R evista C olom biana de M atem áticas Volumen 41(2007)2, páginas 355-369

More on A-closed sets in topological spaces

Más sobre conjuntos A-cerrados en espacios topológicos

MIGUEL CALDAS¹, SAEID JAFARI², GOVINDAPPA NAVALAGI³

¹ Universidade Federal F luminense. Rio de Janeiro, Brasil ² College of Vestsiaelland South, Slagelse, Denmark ³KLE Society's G. H. College, Karnataka, India

ABSTRACT. In this paper, we introduce and study topological properties of λ derived, λ -border, λ -frontier and λ -exterior of a set using the concept of λ -open sets. We also present and study new separation axioms by using the notions of λ -open and λ -closure operator.

Key words and phrases. Topological spaces, A-sets, A-open sets, A-closed sets, λ - R_0 spaces, λ - R_1 spaces.

2000 Mathematics Subject Classification. **54B05, 54C08, 54D05.**

RESUMEN. En este artículo introducimos y estudiamos propiedades topológicas de A-derivada, A-borde, A-frontera y A-exterior de un conjunto usando el concepto de A-conjunto abierto. Presentamos un nuevo estudio de axiomas de separación usando las nociones de operador λ -abierto y λ -clausura.

Palabras y frases clave. Espacios topológicos, A-conjuntos, conjuntos A-abiertos, conjuntos A-cerrados, espacios *X-Ro,* espacios *X-Ri.*

1. Introduction

Maki [12] introduced the notion of Λ -sets in topological spaces. A Λ -set is a set *A* which is equal to its kernel($=$ saturated set), i.e. to the intersection of all open supersets of *A.* Arenas et al. [1] introduced and investigated the notion of λ -closed sets and λ -open sets by involving Λ -sets and closed sets. This enabled them to obtain some nice results. Jn this paper, for these sets, we introduce the notions of λ -derived, λ -border, λ -frontier and λ -exterior of a set and show that some of their properties are analogous to those for open

sets. Also, we give some additional properties of λ -closure. Moreover, we offer and study new separation axioms by utilizing the notions of λ -open sets and λ -closure operator.

Throughout this paper we adopt the notations and terminology of [12] and [1] and the following conventions: (X, τ) , (Y, σ) and (Z, ν) (or simply X, Y and *Z)* will always denote spaces on which no separation axioms are assumed unless explicitly stated.

Definition 1. Let B be a subset of a space (X, τ) . B is a Λ -set (resp. V -set) [12] *if* $B = B^{\Lambda}$ (resp. $B = B^V$), where:

$$
B^{\Lambda} = \bigcap \{ U \mid U \supset B, U \in \tau \} \quad \text{and} \quad B^{\mathcal{V}} = \bigcup \{ F \mid B \supset F, F^c \in \tau \}.
$$

Theorem 1.1 ([12]). Let A, B and $\{B_i \mid i \in I\}$ be subsets of a space (X, τ) . *Then the following properties are valid:*

- a) $B \subset B^{\Lambda}$.
- b) *If* $A \subset B$ *then* $A^{\Lambda} \subset B^{\Lambda}$.
- c) $B^{\Lambda\Lambda} = B^{\Lambda}$. d) $\left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} B_i^n$. e) *If* $B \in \tau$, then $B = B^{\Lambda}$ (i.e. *B* is a Λ -set). f) $(B^{c})^{\Lambda} = (B^{V})^{c}$. g) $B^V \subset B$. h) If $B^c \in \tau$, then $B = B^V$ (i.e. B is a V-set).

i)
$$
\left(\bigcap_{i\in I} B_i\right)^n \subset \bigcap_{i\in I} B_i^{\Lambda}
$$
.

j)
$$
\left(\bigcup_{i \in I} B_i\right) \supset \bigcup_{i \in I} B_i^V
$$
.

- χ *i* ϵ *l i* ϵ *l i* ϵ *l i l is a A-set.* **»G/**
- 1) If B_i is a Λ -set $(i \in I)$, then $\bigcap B_i$ is a Λ -set.
- *i€l* m) B is a Λ -set if and only if B^c is a V -set.
- n) The subsets \emptyset and X are Λ -sets.

2. Applications of λ -closed sets and λ -open sets

Definition 2. *A subset A of a space* (X, τ) *is called* λ *-closed* [1] *if* $A = B \cap C$, *where B is a A-set and C is a closed set.*

Lemma 2.1. For a subset A of a space (X, τ) , the following statements are *equivalent* [1]:

 (a) *A* is λ -closed. *(b)* $A = L \cap Cl(A)$, where L is a Λ -set. *(c)* $A = A^{\Lambda} \cap Cl(A)$.

Lemma 2.2. *Every* Λ -set is a λ -closed set.

Proof. Take $A \cap X$, where *A* is a *A*-set and *X* is closed. $\mathbb{E}[X]$

Rem ark 2.3. [1]. *Since locally closed sets and X-sets are concepts independent of each other, then a* λ *-closed set need not be locally closed or be a* Λ *-set. Moreover, in each* T_0 non- T_1 space there are singletons which are λ -closed but *not a A-set.*

Definition 3. *A subset A of a space* (X, τ) *is called* λ *-open if* $A^c = X \setminus A$ *is X-closed.*

We denote the collection of all λ -open (resp. λ -closed) subsets of X by $\lambda O(X)$ or $\lambda O(X,\tau)$ (resp. $\lambda C(X)$ or $\lambda C(X,\tau)$). We set $\lambda O(X,x) = \{V \in$ $\lambda O(X)$ | $x \in V$ } for $x \in X$. We define similarly $\lambda C(X, x)$.

Theorem 2.4. *The following statements are equivalent for a subset A of a topological space X :* (a) *A* is λ -open.

(b) $A = T \cup C$, where T is a V-set and C is an open set.

Lemma 2.5. *Every V-set is* λ *-open.*

Proof. Take $A = A \cup \emptyset$, where *A* is *V*-set, *X* is *A*-set and $\emptyset = X \setminus X$. \Box

Definition 4. Let (X, τ) be a space and $A \subset X$. A point $x \in X$ is called *X*-cluster point of A if for every λ -open set U of X containing x, $A \cap U \neq \emptyset$. The set of all λ -cluster points is called the λ -closure of A and is denoted by $Cl_{\lambda}(A)$.

Lemma 2.6. Let A, B and A_i ($i \in I$) be subsets of a topological space (X, τ) . *The following properties hold:*

(1) If A_i is λ -closed for each $i \in I$, then $\bigcap_{i \in I} A_i$ is λ -closed.

(2) If A_i is λ *-open for each i* \in *I*, then $\cup_{i \in I} A_i$ is λ -open.

(3) A is λ -closed if and only if $A = Cl_{\lambda}(A)$.

 $(4) Cl_{\lambda}(A) = \bigcap \{F \in \lambda C(X, \tau) \mid A \subset F\}.$

(5) $A \subset Cl_{\lambda}(A) \subset Cl(A)$.

(6) If $A \subset B$, then $Cl_{\lambda}(A) \subset Cl_{\lambda}(B)$.

(7) $Cl_{\lambda}(A)$ *is* λ *-closed.*

Proof. (1) It is shown in [1], 3.3

(2) It is an immediate consequence of (1).

(3) Straightforward.

(4) Let $H = \bigcap \{F \mid A \subset F, F \text{ is } \lambda\text{-closed}\}.$ Suppose that $x \in H$. Let U be a λ -open set containing *x* such that $A \cap U = \emptyset$. And so, $A \subset X \setminus U$. But $X \setminus U$ is λ -closed and hence $Cl_{\lambda}(A) \subset X \backslash U$. Since $x \notin X \backslash U$, we obtain $x \notin Cl_{\lambda}(A)$ which is contrary to the hypothesis.

On the other hand, suppose that $x \in Cl_{\lambda}(A)$, i.e., that every λ -open set of *X* containing *x* meets *A*. If $x \notin H$, then there exists a λ -closed set *F* of *X*

such that $A \subset F$ and $x \notin F$. Therefore $x \in X \backslash F \in \lambda O(X)$. Hence $X \backslash F$ is a λ -open set of *X* containing *x*, but $(X \ F) \cap A = \emptyset$. But this is a contradiction and thus the claim.

(5) It follows from the fact that every closed set is λ -closed.

In general the converse of 2.6(5) may not be true.

Example 2.7. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then $Cl(\{a\}) =$ ${a, c} \not\subset Cl_\lambda({a}) = {a}.$

Definition 5. Let A be a subset of a space X. A point $x \in X$ is said to be *X*-limit point of A if for each λ -open set U containing x, $U \cap (A \setminus \{x\}) \neq \emptyset$. The set of all λ -limit points of A is called a λ -derived set of A and is denoted by $D_{\lambda}(A)$.

Theorem 2.8. *For subsets A ,B of a space X , the following statements hold:*

- (1) $D_{\lambda}(A) \subset D(A)$ where $D(A)$ is the derived set of A.
- (2) If $A \subset B$, then $D_{\lambda}(A) \subset D_{\lambda}(B)$.
- (3) $D_{\lambda}(A) \cup D_{\lambda}(B) \subset D_{\lambda}(A \cup B)$ and $D_{\lambda}(A \cap B) \subset D_{\lambda}(A) \cap D_{\lambda}(B)$.
- (4) $D_{\lambda} (D_{\lambda}(A)) \setminus A \subset D_{\lambda}(A)$.
- (5) $D_{\lambda}(A \cup D_{\lambda}(A)) \subset A \cup D_{\lambda}(A)$.

Proof. (1) It suffices to observe that every open set is λ -open.

(3) it is an immediate consequence of (2).

(4) If $x \in D_{\lambda}(D_{\lambda}(A)) \backslash A$ and *U* is a λ -open set containing x, then $U \cap$ $(D_{\lambda}(A)\setminus \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{\lambda}(A)\setminus \{x\})$. Then since $y \in D_{\lambda}(A)$ and $y \in U$, $U \cap (A \setminus \{y\}) \neq \emptyset$. Let $z \in U \cap (A \setminus \{y\})$. Then $z \neq x$ for $z \in A$ and $x \notin A$. Hence $U \cap (A \setminus \{x\}) \neq \emptyset$. Therefore $x \in D_{\lambda}(A)$.

(5) Let $x \in D_{\lambda}(A \cup D_{\lambda}(A))$. If $x \in A$, the result is obvious. So let $x \in$ $D_{\lambda}(A\cup D_{\lambda}(A))\setminus A$, then for λ -open set *U* containing *x*, $U\cap (A\cup D_{\lambda}(A)\setminus\{x\}) \neq \emptyset$. Thus $U \cap (A \setminus \{x\}) \neq \emptyset$ or $U \cap (D_{\lambda}(A) \setminus \{x\}) \neq \emptyset$. Now it follows from (4) that $U \cap (A \setminus \{x\}) \neq \emptyset$. Hence $x \in D_{\lambda}(A)$. Therefore, in any case $D_{\lambda}(A \cup D_{\lambda}(A)) \subset$ $A \cup D_\lambda(A).$

In general the converse of (1) may not be true and the equality does not hold in (3) of Theorem 2.8.

Example 2.9. Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{a\}, \{a\}, X\}$. Thus $\lambda O(X, \tau) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$ Take:

(i) $A = \{a\}$. We obtain $D(A) \nsubseteq D_{\lambda}(A)$.

(ii) $C = \{a\}$ and $E = \{b, c\}$. Then $D_{\alpha}(C \cup E) \neq D_{\alpha}(C) \cup D_{\alpha}(E)$.

Theorem 2.10. *For any subset A of a space X,* $Cl_{\lambda}(A) = A \cup D_{\lambda}(A)$.

Proof. Since $D_{\lambda}(A) \subset Cl_{\lambda}(A)$, $A \cup D_{\lambda}(A) \subset Cl_{\lambda}(A)$. On the other hand, let $x \in Cl_{\lambda}(A)$. If $x \in A$, then the proof is complete. If $x \notin A$, then each λ -open set *U* containing *x* intersects *A* at a point distinct from *x*. Therefore $x \in D_{\lambda}(A)$. Thus $Cl_{\lambda}(A) \subset A \cup D_{\lambda}(A)$ which completes the proof.

Gi

Definition 6. A point $x \in X$ is said to be a λ -interior point of A if there *exists a* λ *-open set U containing x such that U* $\subset A$ *. The set of all* λ *-interior* points of A is said to be λ -interior of A and is denoted by $Int_{\lambda}(A)$.

Theorem 2 .11. *For subsets A ,B of a space X , the following statements are true:*

(1) $Int_{\lambda}(A)$ *is the largest* λ -open set contained in A. (2) A is λ -open if and only if $A = Int_{\lambda}(A)$. (3) $Int_{\lambda}(Int_{\lambda}(A)) = Int_{\lambda}(A)$. $(4) Int_{\lambda}(A) = A \backslash D_{\lambda}(X \backslash A).$ (5) $X\setminus Int_{\lambda}(A) = Cl_{\lambda}(X\setminus A).$ (6) $X \setminus Cl_{\lambda}(A) = Int_{\lambda}(X \setminus A).$ *(7)* $A \subset B$, then $Int_{\lambda}(A) \subset Int_{\lambda}(B)$. $(8) Int_{\lambda}(A) \cup Int_{\lambda}(B) \subset Int_{\lambda}(A \cup B).$ $(9) Int_{\lambda}(A) \cap Int_{\lambda}(B) \supset Int_{\lambda}(A \cap B).$

Proof. (4) If $x \in A \backslash D_{\lambda}(X \backslash A)$, then $x \notin D_{\lambda}(X \backslash A)$ and so there exists a λ -open set *U* containing *x* such that $U \cap (X \setminus A) = \emptyset$. Then $x \in U \subset A$ and hence $x \in Int_{\lambda}(A)$, i.e., $A \setminus D_{\lambda}(X \setminus A) \subset Int_{\lambda}(A)$. On the other hand, if $x \in Int_{\lambda}(A)$, then $x \notin D_{\lambda}(X \setminus A)$ since $Int_{\lambda}(A)$ is λ -open and $Int_{\lambda}(A) \cap (X \setminus A) = \emptyset$. Hence $Int_{\lambda}(A) = A \backslash D_{\lambda}(X \backslash A).$ (K) $X \setminus Int_1(A) = X \setminus (A \setminus D_1(X \setminus A)) = (X \setminus A) \cup D_1(X \setminus A) = Cl_1(X \setminus A).$

$$
(0) \ \Lambda \ \langle \text{Im}\, \chi(1) - \Lambda \ \rangle \langle \text{Im}\, \chi(2) \ \langle \text{Im}\, \chi(2) \ \rangle - \langle \text{Im}\, \chi(1) - \text{Im}\, \chi(2) \ \langle \text{Im}\, \chi(1) \rangle
$$

Definition 7. $b_{\lambda}(A) = A \setminus Int_{\lambda}(A)$ is said to be the λ -border of A.

Theorem 2.12. *For a subset A of a space X , the following statements hold: (1)* $b_{\lambda}(A) \subset b(A)$ where $b(A)$ denotes the border of A. (2) $A = Int_{\lambda}(A) \cup b_{\lambda}(A)$. *(3)* $Int_{\lambda}(A) \cap b_{\lambda}(A) = \emptyset$. (4) A is a λ -open set if and only if $b_{\lambda}(A) = \emptyset$. $(5) b_{\lambda}(Int_{\lambda}(A)) = \emptyset.$ *(6)* $Int_{\lambda}(b_{\lambda}(A)) = \emptyset$. (7) $b_{\lambda}(b_{\lambda}(A))=b_{\lambda}(A)$. (8) $b_{\lambda}(A) = A \cap Cl_{\lambda}(X \backslash A).$ $(9) b_{\lambda}(A) = D_{\lambda}(X \backslash A).$

Proof. (6) If $x \in Int_{\lambda}(b_{\lambda}(A))$, then $x \in b_{\lambda}(A)$. On the other hand, since $b_{\lambda}(A) \subset A$, $x \in Int_{\lambda}(b_{\lambda}(A)) \subset Int_{\lambda}(A)$. Hence $x \in Int_{\lambda}(A) \cap b_{\lambda}(A)$ which contradicts (3). Thus $Int_{\lambda}(b_{\lambda}(A)) = \emptyset$.

(8)
$$
b_{\lambda}(A) = A \setminus Int_{\lambda}(A) = A \setminus (X \setminus Cl_{\lambda}(X \setminus A)) = A \cap Cl_{\lambda}(X \setminus A).
$$

(9) $b_{\lambda}(A) = A \setminus Int_{\lambda}(A) = A \setminus (A \setminus D_{\lambda}(X \setminus A)) = D_{\lambda}(X \setminus A).$

Definition 8. $Fr_{\lambda}(A) = Cl_{\lambda}(A) \setminus Int_{\lambda}(A)$ is said to be the λ -frontier of A.

Theorem 2 .13. *For a subset A of a space X , the following statements are hold:*

(1) $Fr_{\lambda}(A) \subset Fr(A)$ where $Fr(A)$ denotes the frontier of A.

 $(2) Cl_{\lambda}(A) = Int_{\lambda}(A) \cup Fr_{\lambda}(A)$. *(3)* $Int_{\lambda}(A) \cap Fr_{\lambda}(A) = \emptyset$. (4) $b_{\lambda}(A) \subset Fr_{\lambda}(A)$. (5) $Fr_{\lambda}(A) = b_{\lambda}(A) \cup D_{\lambda}(A)$. *(6) A* is a λ -open set if and only if $Fr_{\lambda}(A) = D_{\lambda}(A)$. *(7)* $Fr_{\lambda}(A) = Cl_{\lambda}(A) \cap Cl_{\lambda}(X \backslash A).$ *(8)* $Fr_{\lambda}(A) = Fr_{\lambda}(X \backslash A)$. (9) $Fr_{\lambda}(A)$ is λ -closed. *(10)* $Fr_{\lambda}(Fr_{\lambda}(A)) \subset Fr_{\lambda}(A)$. $(11) Fr_{\lambda}(Int_{\lambda}(A)) \subset Fr_{\lambda}(A).$ $(12) Fr_{\lambda}(Cl_{\lambda}(A)) \subset Fr_{\lambda}(A).$ $(13) Int_{\lambda}(A) = A \backslash Fr_{\lambda}(A)$. *Proof.* (2) $Int_{\lambda}(A) \cup Fr_{\lambda}(A) = Int_{\lambda}(A) \cup (Cl_{\lambda}(A) \setminus Int_{\lambda}(A)) = Cl_{\lambda}(A).$ (3) $Int_{\lambda}(A) \cap Fr_{\lambda}(A) = Int_{\lambda}(A) \cap (Cl_{\lambda}(A) \setminus Int_{\lambda}(A)) = \emptyset.$ (5) Since $Int_{\lambda}(A) \cup Fr_{\lambda}(A) = Int_{\lambda}(A) \cup b_{\lambda}(A) \cup D_{\lambda}(A);$ $Fr_{\lambda}(A) = b_{\lambda}(A) \cup$ $D_{\lambda}(A)$. $(T) Fr_{\lambda}(A) = Cl_{\lambda}(A) \setminus Int_{\lambda}(A) = Cl_{\lambda}(A) \cap Cl_{\lambda}(X \setminus A).$ (9) $Cl_{\lambda}(Fr_{\lambda}(A)) = Cl_{\lambda}(Cl_{\lambda}(A)\cap Cl_{\lambda}(X\backslash A)) \subset Cl_{\lambda}(Cl_{\lambda}(A))\cap Cl_{\lambda}(Cl_{\lambda}(X\backslash A)) =$ $Fr_{\lambda}(A)$. Hence $Fr_{\lambda}(A)$ is λ -closed. $(10) Fr_{\lambda}(Fr_{\lambda}(A)) = Cl_{\lambda}(Fr_{\lambda}(A)) \cap Cl_{\lambda}(X \backslash Fr_{\lambda}(A)) \subset Cl_{\lambda}(Fr_{\lambda}(A)) = Fr_{\lambda}(A).$ (12) $Fr_{\lambda}(Cl_{\lambda}(A)) = Cl_{\lambda}(Cl_{\lambda}(A))\backslash Int_{\lambda}(Cl_{\lambda}(A)) = Cl_{\lambda}((A))\backslash Int_{\lambda}(Cl_{\lambda}(A)) =$ $Cl_{\lambda}(A) \backslash Int_{\lambda}(A) = Fr_{\lambda}(A).$ (13) $A \ F r_{\lambda}(A) = A \setminus (Cl_{\lambda}(A) \setminus Int_{\lambda}(A)) = Int_{\lambda}(A).$

The converses of (1) and (4) of the Theorem 2.13 are not true in general as are shown by Example 2.14.

Example 2.14. *Consider the topological space* (X, τ) *given in Example 2.7. If* $A = \{a\}$. *Then* $Fr(A) \nsubseteq Fr_{\lambda}(A)$ and if $B = \{a, c\}$, then $Fr_{\lambda}(B) \nsubseteq b_{\lambda}(B)$.

Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is said to be λ -continuous [1] if $f^{-1}(V) \in \lambda C(X)$ for every closed subset V of Y.

Theorem 2.15. *For a function* $f: X \to Y$ *, the following are equivalent: (1) f is X-continuous;*

(2) for every open subset V of Y, $f^{-1}(V) \in \lambda O(X)$ *;*

(3) for each $x \in X$ and each $V \in O(Y, f(x))$, there exists $U \in \lambda O(X, x)$ such *that* $f(U) \subset V$.

Proof. (1) \rightarrow (2) : This follows from $f^{-1}(Y \backslash V) = X \backslash f^{-1}(V)$. $(1) \rightarrow (3)$: Let $V \in O(Y)$ and $f(x) \in V$. Since f is λ -continuous $f^{-1}(V) \in$ $\lambda O(X)$ and $x \in f^{-1}(V)$. Put $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subset V$. $(3) \rightarrow (1)$: Let *V* be an open set of *Y* and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore by (3) there exists a $U_x \in \lambda O(X)$ such that $X \in U_x$ and $f(U_x) \subset V$.

Therefore $X \in U_x \subset f^{-1}(V)$. This implies that $f^{-1}(V)$ is a union of λ -open sets of *X*. Consequently $f^{-1}(V) \subset \lambda O(X)$. Hence f is λ -continuous.

In the following theorem $\sharp \Lambda$.c. denotes the set of points x of X for which a function $f : (X, \tau) \to (Y, \sigma)$ is not λ -continuous.

Theorem 2.16. $\sharp \Lambda.c.$ *is identical with the union of the* λ *-frontiers of the inverse images of* λ *-open sets containing* $f(x)$ *.*

Proof. Suppose that f is not λ -continuous at a point x of X. Then there exists an open set $V \subset Y$ containing $f(x)$ such that $f(U)$ is not a subset of V for every $U \in \lambda O(X)$ containing *x*. Hence we have $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in \lambda O(X)$ containing *x*. It follows that $x \in Cl_{\lambda}(X \setminus f^{-1}(V))$. We also have $x \in f^{-1}(V) \subset Cl_{\lambda}$ $(f^{-1}(V))$. This means that $x \in Fr_{\lambda}$ $(f^{-1}(V))$.

Now, let f be λ -continuous at $x \in X$ and $V \subset Y$ be any open set containing *f(x).* Then $x \in f^{-1}(V)$ is a λ -open set of *X*. Thus $x \in Int_{\lambda}(f^{-1}(V))$ and therefore $x \notin Fr_{\lambda}(f^{-1}(V))$ for every open set *V* containing $f(x)$. র্ল

Definition 9. $Ext_{\lambda}(A) = Int_{\lambda}(X \backslash A)$ is said to be a λ -exterior of A.

Theorem 2.17. *For a subset A of a space X , the following statements are hold:*

(1) $Ext(A) \subset Ext_{\lambda}(A)$ where $Ext(A)$ denotes the exterior of A. (2) $Ext_{\lambda}(A)$ *is* λ *-open.* (3) $Ext_{\lambda}(A) = Int_{\lambda}(X \setminus A) = X \setminus Cl_{\lambda}(A)$. $\chi(\Lambda)$ $Ext_{\lambda}(Ext_{\lambda}(A)) = Int_{\lambda}(Cl_{\lambda}(A)).$ *(5)* If $A \subset B$, then $Ext_{\lambda}(A) \supset Ext_{\lambda}(B)$. (6) $Ext_{\lambda}(A \cup B) \subset Ext_{\lambda}(A) \cup Ext_{\lambda}(B).$ (7) $Ext_{\lambda}(A \cap B) \supset Ext_{\lambda}(A) \cap Ext_{\lambda}(B).$ *(8)* $Ext_{\lambda}(X) = \emptyset$. $(9) Ext_{\lambda}(\emptyset) = X.$ (10) $Ext_{\lambda}(A) = Ext_{\lambda}(X \setminus Ext_{\lambda}(A)).$ (11) $Int_{\lambda}(A) \subset Ext_{\lambda}(Ext_{\lambda}(A)).$ (12) $X = Int_{\lambda}(A) \cup Ext_{\lambda}(A) \cup Fr_{\lambda}(A).$ *Proof.* (4) $Ext_{\lambda}(Ext_{\lambda}(A)) = Ext_{\lambda}(X \setminus Cl_{\lambda}(A)) = Int_{\lambda}(X \setminus Cl_{\lambda}(A)) =$ $Int_{\lambda}(Cl_{\lambda}(A)).$ $(10) \ Ext_{\lambda}(X\setminus Ext_{\lambda}(A)) = Ext_{\lambda}(X\setminus Int_{\lambda}(X\setminus A)) = Int_{\lambda}(X\setminus (X\setminus Int_{\lambda}(X\setminus A))) =$ $Int_{\lambda}(Int_{\lambda}(X\setminus A)) = Int_{\lambda}(X\setminus A) = Ext_{\lambda}(A).$ (11) $Int_{\lambda}(A) \subset Int_{\lambda}(Cl_{\lambda}(A)) = Int_{\lambda}(X\setminus Int_{\lambda}(X\setminus A)) = Int_{\lambda}(X\setminus Ext_{\lambda}(A)) =$ $Ext_{\lambda}(Ext_{\lambda}(A)).$

Example 2.18. *Consider the topological space* (X, τ) *given in Example 2.7. Hence, if* $A = \{a\}$ *and* $B = \{b\}$, *Then* $Ext_{\lambda}(A) \nsubseteq Ext(A)$, $Ext_{\lambda}(A \cap B) \neq$ $Ext_{\lambda}(A) \cap Ext_{\lambda}(B)$ *and* $Ext_{\lambda}(A \cup B) \neq Ext_{\lambda}(A) \cup Ext_{\lambda}(B)$.

3. Some new separation axioms

We recall with the following notions which will be used in the sequel:

A space (X, τ) is said to be R_0 [3] (resp. λ - R_0 [2]) if every open set contains the closure of each of its singletons. A space (X, τ) is said to be R_1 [3] (resp. λ -R₁ [2]) if for *x, y* in *X* with $Cl({x}) \neq Cl({y})$, there exist disjoint open sets *U* and *V* such that $Cl({x})$ is a subset of *U* and $Cl({y})$ is a subset of *V.* A space is T_0 if for $x, y \in X$ such that $x \neq y$ there exists a open set *U* of X containing x but not y or an open set V of X containing y but not x. A space (X, τ) is T_1 if to each pair of distinct points *x* and *y* of X, there exists a pair of open sets one containing *x* but not *y* and the other containing *y* but not *x.* A space is (X, τ) is T_2 if to each pair of distinct points x and y of X, there exists a pair of disjoint open sets, one containing *x* and the other containing *y.* Recall that a space (X, τ) is called a T_1 -space [11] if every generalized closed subset of X is closed or equivalently if every singleton is open or closed $[6]$. In [1], Arenas et al. have shown that a space (X, τ) is called a $T_{\frac{1}{2}}$ -space if and only if every subset of X is λ -closed.

Definition 10. Let X be a space. A subset $A \subset X$ is called a λ -Difference set *(in short* λ *-D-set) if there are two* λ -open sets U, V in X such that $U \neq X$ *and* $A = U \setminus V$.

It is true that every λ -open set $U \neq X$ is a λ -*D*-set since $U = U \setminus \emptyset$.

Definition 11. A space (X, τ) is said to be:

- (i) λ -D₀ (resp. λ -D₁) if for $x, y \in X$ such that $x \neq y$ there exists a λ -D*set of* X containing x but not y or (resp. and) a λ -D-set containing y *but not x.*
- *(ii)* A topological space (X, τ) is λ - D_2 if for $x, y \in X$ such that $x \neq y$ there *exist disjoint* λ -*D*-sets G and E such that $x \in G$ and $y \in E$.
- (*iii*) λ -T₀ (resp. λ -T₁) if for $x, y \in X$ such that $x \neq y$ there exists a λ -open *set U of X containing x but not y or (resp. and) a X-open set V of X containing y but not x.*
- *(iv)* λ -T₂ *if for* $x, y \in X$ *such that* $x \neq y$ *there exist disjoint* λ -open sets U *and V such that* $x \in U$ *and* $y \in V$ *.*

Remark 3.1.

- (i) If (X, τ) is λ -T_i, then it is λ -T_{i-1}, $i = 1, 2$.
- *(ii) Obviously, if* (X, τ) *is* λ *-T_i, then* (X, τ) *is* λ *-D_i,* $i = 0, 1, 2$ *.*
- (*iii*) If (X, τ) *is* λ - D_i *, then it is* λ - D_{i-1} *, i* = 1,2.

Theorem 3.2. For a space (X, τ) the following statements are true: *(1)* (X, τ) *is* λ - D_0 *if and only if* (X, τ) *is* λ - T_0 *. (2)* (X, τ) *is* λ - D_1 *if and only if* , (X, τ) *is* λ - D_2 *.*

Proof. The sufficiency for (1) and (2) follows from the Remark 3.1.

Necessity condition for (1). Let (X, τ) be λ - D_0 so that for any distinct pair of points x and y of X at least one belongs to a λ -D set O. Therefore we choose $x \in O$ and $y \notin O$. Suppose $O = U \setminus V$ for which $U \neq X$ and *U* and *V* are λ -open sets in *X*. This implies that $x \in U$. For the case that $y \notin O$ we have (i) $y \notin U$, (ii) $y \in U$ and $y \in V$. For (i), the space X is λ -T₀ since $x \in U$ and $y \notin U$. For (ii), the space X is also λ -T₀ since $y \in V$ but $x \notin V$.

The necessity condition for (2). Suppose that *X* is λ -*D*₁. It follows from the definition that for any distinct points x and y in X there exist λ -D sets G and E such that G containing x but not y and E containing y but not x . Let $G = U \setminus V$ and $E = W \setminus D$, where *U, V, W* and *D* are λ -open sets in *X*. By the fact that $x \notin E$, we have two cases, i.e. either $x \notin W$ or both W and D contain *x*. If $x \notin W$, then from $y \notin G$ either (i) $y \notin U$ or(ii) $y \in U$ and $y \in V$. If (i) is the case, then it follows from $x \in U \setminus V$ that $x \in U \setminus (V \cup W)$, and also it follows from $y \in W \setminus D$ that $y \in (U \cup D)$. Thus we have $U \setminus (V \cup W)$ and $W \setminus (U \cup D)$ which are disjoint. If (ii) is the case, it follows that $x \in U \setminus V$ and $y \in V$ since $y \in U$ and $y \in V$. Therefore $(U \setminus V) \cap V = \emptyset$. If $x \in W$ and $x \in D$, we have $y \in W \setminus D$ and $x \in D$. Hence $(W \setminus D) \cap D = \emptyset$. This shows that X is λ - D_2 . ार्ग

Theorem 3.3. *If* (X, τ) *is* λ - D_1 *, then it is* λ - T_0 *.*

Proof. Remark 3.1(iii) and Theorem 3.2.

We give an example which shows that the converse of Theorem 3.3 is false.[†]

Example 3.4. Let $X = \{a, b\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$. Then (X, τ) is λ -T₀, but not λ -D₁ since there is not a λ -D-set containing a but not b.

Example 3.5. Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{c\}, \{b\}, \{b, c\}, \{b, c, d\},\}$ *X* }. Then we have that $\{a\}$, $\{a, d\}$, $\{a, b, d\}$ and $\{a, c, d\}$ are λ -open and (X, τ) *is a* λ *-D₁, since* $\{a\}$, $\{b\}$ = $\{a, b, d\} \setminus \{a, d\}$, $\{c\}$ = $\{a, c, d\} \setminus \{a, d\}$, $\{d\}$ = ${a,d}\setminus {a}$. *But* (X, τ) *is not* λ - T_2 .

Example 3.6.

(1) As a consequence of the Example 3.4, we obtain that (X, τ) is λ - T_0 , but not λ -T₁.

(2) As a consequence of the Example 3.5, we obtain that (X, τ) is λ - T_0 , but not λ - T_2 .

A subset B_x of a space X is said to be a λ -neighbourhood of a point $x \in X$ if and only if there exists a λ -open set *A* such that $x \in A \subset B_x$.

Definition 12. Let x be a point in a space X. If x does not have a λ -neigh*borhood other than* X , then we call x a λ -neat point. neigtbourhood

Theorem 3.7. For a λ -T₀ space (X, τ) the following are equivalent: *(1)* (X, τ) *is* λ - D_1 ; (2) (X, τ) has no λ -neat point.

Proof. (1) \rightarrow (2) : If *X* is λ -*D*₁ then each point $x \in X$ belongs to a λ -*D*-set $A = U \setminus V$; hence $x \in U$. Since $U \neq X$, thus x is not a λ -neat point.

 $(2) \rightarrow (1)$: If X is λ -T₀, then for each distinct pair of points $x, y \in X$, at least one of x, y , say x has a λ -neighborhood U such that $x \in U$ and $y \notin U$.

Hence $U \neq X$ is a λ -D-set. If X does not have a λ -neat point, then *y* is not a λ -neat point. So there exists a λ -neighbourhood *V* of *y* such that $V \neq X$.
Now $u \in V \setminus U$ $x \notin V \setminus U$ and $V \setminus U$ is a λ -*D*-set. Therefore *X* is λ -*D*, Now $y \in V \setminus U$, $x \notin V \setminus U$ and $V \setminus U$ is a λ -*D*-set. Therefore *X* is λ -*D*₁.

Corollary 3.8. *A* λ -T₀ *space X is not* λ -D₁ *if and only if there is a unique X-neat point in X .*

Proof. We only prove the uniqueness of the λ -neat point. If x and y are two λ -neat points in X, then since X is λ -T₀, at least one of x and y, say x, has a λ -neighborhood *U* such that $x \in U$, $y \notin U$. Hence $U \neq X$. Therefore *x* is not a λ -neat point which is a contradiction. \mathbb{F}

Theorem 3.9. *A space* X *is* λ - T_0 *if and only if for each pair of distinct points* $x, y \text{ of } X$, $Cl_{\lambda}(\{x\}) \neq Cl_{\lambda}(\{y\}).$

Proof. Sufficiency. Suppose that $x, y \in X$, $x \neq y$ and $Cl_{\lambda}(\{x\}) \neq Cl_{\lambda}(\{y\}).$ Let z be a point of X such that $z \in Cl_{\lambda}(\{x\})$ but $z \notin Cl_{\lambda}(\{y\})$. We claim that $x \notin Cl_{\lambda}(\{y\})$. For, if $x \in Cl_{\lambda}(\{y\})$, then $Cl_{\lambda}(\{x\}) \subset Cl_{\lambda}(\{y\})$. This contradicts the fact that $z \notin Cl_{\lambda}(\{y\})$. Consequently x belongs to the λ -open set $[Cl_{\lambda}(\{y\})]^{c}$ to which *y* does not belong.

Necessity. Let X be a λ -T₀ space and x, y be any two distinct points of X. There exists a λ -open set *G* containing *x* or *y*, say *x* but not *y*. Then G^c is a λ -closed set which does not contain x but contains y. Since $Cl_{\lambda}(\{y\})$ is the smallest λ -closed set containing *y* (Lemma 2.6), $Cl_{\lambda}(\{y\}) \subset G^{c}$, and so $x \notin Cl_{\lambda}(\{y\}).$ Consequently $Cl_{\lambda}(\{x\}) \neq Cl_{\lambda}(\{y\}).$

Theorem 3.10. A space X is λ -T₁ if and only if the singletons are λ -closed *sets.*

Proof. Suppose *X* is λ -*T*₁ and *x* is any point of *X*. Let $y \in \{x\}^c$. Then $x \neq y$. So there exists a λ -open set A_y such that $y \in A_y$ but $x \notin A_y$. Consequently $y \in A_y \subset \{x\}^c$ i.e., $\{x\}^c = \bigcup \{A_y/y \in \{x\}^c\}$ which is λ -open.

Conversely, let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in \{x\}^c$. Hence $\{x\}^c$ is a λ -open set containing *y* but not *x*. Similarly $\{y\}^c$ is a λ -open set containing *x* but not *y*. Accordingly *X* is a λ -*T*₁ space. \Box

Theorem 3.11. A topological space X is λ - T_1 if and only if X is T_0 .

Proof. This is proved by Theorem 3.10 and [1] [Theorem 2.5.]

Example 3.12. *The Khalimsky line or the so-called digital line* ([8], [9] *is the set of the integers,* **Z**, *equipped with the topology* **K**, *having* $\{2n-1,2n,2n+1\}$ 1 $: n \in \mathbb{Z}$ as a subbase. This space is of great importance in the study *of applications of point-set topology to computer graphics. In the digital line* (Z, K) , every singleton is open or closed, that is, the digital line is T_0 . Thus by *Theorem 3.11, the digital line is* λ - T_1 *which is not* T_1 *.*

Rem ark 3 .13 . *From Example 3.4, Example 3.5, Example 3.6 and Example 3.12 we have the following diagram:*

ৰে

(1) $T_1 \Longrightarrow \lambda T_1$ and $T_2 \Longrightarrow \lambda T_2$. The converses are not true:

Example 3.14. Let (X, τ) be a topological space such that $X = \{a, b, c\}$ *and* $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$. *Then we have that*

$$
\lambda O(X,\tau)=\{\emptyset, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, X\}.
$$

Therefore:

- *(i)* (X, τ) *is* λ - T_1 *but it is not* T_1 *. (see also as another example the Khalimsky line i.e., the digital line which is given in Example 3.12).*
- *(ii)* (X, τ) *is* λ - T_2 *but it is not* T_2 *.*
- (2) T_0 implies λ - T_0 But the converse is not true as it is shown in the following example.

Example 3.15. Let $X = \{a, b\}$ with topology $\tau = \{\emptyset, \{a\}, X\}$. Then (X, τ) *is* λ - T_0 *. Observe that* (X, τ) *is not* T_0 *.*

- (3) λ -T₁ implies λ -T₀ and λ -T₂ implies λ -T₀. The converses are not true (Example 3.6).
- (4) λ - R_1 implies λ - R_0 . The converse is not true (Example 3.15).
- (5) λ -T₁ does not imply R_0 and λ -T₀ does not imply R_0 . (Example 3.14).
- (6) R_1 implies R_0 [3]. The converse is not true as it is shown by the following example.

Example 3.16. Let $X = \{a, b\}$ with indiscrete topology τ . Then (X, τ) *is R*^{0} *but it is not R*^{1}.

- (7) (i) λ - $R_0 \nightharpoonup R_0$ and (ii) λ - $R_1 \nightharpoonup R_1$ (Example 3.14).
- (8) (8) (i) $T_{\frac{1}{2}}$ implies T_0 which is equivalent with λ - T_1 (see Theorem 3.11) and (ii) $\tilde{T}_{\frac{1}{2}}$ implies λ - $T_{\frac{1}{2}}$. The converses are not true. For case (i), it is well known and for case (ii), it follows form the fact that every λ - T_1 is λ - $T_{\frac{1}{2}}$ (where a topological space is λ - $T_{\frac{1}{2}}$ [2] if every singleton is λ -open or A-closed).
- (9) λ - $T_1 \neq T_1$. It is shown in the following example.

Example 3.17. $\int_1^1|E \cdot Z \cdot Z|$ Let X be the set of non-negative *integers with the topology whose open sets are those which contain 0 and have finite complement. This space is not* $T_{\frac{1}{2}}$, *but it is* T_0 *is equivalent* with λ -T₁ (see Theorem 3.11). Therefore also λ -T_i does not imply T_i.

(10) *X* is a T_1 -space [1] if and only if every finite subset of *X* is λ -closed. We see that T_1 -space is strictly placed between T_1 and λ - T_1 . On the other hand, the space $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{\overline{a}\}, \{a, b\}, X\}$ is λ - T_1 but not $T_{\frac{1}{4}}$. Example 3.17 is a example of a space $T_{\frac{1}{4}}$ which is not $T_{\frac{1}{2}}$.

In what follows, we refer the interested reader to [10] for the basic definitions and notations. Recall that a representation of a C*-algebra *A* consists of a Hilbert space *H* and a *-morphism $\pi : A \longrightarrow B(H)$, where $B(H)$ is the C^* algebra of bounded operators on *H.* A subspace *X* of a C*-algebra *A* is called a primitive ideal if $\mathcal{A} = \ker(\pi)$ for some irreducible representation (\mathcal{H}, π) of \mathcal{A} . The set of all primitive ideals of a C*-algebra *A* plays a very important role in noncommutative spaces and its relation to particle physics. We denote this set by Prim *A*. As Landi [10] mentions, for a noncommutative C^* -algebra, there is more than one candidate for the analogue of the topological space *X :*

- 1. The structure space of *A* or the space of all unitary equivalence classes of irreducible *-representations and
- 2. The primitive spectrum of *A* or the space of kernels of irreducible * representations which is denoted by Prim *A.* Observe that any element of Prim A is a two-sided *-ideal of A .

It should be noticed that for a commutative C^* -algebra, 1 and 2 are the same but this is not true for a general C^* -algebra $\mathcal A$. Natural topologies can be defined on spaces of 1 and 2. But here we are interested in the Jacobsen (or hull-kernel) topology defined on Prim *A* by means of closure operators. The interested reader may refer to [4] for basic properties of Prim *A.* It follows from Theorem 3.11 that Prim A is also a λ -T₁-space. Jafari [7] has shown that T_1 -spaces are precisely those which are both R_0 and λ - T_1 .

Theorem 3.18. A space X is λ -T₂ if and only if the intersection of all λ -closed *X-neighborhoods of each point of the space is reduced to that point.*

Proof. Let *X* be λ -*T*₂ and $x \in X$. Then for each $y \in X$, distinct from *x*, there exist λ -open sets *G* and *H* such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$. Since $x \in G \subset H^c$, then H^c is a λ -closed λ -neighborhood of *x* to which *y* does not belong. Consequently, the intersection of all λ -closed λ -neighborhood of x is reduced to $\{x\}$.

Conversely, let $x, y \in X$ and $x \neq y$. Then by hypothesis, there exists a λ -closed λ -neighbourhood *U* of *x* such that $y \notin U$. Now there is a λ -open set *G* such that $x \in G \subset U$. Thus G an U^c are disjoint λ -open sets containing x and y, respectively. Hence *X* is λ - T_2 .

Definition 13. *A space* (X, τ) *will be termed* λ *-symmetric if for any x and y in X,* $x \in Cl_{\lambda}(\{y\})$ *implies* $y \in Cl_{\lambda}(\{x\}).$

Definition 14. *A subset A of a space* (X, τ) *is called a* λ *-generalized closed set (briefly* λ *-g-closed) if* $Cl_{\lambda}(A) \subset U$ *whenever* $A \subset U$ and U is λ -open in $(X, \tau).$

Lemma 3.19. *Every* λ *-closed set is* λ -g-closed.

Example 3.20. In Example 3.6, if $A = \{a\}$, then A is a λ -g-closed set, but it *is not a X-closed set (hence it is not a closed set).*

Theorem 3.21. Let (X, τ) be a space. Then, (i) (X, τ) is λ -symmetric if and only if $\{x\}$ is λ -q-closed for each x in X. (*ii*) If (X, τ) *is a* λ -T_i space, then (X, τ) *is* λ -symmetric. (*iii*) (X, τ) *is* λ -symmetric and λ -T₀ *if and only if* (X, τ) *is* λ -T₁.

Proof. (i) Sufficiency. Suppose $x \in Cl_{\lambda}(\{y\})$, but $y \notin Cl_{\lambda}(\{x\})$. Then $\{y\} \subset$ $[Cl_{\lambda}(\{x\})]^c$ and thus $Cl_{\lambda}(\{y\}) \subset [Cl_{\lambda}(\{x\})]^c$. Then $x \in [Cl_{\lambda}(\{x\})]^c$, a contradiction.

Necessity. Suppose $\{x\} \subset E \in \lambda O(X, \tau) = \{B \subset X \mid B \text{ is } \lambda\text{-open}\},\$ $Cl_{\lambda}(\{x\}) \nsubseteq E$. Then $Cl_{\lambda}(\{x\}) \cap E^{c} \neq \emptyset$; take $y \in Cl_{\lambda}(\{x\}) \cap E^{c}$. Therefore $x \in Cl_{\lambda}(\{y\}) \subset E^c$ and $x \notin E$, a contradiction.

(ii) In a λ -T₁ space, singleton sets are λ -closed (Theorem 3.10) and therefore λ -q-closed (Lemma 3.19). By (i), the space is λ -symmetric.

(iii) By (ii) and Remark 3.1(i) it suffices to prove only the necessity condition. Let $x \neq y$. By λ -T₀, we may assume that $x \in E \subset \{y\}^c$ for some $E \in \lambda O(X, \tau)$. Then $x \notin Cl_{\lambda}(\{y\})$ and hence $y \notin Cl_{\lambda}(\{x\})$. There exists a $F \in \lambda O(X, \tau)$ such that $y \in F \subset \{x\}^c$ and thus (X, τ) is a λ - T_1 space.

Theorem 3.22. Let (X, τ) be a λ -symmetric space. Then the following are *equivalent.*

 (i) (X, τ) *is* λ - T_0 , (*ii*) (X, τ) *is* λ - D_1 , *(iii)* (X, τ) *is* λ - T_1 .

Proof. $(i) \rightarrow (iii)$: Theorem 3.21. $(iii) \rightarrow (ii) \rightarrow (i)$: Remark 3.1 and Theorem 3.3.

A function $f : (X, \tau) \to (Y, \sigma)$ is called λ -irresolute if $f^{-1}(V)$ is λ -open in (X, τ) for every λ -open set *V* of (Y, σ) .

Example 3.23. Let (X, τ) be as Example 3.14 and $f : (X, \tau) \rightarrow (X, \tau)$ such *that* $f(a) = c$, $f(b) = c$ *and* $f(a) = a$. Then f is λ -irresolute, but it is not *irresolute.*

Example 3.24 ([1]). *Consider the classical Dirichlet function* $f : \mathbb{R} \to \mathbb{R}$, *where* R *is the real line with the usual topology:*

$$
f(x) = \begin{cases} 1 & if \quad x \text{ is rational} \\ 0 & if \quad x \text{ is otherwise} \end{cases}
$$

Therefore f is λ -continuous, but it is not continuous.

Theorem 3.25. *If f* : $(X, \tau) \rightarrow (Y, \sigma)$ *is a* λ *-irresolute surjective function and S* is a λ -*D*-set in Y, then $f^{-1}(A)$ is a λ -*D*-set in X.

Proof. Let *A* be a λ -*D*-set in *Y*. Then there are λ -open sets *U* and *V* in *Y* such that $A = U \ V$ and $U \neq Y$. By the λ -irresoluteness of f, $f^{-1}(U)$ and $f^{-1}(V)$ are λ -open in *X*. Since $U \neq Y$, we have $f^{-1}(U) \neq X$. Hence $f^{-1}(A) = f^{-1}(U) \setminus f^{-1}(V)$ is a λ -D-set. \Box

Theorem 3.26. *If* (Y, σ) *is* λ -*D*₁ and $f : (X, \tau) \rightarrow (Y, \sigma)$ *is* λ -*irresolute and bijective, then* (X, τ) *is* λ - D_1 *.*

Proof. Suppose that Y is a λ - D_1 space. Let x and y be any pair of distinct points in *X*. Since f is injective and Y is λ - D_1 , there exist λ - D -sets A_x and B_y of *Y* containing $f(x)$ and $f(y)$ respectively, such that $f(y) \notin A_x$ and $f(x) \notin B_y$. By Theorem 3.25, $f^{-1}(A_x)$ and $f^{-1}(B_y)$ are $\lambda - D$ – sets in X containing x and *y*, respectively. This implies that *X* is a λ - D_1 space.

We now prove another characterization of λ - D_1 spaces.

Theorem 3.27. A space X is $\lambda - D_1$ if and only if for each pair of distinct *points x and y in X , there exists a X-irresolute surjective function f of X onto a* λ - D_1 *space Y such that* $f(x) \neq f(y)$.

Proof. Necessity. For every pair of distinct points of *X ,* it suffices to take the identity function on *X .*

Sufficiency. Let x and y be any pair of distinct points in X . By hypothesis, there exists a λ -irresolute, surjective function f of a space X onto a λ - D_1 space *Y* such that $f(x) \neq f(y)$. Therefore, there exist disjoint *X-D-sets A_x* and B_y in *Y* such that $f(x) \in A_x$ and $f(y) \in B_y$. Since f is λ -irresolute and surjective, by Theorem 3.25, $f^{-1}(A_x)$ and $f^{-1}(B_y)$ are disjoint λ -D-sets in X containing *x* and *y*, respectively. Hence by Theorem 3.2(2), *X* is λ - D_1 space. \Box

R eferences

- **[1] A r e n a s , F . G ., D o n t c h e v , J ., a n d G a n s t e r , M . O n A -sets an d d u a l o f g en eralized** continuity. Questions Answers Gen. Topology 15 (1997), 3-13.
- [2] CALDAS, M., AND JAFARI, S. On some low separation axioms via λ -open and λ -closure operator. Rend. Circ. Mat. Di Palermo 54, 2 (2005), 195-208.
- [3] DAVIS, A. S. Indexed systems of neighborhoods for general topological spaces. Amer. Math. Monthly 68 (1961), 886-893.
- **[4] D ix m ie r , J .** *Les C * -algébres et leurs représentations.* **G a u th ie r -V illa r s, P a ris, 1964.**
- [5] DONTCHEV, J. Contra-continuous functions and strongly S-closed spaces. *Internat. J. Math. & Math. Sci. 19,* **2 (1 9 9 6), 3 0 3 -3 1 0 .**
- **[6] DUNHAM, W.** $T_{1/2}$ **-spaces.** *Kyungpook Math.J. 17* **(1977), 161-169.**
- [7] JAFARI, S. The set of all primitive ideals of a C^* -algebra $\mathcal A$ is not an R_0 space. International Journal of General Topology. To appear.
- **[8] K h a l im s k y , E . D ., KOPPERMAN, R ., AND M e y e r , P . R . C o m p u te r g ra p h ies an d co n** nected topologies on finite ordered sets. *Topology Appl. 36* (1990), 1-17.
- **[9] K o v a l e v s k y , V ., a n d Ko p p e r m a n , R . S o m e to p o lo g y -b a se d im a g e p r o c essin g a lg o** rithms. Anals of the New York Academy of Sciences 728 (1994), 174-182.
- [10] LANDI, G. An introduction to noncommutative spaces and their geometry. Springer-Verlag, Berlin, Heidelberg, 2002. Lecture Notes in Physics: Monographs (51).
- **[11] L e v in e , N. Generalized closed sets in topology.** *Rend. Circ. Mat. Palermo 19,* **2 (1970), 8&-96.**
- **[12] M ak i, H. Generalized A-sets and the associated closure operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, 1. Oct. 1986, 139-146.**

(Recibido en abril de 2007. Aceptado en agosto de 2007)

DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDADE FEDERAL FLUMINENSE RUA MÁRIO SANTOS BRAGA, S/N 24020-140, NITERÓI, RJ-BRASIL *e - m a il:* **gmamccsQvm.uff.br**

> **DEPARTMENT OF MATHEMATICS COLLEGE OF VESTSJAELLAND SOUTH HERRESTRAEDE 11 4200 SLAGELSE, DENMARK** e -mail: jafari**Qstofanet.dk**

DEPARTMENT OF MATHEMATICS KLE SOCIETY'S G. H. COLLEGE Haveri-581110 KARNATAKA, INDIA *e - m a il:* **g n a v a l a g i Q h o t n a i l .** *com*

 $\label{eq:1.1} \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2$

 $\mathcal{F}^{\mathcal{G}}_{\mathcal{G}}$.

 $\label{eq:4} \mathfrak{H}(\mathcal{C})=\mathfrak{H}(\mathcal{C})\otimes \mathfrak{H}(\mathcal{C})$

 $\mathcal{M}^{\mathcal{A}}$ and $\mathcal{M}^{\mathcal{A}}$

 $\frac{1}{\Phi(\mathcal{C})} \leq \frac{1}{\Phi(\mathcal{C})} \le$

 $\label{eq:K} E_{\rm c} = \frac{1}{2} \sum_{i=1}^{N} \frac$

 $\label{eq:2.1} \frac{1}{2} \frac{d^2}{dt^2} = \frac{1}{2} \frac{d^2}{dt^2} + \frac$