof. Suppose that /  is not A-continuous at a point x of X .  Then there exists 
an open set V  C Y  containing f(x)  such that f{U )  is not a subset of V  for 
every U G AO(X) containing x. Hence we have Uf) (X  \  / - 1 (V)) ^  0 for every 
U G AO(X)  containing x. It follows that x G C l\  (X  \  f  ~1(Vr)). We also have 
x G f ~ 1{V) c  (/ - 1 (^))- This means that x G F r \  (/_ 1(^))- 
Now, let /  be A-continuous at x G X  and V  C  Y  be any open set containing 
f(x).  Then x G / - 1 (^) *s a A-open set of X .  Thus x  G In tx ( f~ 1(V)) and 
therefore x ^ F r\  (/ - 1 (^)) f°r every open set V  containing f{x).

Definition 9. E xt\(A )  =  I n t \ ( X \ A ) is said to be a X-exterior of A.

Theorem 2 .17 . For a subset A of a space X ,  the following statements are 
hold:
(1) Ext(A) C E xt\{A ) where Ext(A) denotes the exterior of A.
(2) E xt\{A ) is X-open.
(3) E xt\{A )  =  I n t \ (X \A )  =  X \ C l x(A).
(4) E xt\{E x t\{A ))  =  In t\(C l\(A )).
(5) If A C B, then E xt\(A) D  E xt\(B ).
(6) E x t\{A  U B) c  E xt\{A)  U E xt\(B ).
(7) E x t\(A  C\B) D  Ext\{A)  n E xt\{B ).
(8) E x t \{X )  =  0.
(9) E x tx(Q) =  X .
(10) E xt\(A ) =  E x tx{X \E x tx(A)).
(11) Intx(A) C  Extx(Extx(A)).
(12) X  =  Intx(A)U Extx(A)U F r\(A).

Proof. (4) Extx(Extx(A)) =  E x tx (X \C lx(A)) =  I n tx (X \ (X \C lx(A))) =  
Intx(Clx(A)).
(10) E xtx(X \E xtx(A )) =  E x tx (X \In tx (X \A )) =  Intx(X \(X \I n tx (X \A ) ) )  =  
Intx{Intx{X \A )) =  In tx(X \A )  =  E x tx(A).
(11) Intx(A) C.Intx(Clx(A)) =  In tx(X \In tx (X \A ))  =  In tx (X \E x tx(A)) =  
Extx(Extx{A)). Ef

Example 2 .18 . Consider the topological space (X , t ) given in Example 2.7. 
Hence, if A =  {a} and B =  {6}, Then Extx{A) % Ext(A), E x t \(A  fl B) ^  
Extx{A) fl Extx{B ) and Extx(A  U B ) /  Extx{A) U E xt\(B).

3. Som e new separation axiom s 
We recall with the following notions which will be used in the sequel:
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A space (X , r) is said to be Ro [3] (resp. X-Ro [2]) if every open set contains 
the closure of each of its singletons. A space (X , r) is said to be Ri [3] (resp. 
X-Ri [2]) if for x, y  in X  with C l({x})  ^  Cl({y}) ,  there exist disjoint open sets 
U and V  such that Cl({x})  is a subset of U and Cl({y})  is a subset of V. A 
space is To if for x, y  G X  such that i  /  ¡/ there exists a open set U of X  
containing x but not y or an open set V  of X  containing y but not x. A space 
( X , t )  is T\ if to each pair of distinct points x and y  of X ,  there exists a pair 
of open sets one containing x but not y and the other containing y but not x. 
A space is (X, r) is T2 if to each pair of distinct points x and y of X, there 
exists a pair of disjoint open sets, one containing x and the other containing y. 
Recall that a space { X , t )  is called a Ti-space [11] if every generalized closed 
subset of X  is closed or equivalently if every singleton is open or closed [6]. In 
[1], Arenas et al. have shown that a space (X, r) is called a Ti -space if and 
only if every subset of X  is A-closed.

Definition 10. Let X  be a space. A subset A C X  is called a X-Difference set 
(in short X-D-set) if there are two X-open sets U, V  in X  such that U ^  X  
and A =  U \ V .

It is true that every A-open set U ^  X  is a A-P-set since U =  U \ 0.

Definition 1 1 .  A space (X ,r )  is said to be:
(i) X-Do (resp. X-D\) if for x, y € X  such that x  ^  y there exists a X-D- 

set of X  containing x but not y or (resp. and) a X-D-set containing y 
but not x.

(ii) A topological space { X , t )  is X-D2 if for x ,y  € X  such that x ^  y there 
exist disjoint X-D-sets G and E  such that x G G and y  € E.

(in) X-To (resp. X-T\) if for x ,y  £ X  such that i / y  there exists a X-open 
set U of X  containing x but not y or (resp. and) a X-open set V of X  
containing y but not x.

(iv) X-T2 if for x, y € X  such that i / y  there exist disjoint X-open sets U 
and V such that x € U and y £ V.

Rem ark 3 .1 .
(i) If (X ,t ) is X-Ti, then it is A-Tj_i, i =  1,2.

(ii) Obviously, if (X ,r )  is X-Ti, then ( X , t ) is X-Di, i =  0 ,1,2 .
(Hi) If (X ,t) is X-Di, then it is X -D ^i, i =  1,2.

Theorem 3.2. For a space (X , t ) the following statements are true:
(1) ( X , t ) is X-Do if and only if (X , t ) is X-Tq.
(2) ( X , t )  is X-Di if and only i f , ( X , t )  is X-D2 .

Proof. The sufficiency for (1) and (2) follows from the Remark 3.1.
Necessity condition for (1). Let (X, r) be X-Do so that for any distinct pair of 
points x and y  of X  at least one belongs to a X-D set O. Therefore we choose 
x £ O and y £ O. Suppose O =  U \  V  for which U ^  X  and U and V  are 
A-open sets in X .  This implies that x £ U. For the case that y £ O we have

Volumen 41, Número 2, Año 2007



MORE ON A-CLOSED SETS 363

(i) y £ U, (ii) y G U and y G V". For (i), the space X  is A-To since x G U and 
y £ U. For (ii), the space X  is also A-To since y G V  but x V.

The necessity condition for (2). Suppose that X  is X-Di. It follows from 
the definition that for any distinct points x and y in X  there exist A-D sets G 
and E  such that G containing x but not y and E  containing y but not x. Let 
G =  U \ V  and E =  W  \  D, where U, V, W  and D  are A-open sets in X .  By 
the fact that x £ E, we have two cases, i.e. either x £ W  or both W  and D  
contain x. If x W,  then from y £ G either (i) y or(ii) y G and y G V. 
If (i) is the case, then it follows from x  G U  \  V that x G U  \  (V U  W), and also 
it follows from y G W \ D  that y G (U U  D). Thus we have U \  {V U W) and 
W  \  (U U  D) which are disjoint. If (ii) is the case, it follows that x G U \  V  
and y  G V since y G U and y G V. Therefore (U \  V) fl V =  0. If x G W  and 
i G D ,  we have y G W \ D  and x G D. Hence (W \ D) fl D  =  0. This shows 
that X is A-£>2-

Theorem 3.3. If ( X , t )  i s  X-Di, th e n  i t  is  A-To.

Proof Remark 3.1(iii) and Theorem 3.2. Elj

We give an example which shows that the converse of Theorem 3.3 is false.*

Example 3.4. Let X  =  {a, b} with topology r  — {0, {a } ,X } . Then (X ,r )  is 
A-To, but not X-D\ since there is not a X-D-set containing a but not b.

Exam ple 3.5. Let X  =  {a, b, c, d} with topology r  =  {0, {c}, {b}, {b, c}, { b, c, d}, 
X } .  Then we have that {a}, {a, d}, {a ,b,d} and {a ,c ,d} are X-open and { X ,t ) 
is a X-Di, since {a}, {6} =  {a ,6,d } \ {a ,d } ,  {c} =  {a ,c ,d } \ { a ,d}, {d} — 
{a,d}\{a}. But (X ,r)  is not A-T2. ,

Example 3.6.
(1) As a consequence of the Example 3.4, we obtain that (X, r) is A-To, but not 
A-Tl
(2) As a consequence of the Example 3.5, we obtain that {X ,t ) is A-To, but not 
X -T2.

A subset Bx of a space X  is said to be a A-neighbourhood of a point x  G X  
if and only if there exists a A-open set A such that x G A C  Bx.

Definition 12 . Let x  be a point in a space X .  If x does not have a X—neigh
borhood other than X ,  then we call x a X-neat point, neigtbourhood

Theorem 3.7. For a A-To space (X, r) the following are equivalent:
(1) ( X , r ) i s X - D i;
(2 )  ( X , t ) h a s  n o  X -n e a t p o in t .

Proof (1) —* (2) : If X  is X-Di then each point x G X  belongs to a A-D-set 
A =  U \V ; hence x  G U. Since U X ,  thus x is not a A-neat point.
(2) —*• (1) : If X  is A-To, then for each distinct pair of points x ,y  G X ,  at 
least one of x, y, say x has a A -neighborhood U such that x  G U and y £ U.
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Hence U ^  X  is a X-D-set. If X  does not have a A-neat point, then y  is not 
a A-neat point. So there exists a A-neighbourhood V of y such that V  ^  X .  
Now y  G V \ U ,  x £ V \ U  and V \U  is a X-D-set. Therefore X  is X-D\. &

Corollary 3.8. A A-To space X  is not X-Di if and only if there is a unique 
X-neat point in X .

Proof. We only prove the uniqueness of the A-neat point. If x and y are two 
A-neat points in X ,  then since X  is A-To, at least one of x and y , say x, has a 
A-neighborhood U such that x G U, y £ U. Hence U ^  X .  Therefore x is not a 
A-neat point which is a contradiction. ^

Theorem 3.9. A space X  is A-To if and only if for each pair of distinct points 
x, y of X ,  Clx( { x } ) ^ C l x({y}).

Proof. Sufficiency. Suppose that x, y G X ,  x ^  y and C l\( {x } )  ^  C l\( {y }) .  
Let 2 be a point of X  such that 2 G C7.\({a;}) but z ^ C l\({y }) .  We claim 
that x £ C l\( {y }) .  For, if x G C l\( {y }) ,  then C l\( {x } )  C C l\( {y }) .  This 
contradicts the fact that z £ C l\( {y }) .  Consequently x  belongs to the A-open 
set [C7a({2/})]c to which y does not belong.
Necessity. Let X  be a A-To space and x, y  be any two distinct points of X .  
There exists a A-open set G containing x or y, say x but not y. Then Gc 
is a A-closed set which does not contain x but contains y. Since C l\( {y } )  is 
the smallest A-closed set containing y  (Lemma 2.6), C l\( {y } )  C Gc, and so 
x i  C l\{ {y }) .  Consequently C7.\({:r}) ^  C7A({y})- Ei

Theorem 3.10 . A space X  is A-Ti if and only if the singletons are X-closed 
sets.

Proof Suppose X  is A-Ti and x is any point of X .  Let y  € {z }c. Then x ^  y. 
So there exists a A-open set Ay such that y  € A y but x^ Ay. Consequently 
y 6 Ay C {x }c i.e., {x }c =  | J {Ay/ y  € {x }c} which is A -open.
Conversely, let x, y  G X  with x ^  y. Now x ^  y  implies y G {#}c. Hence{x}c is 
a A-open set containing y but not x. Similarly { y } c is a A-open set containing 
x but not y. Accordingly X  is a A-Ti space. [Zi

Theorem 3 .1 1 .  A topological space X  is X-T\ if and only if X  is To.

Proof. This is proved by Theorem 3.10 and [1] [Theorem 2.5.]

Example 3 .12 . The Khalimsky line or the so-called digital line f[8], [9]J is the 
set of the integers, Z, equipped with the topology having {{2n — l,2n ,2n +  
1} : n  G Z} as a subbase. This space is of great importance in the study 
of applications of point-set topology to computer graphics. In the digital line 
(Z, If), every singleton is open or closed, that is, the digital line is To. Thus by 
Theorem 3.11, the digital line is A-Ti which is not T\.

Rem ark 3 .13 . From Example 3.4, Example 3.5, Example 3.6 and Example 
3.12 we have the following diagram:
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A-To
T \

A-Ti ->
T Z 1

A-T2
(1) T\ = >  A-Ti and T2 ==£► A-T2. The converses are not true:

Example 3 .14 . Let (X , r) ¿>e a topological space such that X  =  {a, 6, c} 
and t  =  {0, {a}, {a, b}, X }. Then we have that

A0 {X ,  t )  =  {0, { a } , {c} , {a, &}, { a , c} , {&, c} , X }  .

Therefore:
(i) (X , t ) is X-T\ but it is not T\. (see also as another example the 

Khalimsky line i.e., the digital line which is given in Example 
3.12).

(ii) (X, r) is A-72 but it is not T2 .

(2) To implies A-To But the converse is not true as it is shown in the 
following example.

Example 3 .15 . Let X  =  {a, 6} with topology r  =  {0, {a } ,X } . Then 
(X ,r)  is A-To- Observe that {X, r) is not To.

(3) A-Ti implies A-To and A-T2 implies A-To- The converses are not true 
(Example 3.6).

(4) X-Ri implies X-Rq. The converse is not true (Example 3.15).
(5) A-Ti does not imply Rq and A-To does not imply Ro. (Example 3.14).
(6) R\ implies Rq [3]. The converse is not true as it is shown by the 

following example.

Example 3 .16 . Let X  =  {a, 6} with indiscrete topology t . Then (X , r) 
is Rq but it is not R \ .

(7) (i) X-Rq Ro and (ii) X-Ri R\ (Example 3.14).
(8) (8) (i) Ti implies To which is equivalent with A-Ti (see Theorem 3.11) 

and (ii) Ti implies A-Ti. The converses are not true. For case (i), it is 
well known and for case (ii), it follows form the fact that every A-Ti is 
A-Ti (where a topological space is A-Ti [2] if every singleton is A-open 
or A-closed).

(9) A-Ti =̂5- T i . It is shown in the following example.

Example 3 .17 . ¡[I][Example 3.2]] Let X  be the set of non-negative 
integers with the topology whose open sets are those which contain 0 and 
have finite complement. This space is not T i , but it is To is equivalent 
with X-T\ (see Theorem 3.11). Therefore also X-Ti does not imply T i .
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(10) X  is a Ti-space [1] if and only if every finite subset of X  is A-closed. 
We see that Ti -space is strictly placed between Ti  and X-T\. On the 
other hand, the space X  =  {a,b,c}  with r  =  {0, {a}, {a, b}, X }  is X-T\ 
but not T i . Example 3.17 is a example of a space Ti which is not T i .

7  4 2

In what follows, we refer the interested reader to [10] for the basic definitions 
and notations. Recall that a representation of a C*-algebra A  consists of a 
Hilbert space H and a "-morphism n : A  — ► where B(TC) is the C*-
algebra of bounded operators on H. A subspace X of a C*-algebra A  is called 
a primitive ideal if A =  ker(7r) for some irreducible representation ('H , 7r) of .4. 
The set of all primitive ideals of a C*-algebra A  plays a very important role in 
noncommutative spaces and its relation to particle physics. We denote this set 
by Prim A. As Landi [10] mentions, for a noncommutative C*-algebra, there 
is more than one candidate for the analogue of the topological space X :

1. The structure space of A  or the space of all unitary equivalence classes 
of irreducible *-representations and

2. The primitive spectrum of A  or the space of kernels of irreducible *- 
representations which is denoted by Prim A. Observe that any element 
of Prim A  is a two-sided *-ideal of .4.

It should be noticed that for a commutative C-algebra, 1 and 2 are the 
same but this is not true for a general C*-algebra A. Natural topologies can 
be defined on spaces of 1 and 2. But here we are interested in the Jacobsen (or 
hull-kernel) topology defined on Prim A  by means of closure operators. The 
interested reader may refer to [4] for basic properties of Prim A. It follows 
from Theorem 3 .11 that Prim A  is also a A-Ti-space. Jafari [7] has shown that 
7\-spaces are precisely those which are both Rq and X-T\.

Theorem 3.18 . A space X  is X-T2 if and only if the intersection of all X-closed 
X-neighborhoods of each point of the space is reduced to that point.

Proof Let X  be A-T2 and x G X .  Then for each y G X ,  distinct from x , there 
exist A-open sets G and H  such that x  G G, y G H  and G D H  =  0. Since 
x G G C H c, then H c is a A-closed A-neighborhood of x to which y  does not 
belong. Consequently, the intersection of all A-closed A -neighborhood of x is 
reduced to {x}.
Conversely, let x, y G X  and x ^  y. Then by hypothesis, there exists a A-closed 
A-neighbourhood U of x such that y £ U. Now there is a A-open set G such 
that x G G C U. Thus G an U° are disjoint A-open sets containing x and y, 
respectively. Hence X  is A-T2. Ei

Definition 13 . A space (X , t ) will be termed X-symmetric if for any x and y 
in X ,  x G C l\( {y } )  implies y G CZa({x}).

Definition 14 . A subset A of a space (X , r) is called a X-generalized closed 
set (briefly X-g-closed) if C l\{A)  C U whenever A C U and U is X-open in
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Lemma 3.19 . Every X-closed set is X-g-closed.

Example 3.20. In Example 3.6, if A — {a}, then A is a X-g-closed set, but it 
is not a X-closed set (hence it is not a closed set).

Theorem 3 .2 1. Let ( X , t ) be a space. Then,
(i) (X, r) is X-symmetric if and only if {x} is X-g-closed for each x in X .
(ii) If (X , r) is a X-Ti space, then (X , r) is X-symmetric.
(Hi) (X , r) is X-symmetric and X-Tq if and only if (X, r) is X-Ti.

Proof, (i) Sufficiency. Suppose x 6 C l\( {y } ) ,  but y $ C l\( {x }) .  Then {2/} C 
[CYa({z})]c and thus C l\( {y } )  C  [C7a({#})]c- Then x € [C7a({^})]c> a contra
diction.
Necessity. Suppose {#} C E  E X 0 (X ,t )  =  {B  C X  | B  is A-open}, but 
C l\( {x } )  £  E. Then Clx({x}) n E c ^  0; take y 6 C l\{{x })  D E c. Therefore 
x € C l\( {y } )  C  E c and x £ E, a contradiction.
(ii) In a A-Ti space, singleton sets are A-closed (Theorem 3.10) and therefore 
A-p-closed (Lemma 3.19). By (i), the space is A-symmetric.
(iii) By (ii) and Remark 3.1(i) it suffices to prove only the necessity condition. 
Let x 7̂  y. By X-Tq, we may assume that x e E  C { y }c for some E  e A0 (X ,  r). 
Then x £ C l\( {y })  and hence y £ C l\( {x }) .  There exists a F € X0(X, r)  such 
that y  G F  C  { x } c and thus (X ,r)  is a A-Ti space. E Î

Theorem 3.22. Let (X ,r)  be a X-symmetric space. Then the following are 
equivalent.
(i) ( X , t ) is X-T0,
(ii) (X , r) is X-Di,
(iii) ( X , t ) is X-T\.

Proof (i) —► (iii) : Theorem 3.21.
(iii) —* (ii) —* (i) : Remark 3.1 and Theorem 3.3. Ef

A function /  : (X, r) —* (Y,a) is called A-irresolute if / _ 1(^) 18 A-open in 
(X, t) for every A-open set V  of (Y,a).

Example 3.23. Let (X ,r)  be as Example 3.14 and f  : (X , t ) —> (X ,r )  such 
that f(a) =  c, f(b) =  c and f(a) =  a. Then f  is X-irresolute, but it is not 
irresolute.

Example 3.24 ([1]). Consider the classical Dirichlet function f  : R  —► R , 
where R  is the real line with the usual topology:

( 1 if x is rational 
f(x)  =  ^

^ 0  if x is otherwise
Therefore f  is X-continuous, but it is not continuous.

Theorem 3.25. If f  : (X ,r)  —> (Y,<r) is a X-irresolute surjective function and 
S  is a X-D-set in Y , then / _ 1 (A) is a X-D-set in X .
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Proof. Let A be a A-D-set in Y. Then there are A-open sets U and V  in
Y  such that A =  U \V  and U ^  Y. By the A-irresoluteness of /, f ~ 1{U) 
and / - 1 (V) are A-open in X .  Since U ^  Y,  we have f _1(lJ) ^  X .  Hence 
/ —1 (A) =  / - 1 (£/)\/_1 (y) is a A-D-set. Ei

Theorem 3.26. If (Y,a) is X-D\ and f  : (X ,r )  —*■ (y,cr) is \-irresolute and 
bijective, then (X, r) is X-D\.

Proof. Suppose that y  is a X-Di space. Let x and y  be any pair of distinct 
points in X .  Since /  is injective and Y  is X-D\, there exist A-£)-sets Ax and By 
of Y  containing f(x )  and f (y )  respectively, such that f (y )  $ Ax and f{x )  £ By. 
By Theorem 3.25, f ~ l (Ax) and f ~ l (By) are A — D — sets in X  containing x 
and y, respectively. This implies that X  is a X-Di space. EÎ

We now prove another characterization of X-D\ spaces.

Theorem 3.27. A space X  is X — D\ if and only if for each pair of distinct 
points x and y in X , there exists a X-irresolute surjective function f  of X  onto 
a X-Di space Y  such that f(x )  ^  f(y ) .

Proof. Necessity. For every pair of distinct points of X ,  it suffices to take the 
identity function on X .
Sufficiency. Let x  and y be any pair of distinct points in X .  By hypothesis, 
there exists a A-irresolute, surjective function /  of a space X  onto a X-D\ space
Y  such that f(x )  ^  f(y)- Therefore, there exist disjoint X-D-sets A x and By 
in Y  such that f{x ) G Ax and f(y )  € By. Since /  is A-irresolute and surjective, 
by Theorem 3.25, f ~ 1(Ax) and f ~ 1(By) are disjoint A-D-sets in X  containing 
x and y, respectively. Hence by Theorem 3.2(2), X  is X-D\ space. Ef
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